JPS60106610A - Control method of camber of rolling material - Google Patents

Control method of camber of rolling material

Info

Publication number
JPS60106610A
JPS60106610A JP58121679A JP12167983A JPS60106610A JP S60106610 A JPS60106610 A JP S60106610A JP 58121679 A JP58121679 A JP 58121679A JP 12167983 A JP12167983 A JP 12167983A JP S60106610 A JPS60106610 A JP S60106610A
Authority
JP
Japan
Prior art keywords
rolling
rolled material
edge
camber
rolling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58121679A
Other languages
Japanese (ja)
Inventor
Rikumasa Nakada
中田 陸正
Shuichi Hasegawa
修一 長谷川
Yutaka Yoshima
豊 吉間
Yasuhide Nakai
康秀 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58121679A priority Critical patent/JPS60106610A/en
Publication of JPS60106610A publication Critical patent/JPS60106610A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/30Shape in top view

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To prevent a rolling material from being rolled into a planer fan-shape and to enhance its yield by forming the center line of the material closely into a curve and using its curvature as a variable for obtaining a desired leveling- correction quantity. CONSTITUTION:An image sensor 5R generates an edge-position output E1(n) by detecting an edge position at the right side of a rolling material S2 after passing a rolling stand 1, and an image sensor 5L generates an edge-position output E2(n) by detecting an edge position at the left side. A transporting speed detector 6 generates a moving-distance signal P of a transporting roll-table 3 to input it to an arithmetic devide 7. The device 7 fetches the output E1(n) and the E2(n) once at the same time whenever a pulse P is inputted, and calculates a radius of curvature to output a leveling- correction signal X. The signal X is introduced to an operator through a coefficient multiplier, to give draft-position commands to servovalves respectively, and the levelness of rolling rolls 2, 2 are corrected to roll a rolling material 1 running, successively after thr rolling material 2, into the stand 1 without causing a camber shape.

Description

【発明の詳細な説明】 本発明は、圧延材のキャンバ制御方法に関する。[Detailed description of the invention] The present invention relates to a camber control method for rolled material.

板材圧延において、圧延後に圧延材が平面的に見て進行
方向にゆるやかに湾曲するいわゆるキャンバ現象を生起
することが知られている。このキャンバ発生の原因とし
ては圧延スタンドにおけるワークサイド、ドライブサイ
ドのレベリング不良あるいは圧下量の不同、構成機器の
誤差、ロール径の不均一等圧延機の構成に起因するもの
、圧延材の中方向における温度不均一、素材の断面形状
(矩形度)の不均一性等素材に起因するものの両者の要
因が複雑に関連した結果として現出することになる。
In rolling a plate material, it is known that a so-called camber phenomenon occurs in which the rolled material gently curves in the advancing direction when viewed in plan after rolling. The causes of this camber include poor leveling or uneven rolling reduction on the work side and drive side of the rolling stand, errors in component equipment, uneven roll diameters, etc. due to the configuration of the rolling mill, and problems in the middle direction of the rolled material. This appears as a result of a complex relationship between factors caused by the material, such as temperature non-uniformity and non-uniformity in the cross-sectional shape (rectangularity) of the material.

ところで、この様な圧延機にキャンバが発生すると、当
該部分において、製品寸法をとり得ないことから、圧延
歩留りを低下させる原因となり、特に、厚板圧延におい
ては、前述の問題は極めて重要な問題となる。
By the way, when camber occurs in such a rolling mill, the product dimensions cannot be determined in that area, causing a reduction in rolling yield.Especially in thick plate rolling, the above-mentioned problem is an extremely important problem. becomes.

本発明は、圧延材がキャンバ形状となるのを防ぐことが
できる圧延材のキャンバ制御方法を提供することを目的
とし、任意の圧延スタンドを出た圧延材の長さ方向複数
の左右エツジ位置から該圧延材の中点が描く曲線を近似
し、該曲線の曲率を変数として圧延ロールの所要のレベ
リング制御量をめ、上記圧延スタンドの左右圧下位置を
上記レベリング制御量に応じて差動的に制御することを
特徴とする特 以下、本発明の一実施例を図面を参照して説明する。
An object of the present invention is to provide a camber control method for a rolled material that can prevent the rolled material from forming a camber shape. Approximate the curve drawn by the midpoint of the rolled material, use the curvature of the curve as a variable to determine the required leveling control amount of the rolling rolls, and differentially adjust the left and right rolling positions of the rolling stand according to the leveling control amount. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図において、1は厚板圧延ラインにおける圧延スタ
ンド、2.2は圧延ロール、3は搬送ローラテーブル、
4はキャンバ計であって、圧延スタンド1の出側近傍に
配設されたイメージセンサ(エツジ位置検出器)5R1
5Lと搬送速度検出器(パルス発信機)6、及び演算装
置7からなる。SLは圧延スタンド通過前の圧延材、S
2は圧延スタンド通過後の圧延材である。イメージセン
サ5Rは圧延スタンド1を入側から出側え通過した圧延
材S2の図示矢印方向へ向かって右側のエツジ位置を検
出してエツジ位置出力El(ロ)を発生し、イメージセ
ンサ5Lは左側のエツジ位置を検出してエツジ位置出力
E 2 (nlを発生する。搬送速度検出器6は搬送ロ
ーラテーブル3のローラが例えば1回転する毎に即ち圧
延材82が所定距離だけ図示矢印方向に移動する毎に距
離信号(パルス)Pを発生して演算装置7に入力する。
In FIG. 1, 1 is a rolling stand in a plate rolling line, 2 is a rolling roll, 3 is a conveying roller table,
4 is a camber meter, which is an image sensor (edge position detector) 5R1 disposed near the exit side of the rolling stand 1;
5L, a conveyance speed detector (pulse transmitter) 6, and an arithmetic unit 7. SL is the rolled material before passing through the rolling stand, S
2 is the rolled material after passing through the rolling stand. The image sensor 5R detects the right edge position of the rolled material S2 that has passed through the rolling stand 1 from the entrance side to the exit side in the direction of the arrow shown in the figure, and generates an edge position output El (b), and the image sensor 5L detects the edge position on the right side in the direction of the arrow shown in the figure. The conveying speed detector 6 detects the edge position of and generates an edge position output E 2 (nl).The conveying speed detector 6 detects the position of the rolled material 82 every time the roller of the conveying roller table 3 rotates, for example, once, that is, the rolled material 82 moves by a predetermined distance in the direction of the arrow shown in the figure. Each time a distance signal (pulse) P is generated and input to the arithmetic unit 7.

演算装置7は所定時間を毎に、即ち、圧延材82が所定
距離だけ図示矢印方向に移動する毎にイメージセンサ5
Rのエツジ位置出力E 1 (n)とイメージセンサ5
Lの位置出力E 2 (n)を同時に号ンプリソグして
読込み、後述する演算を行ってレベリング修正信号Xを
発生ずる。このレベリング修正信号Xは第2図に示す如
く係数器8で位置信号に変換されて圧下制御装置の演算
器9R19Lに入力される。
The arithmetic unit 7 operates the image sensor 5 at predetermined time intervals, that is, each time the rolled material 82 moves by a predetermined distance in the direction of the arrow shown in the figure.
R edge position output E 1 (n) and image sensor 5
The position output E 2 (n) of L is simultaneously pre-signed and read, and the leveling correction signal X is generated by performing calculations to be described later. This leveling correction signal X is converted into a position signal by a coefficient multiplier 8 as shown in FIG. 2, and is inputted to an arithmetic unit 9R19L of the lowering control device.

演算器9R19Lは圧下位置検出器10R110Lがそ
れぞれ出力する圧下位置信号XR(十入力)、XL(−
人力)とレベリング修正信号Xとを突き合わせ、差信号
である圧下位置指令(信号)MR,MLを送出する。こ
の圧下位置指令MR1MLはそれぞれサーボ弁11R,
IILに入力され、該サーボ弁11R,IILはそれぞ
れ圧下位置指令MR,MLの大きさと極性に応じて圧下
シリンダ12R,12Lに供給される油の量と方向を制
御する。13R,13Lは圧延荷重計、14R,14L
は圧下ラムをそれぞれ示している。
The calculator 9R19L receives the roll down position signals XR (10 inputs) and XL (-
(manual power) and the leveling correction signal X, and sends out lowering position commands (signals) MR and ML, which are difference signals. This reduction position command MR1ML is used for the servo valves 11R and 11R, respectively.
The servo valves 11R and IIL control the amount and direction of oil supplied to the reduction cylinders 12R and 12L according to the magnitude and polarity of the reduction position commands MR and ML, respectively. 13R, 13L are rolling load meters, 14R, 14L
indicate the reduction rams, respectively.

15はγ線厚み計であって、各圧延スタンドの出側に設
けられる。
Reference numeral 15 denotes a gamma ray thickness gauge, which is provided on the outlet side of each rolling stand.

次に、この装置の動作について説明する。Next, the operation of this device will be explained.

今、圧延材S2(圧延材81についても同様であるが)
は図示しないサイドガイドによってセンタリングされな
がら搬送ローラテーブル3上を走行するものとし、圧延
スタンド1通過後の圧延材S2の断面形状が圧延後キャ
ンバがないとき、本来とるべき圧延形状に対して左右で
Δtだけ圧下バランスがくずれたものとする。例えば、
左右とも。厚みtとなるべきものが、第2図(alに示
す如く、圧延材S1の一方のエツジ厚さがtから1−Δ
t/2 (但し、Δt:厚み変動量)と薄くなり、他方
のエツジ厚さがtからt+Δt/2と厚くなったとする
。この場合には、圧延材s2の圧延材siに対する巾拡
り量は殆どなく、圧延材S2の平面形状は、第2図(b
)に示す如く、上記薄くなったエツジ側の長さがlから
β+ΔIl/2に伸び、上記厚くなったエツジ側の長さ
がlからβ−Δ!!/2に短くなった扇形のキャンバ形
状を呈する。
Now, rolled material S2 (the same applies to rolled material 81)
is assumed to run on the conveying roller table 3 while being centered by a side guide (not shown), and the cross-sectional shape of the rolled material S2 after passing through the rolling stand 1 is left and right with respect to the originally rolled shape when there is no camber after rolling. It is assumed that the pressure balance is lost by Δt. for example,
Both left and right. As shown in Figure 2 (al), the thickness of one edge of the rolled material S1 should be 1-Δ from t.
Assume that the edge thickness becomes thinner by t/2 (where Δt: thickness variation amount), and the thickness of the other edge becomes thicker from t to t+Δt/2. In this case, there is almost no width expansion of the rolled material s2 relative to the rolled material si, and the planar shape of the rolled material S2 is as shown in FIG.
), the length of the thinned edge side extends from l to β+ΔIl/2, and the length of the thickened edge side extends from l to β−Δ! ! It exhibits a fan-shaped camber shape that is shortened to /2.

このよう・な扇形のキャンバ形状を呈する圧延材S2に
ついては、その中方向中心線Cを円弧曲線と見なしてそ
の曲率半径をRとすると、下記式の関係が成立する。
Regarding the rolled material S2 exhibiting such a fan-shaped camber shape, if its center line C in the center direction is regarded as a circular arc curve and its radius of curvature is R, the following relationship holds true.

txIlxdw= (L −Δ t/2) CI! +Δ t / 2 )
 d w−−−(1)圧延材S2が扇形であることから
、 I!l+ΔI!/2 −−−−−(21 RR+w/2 上記両式から、 Xw Δt= −−(31 R+ w / 2 が得られる。この厚み変動量Δtがまると、次式から、
所要のレベリング修正量ΔLがまる。
txIlxdw= (L −Δ t/2) CI! +Δt/2)
d w---(1) Since the rolled material S2 is fan-shaped, I! l+ΔI! /2 -------(21 RR+w/2 From both the above equations, Xw Δt= −-(31 R+ w / 2 is obtained. When this thickness variation amount Δt is rounded, from the following equation,
The required leveling correction amount ΔL is reduced.

ΔLD −□ −−−(4) Δt w −D ΔL −−−(5) R+ w / 2 但し、D=圧延ロール2のチョック間距離、演算装置7
はこの曲率半径Rを演算する。即ち、演算装置7はエツ
ジ位置出力E 1 (nlとE 2 (n)を、例えば
、パルスPが入力される毎に1回向時に取込み、圧延材
S2のl」方向中点C(n)を次式によって演算し、 C(n)=(El(nl+E2(nl)/2 −(6)
続いて、 を演算して曲率半径Rを算出し、上記tl)〜(5)の
演算を行って、ΔLを内容とするレベリング修正信号X
を送出する。tはγ線厚み計15によって測定される。
ΔLD −□ −−−(4) Δt w −D ΔL −−−(5) R+ w / 2 However, D = distance between chocks of rolling roll 2, calculation device 7
calculates this radius of curvature R. That is, the arithmetic unit 7 takes in the edge position outputs E 1 (nl and E 2 (n), for example, in one direction every time the pulse P is input, and calculates the center point C(n) of the rolled material S2 in the l'' direction. is calculated by the following formula, C(n)=(El(nl+E2(nl)/2 - (6)
Next, calculate the radius of curvature R by calculating tl) to (5) above to obtain the leveling correction signal X whose content is ΔL.
Send out. t is measured by a gamma ray thickness meter 15.

中Wはキャンバ計4の左右のエツジ位置信号から演算装
置7で計算される。
The middle W is calculated by the arithmetic unit 7 from the left and right edge position signals of the camber meter 4.

上記レベリング修正信号Xは前記した如く係数器8を通
して演算器9R19Lに導かれるので、圧下位置指令M
R=X−XR,ML=X−XL。
The leveling correction signal X is guided to the calculator 9R19L through the coefficient unit 8 as described above, so
R=X-XR, ML=X-XL.

がそれぞれサーボ弁11R,IILに与えられる。この
結果、圧延ロール2.2のロール間隙gの右端側が広が
り、左端側が狭くなる方向へ圧延ロール2.2の水平度
が修正されることになり、圧延材S2に続いて圧延スタ
ンドlに入った圧延材S1はキャンバ形状を呈すること
なく該圧延スタンドlで圧延される。
are applied to the servo valves 11R and IIL, respectively. As a result, the horizontality of the rolling roll 2.2 is corrected in such a direction that the right end side of the roll gap g of the rolling roll 2.2 widens and the left end side narrows, and the rolling material enters the rolling stand l following the rolled material S2. The rolled material S1 is rolled in the rolling stand 1 without exhibiting a camber shape.

本実施例は、圧延スタンド左右圧下量の差、即ち、左右
圧下位置の差に起因する圧延材のキャンバ形状を曲線近
似してその曲率を用いて所要のレベリング修正量を演算
によりめ、該レベリング修正量で上記左右圧下位置を修
正制御するから、精度の高い制御を行うことができる。
In this example, the camber shape of the rolled material caused by the difference in the left and right rolling stands, that is, the difference in the left and right rolling positions, is approximated by a curve, and the required leveling correction amount is calculated using the curvature. Since the left and right lowering positions are corrected and controlled by the correction amount, highly accurate control can be performed.

これを、以下に実測例で示す。第4図は、本発明を実施
する前の下記寸法の圧延材の平面形状であって、 板中−2580mm 板厚−20,5龍 板長−24,5m 上記演算を行うと、 曲率半径R−4500205m 厚さ変動量Δを−・35μm レベリング修正量−85μm であった。本発明を実施してこのレベリング修正量を与
えると第4図のキャンバ形状は第5図に示す如く修正さ
れた。
This will be shown below using an actual measurement example. FIG. 4 shows the planar shape of a rolled material with the following dimensions before carrying out the present invention, where: Medium plate - 2580 mm Plate thickness - 20.5 m Long plate length - 24.5 m When the above calculation is performed, the radius of curvature R is -4500205 m Thickness variation amount Δ was -35 μm Leveling correction amount -85 μm. When the present invention was implemented and this leveling correction amount was applied, the camber shape shown in FIG. 4 was corrected as shown in FIG. 5.

上記実施例では、圧延材s2の中心線Cを円弧曲線と見
なして所要のレベリング量ΔLを算出したが、放物線近
似し、その2次項の係数を用いてレベリング制御量ΔL
を演算するようにしても良い。
In the above embodiment, the required leveling amount ΔL was calculated by regarding the center line C of the rolled material s2 as an arcuate curve, but the leveling control amount ΔL was approximated to a parabola and the coefficient of its quadratic term was
It is also possible to calculate.

以上の如く、本発明によれば、圧延材の中心線を曲線近
似し、該曲線の曲率を変数として所要のレベリング修正
量を得る構成としたことにより、該レベリング修正量が
圧延スタンド左右圧下量の差に精度良く対応するので、
圧延材が平面形状扇形状に圧延されるのを防ぎ、従来に
比して歩留りを大中に高めることができる。
As described above, according to the present invention, the center line of the rolled material is approximated by a curve, and the curvature of the curve is used as a variable to obtain the required leveling correction amount. It accurately responds to the difference in
It is possible to prevent the rolled material from being rolled into a planar fan shape, and to significantly increase the yield compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による圧延材のキャンバ制御方法を実施
した厚板圧延装置の実施例の斜視図、第2図は上記実施
例における制御手段の詳細を示す図、第3図(al及び
(blはそれぞれ上記実施例を説明する為の圧延材の断
面形状及び平面形状を示す図 。 である。 1−・圧延スタンド、2−・−圧延ロール、4−・キャ
ンバ計、5R,5L−イメージセンサ、6・−搬送速度
検出器、7−演算装置、8−係数器、9R19L−演算
器、l0R110L−・圧下位置検出器、IIR,II
L・−・号−ボ弁、12 R,12L−圧下シリンダ、
14R,14L−圧下ラム、15−・−γ線厚み針。 特許出願人 株式会社 神戸製鋼所 代理人 弁理士 小林 傅 手続補正書(方式) 昭和59年11月26日 特許庁長官 殿 1、 事件の表示 昭和58年特許願第121679号 2、 発明の名称 圧延材のキャンバ制御方法 3、補正をする者 特許出願人 住 所 神戸市中央区脇浜町1丁目3番18号名 称(
119)株式会社 神戸製鋼所代表者 牧 冬空 4、代理人 の105 (発送日)昭和59年11月27日 6、補正の対象 明細書の図面の簡単な説明の欄 7、補正の内容 (1)明細書第1O頁第2行めに1−Cある。」とある
のを、 [、第4図は修正前の圧延材のキャンB形状を説明する
だめの図、第5図は本発明の詳細な説明するための圧延
材の平面形状を示す図である。」と訂正します。
FIG. 1 is a perspective view of an embodiment of a thick plate rolling apparatus implementing the camber control method for rolled material according to the present invention, FIG. 2 is a diagram showing details of the control means in the above embodiment, and FIG. 3 (al and ( bl is a diagram showing the cross-sectional shape and planar shape of the rolled material, respectively, for explaining the above examples. 1- Rolling stand, 2- Roll roll, 4- Camber meter, 5R, 5L- image Sensor, 6 - Conveyance speed detector, 7 - Arithmetic unit, 8 - Coefficient unit, 9R19L - Arithmetic unit, l0R110L - Lowering position detector, IIR, II
L・-・No.-bo valve, 12 R, 12L-pressure cylinder,
14R, 14L - reduction ram, 15 - - gamma ray thickness needle. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Fu Kobayashi Procedural Amendment (Method) November 26, 1980 Director General of the Patent Office 1, Indication of Case 1982 Patent Application No. 121679 2, Name of Invention Rolled Camber control method for timber 3, person making the correction Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe Name (
119) Kobe Steel Co., Ltd. Representative Fuyuzora Maki 4, Agent 105 (Delivery date) November 27, 1980 6, Column 7 for a brief explanation of the drawings of the specification subject to amendment, Contents of the amendment (1) ) There is 1-C on page 10, line 2 of the specification. ”, [, Fig. 4 is a diagram for explaining the can B shape of the rolled material before modification, and Fig. 5 is a diagram showing the planar shape of the rolled material for explaining the present invention in detail. be. ” I am corrected.

Claims (1)

【特許請求の範囲】[Claims] 板材の圧延装置において、任意の圧延スタンドを出た圧
延材の長さ方向複数の左右エツジ位置から該圧延材の中
点が描く曲線を近似し、該曲線の曲率を変数として圧延
ロールの所要のレベリング修正量をめ、上記圧延スタン
ドの左右圧下位置を上記レベリング修正量に応じて差動
的に制御することを特徴とする圧延材のキャンバ制御方
法。
In a plate rolling machine, a curve drawn by the midpoint of the rolled material is approximated from a plurality of left and right edge positions along the length of the rolled material that has exited an arbitrary rolling stand, and the curvature of the curve is used as a variable to determine the required amount of the rolling roll. A camber control method for a rolled material, characterized in that the left and right rolling positions of the rolling stand are differentially controlled in accordance with the leveling correction amount.
JP58121679A 1983-07-06 1983-07-06 Control method of camber of rolling material Pending JPS60106610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121679A JPS60106610A (en) 1983-07-06 1983-07-06 Control method of camber of rolling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121679A JPS60106610A (en) 1983-07-06 1983-07-06 Control method of camber of rolling material

Publications (1)

Publication Number Publication Date
JPS60106610A true JPS60106610A (en) 1985-06-12

Family

ID=14817192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121679A Pending JPS60106610A (en) 1983-07-06 1983-07-06 Control method of camber of rolling material

Country Status (1)

Country Link
JP (1) JPS60106610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219815A (en) * 1985-07-19 1987-01-28 Nippon Telegr & Teleph Corp <Ntt> Fiber type optical frequency demultiplexer and multiplexer
FR2615765A1 (en) * 1987-05-29 1988-12-02 Usinor Aciers METHOD AND DEVICE FOR DETERMINING THE SABER OF A SHEET
JPH01313040A (en) * 1988-06-14 1989-12-18 Terumo Corp Pressure reduced blood collecting tube
JP2016097431A (en) * 2014-11-25 2016-05-30 Jfeスチール株式会社 Steel plate shape detecting device and method, steel plate rolling method, and steel plate manufacturing method
EP3477248A1 (en) * 2017-10-26 2019-05-01 Heinrich Georg GmbH Maschinenfabrik Inspection system and method of analyzing faults

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575812A (en) * 1978-11-30 1980-06-07 Sumitomo Metal Ind Ltd Sheet camber controller for plate rolling
JPS55112116A (en) * 1979-01-18 1980-08-29 Sumitomo Metal Ind Ltd Controlling method for sheet camber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575812A (en) * 1978-11-30 1980-06-07 Sumitomo Metal Ind Ltd Sheet camber controller for plate rolling
JPS55112116A (en) * 1979-01-18 1980-08-29 Sumitomo Metal Ind Ltd Controlling method for sheet camber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219815A (en) * 1985-07-19 1987-01-28 Nippon Telegr & Teleph Corp <Ntt> Fiber type optical frequency demultiplexer and multiplexer
FR2615765A1 (en) * 1987-05-29 1988-12-02 Usinor Aciers METHOD AND DEVICE FOR DETERMINING THE SABER OF A SHEET
US4989164A (en) * 1987-05-29 1991-01-29 Tfk Process and device for determining the camber of a sheet
JPH01313040A (en) * 1988-06-14 1989-12-18 Terumo Corp Pressure reduced blood collecting tube
JP2016097431A (en) * 2014-11-25 2016-05-30 Jfeスチール株式会社 Steel plate shape detecting device and method, steel plate rolling method, and steel plate manufacturing method
EP3477248A1 (en) * 2017-10-26 2019-05-01 Heinrich Georg GmbH Maschinenfabrik Inspection system and method of analyzing faults
US11249031B2 (en) 2017-10-26 2022-02-15 Heinrich Georg Gmbh Maschinenfabrik Inspection system and method for analysing defects

Similar Documents

Publication Publication Date Title
AU632719B2 (en) Method of controlling edge drop in cold rolling of steel
JPS60106610A (en) Control method of camber of rolling material
US3841124A (en) Width controlling apparatus and method for rolled strips
JPS59156511A (en) Rolling mill
US3670568A (en) System of measuring the distribution of reduction rate of metal strips
JPH0158444B2 (en)
JPS6323851B2 (en)
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JPS649086B2 (en)
JPS6253047B2 (en)
JPS6129806B2 (en)
JP2650398B2 (en) Scarf cutting amount control method
EP0063633B1 (en) Automatic control methods and devices for rolling mills
JPS59188503A (en) Measuring method of plate section profile using three- head type gamma-ray thickness gauge
EP0151675B1 (en) Method of automatically controlling the rate of reduction in a rolling mill
JPH0449043B2 (en)
JPS62192204A (en) Method for measuring roll crown
US3024680A (en) Process measurement and control
JPH0227046B2 (en)
JPS61219822A (en) Rolling roll displacement correcting apparatus in measurement of rolling roll profile
JPH02211907A (en) Sheet thickness control method for continuous hot rolling mill
GB2124364A (en) Methods of gauging and controlling profile of a bar or like workpiece
JPS6150047B2 (en)
JPH03189006A (en) Flying thickness change control method of thick plate
JPS5961514A (en) Speed controlling device of multi-strand continuous rolling mill