JPS60105947A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JPS60105947A
JPS60105947A JP58214443A JP21444383A JPS60105947A JP S60105947 A JPS60105947 A JP S60105947A JP 58214443 A JP58214443 A JP 58214443A JP 21444383 A JP21444383 A JP 21444383A JP S60105947 A JPS60105947 A JP S60105947A
Authority
JP
Japan
Prior art keywords
gas
infrared
filter
measurement
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58214443A
Other languages
Japanese (ja)
Other versions
JPS649569B2 (en
Inventor
Kunio Sukigara
鋤柄 邦雄
Harutaka Taniguchi
谷口 春隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58214443A priority Critical patent/JPS60105947A/en
Publication of JPS60105947A publication Critical patent/JPS60105947A/en
Publication of JPS649569B2 publication Critical patent/JPS649569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable a fast response by running a measuring gas between a cylindrical outer box with a separate gas inlet and outlet having an infrared ray transmission window on both sides thereof and a cylindrical filter with a heater coaxial with the inner surface thereof. CONSTITUTION:In an outer box 34 having infrared ray transmission windows 30 and 31 on both sides thereof, a cylindrical gas filter 33 coaxial with the inner surface thereof is mounted removably to make up a measuring cell section. A diffusion space 32 is provided between the box 34 and the filter 33 while the filter 33 is made heatable up to a specified temperature with a heater 37 and the box 34 is provided with a measuring gas introduction port 15 and discharge port 16 facing each other. Thus, the measuring gas can be run along the circumference of the filter 33 and heated thereby enabling effective removal of dust while preventing dew formation of water.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は赤外線領域に吸収帯を有する測定ガスの濃度を
赤外線の吸収量により測定する赤外線ガス分析計、特に
煙道中のガス濃度測定などダスト・ミスト及び水分を含
む測定ガスについて直接連続測定する赤外線ガス分析計
に関するものである。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention relates to an infrared gas analyzer that measures the concentration of a gas to be measured having an absorption band in the infrared region based on the amount of infrared absorption, and is particularly applicable to gas concentration measurement in a flue, etc. - This relates to an infrared gas analyzer that directly and continuously measures measurement gases containing mist and moisture.

〔従来技術とその問題点〕[Prior art and its problems]

一般に赤外線ガス分析計は、基本光学系として、シング
ルビーム方式とダブルビーム方式に分類される。両方式
ともに主要部分は光源部、測定セル部および検出部であ
る。
Generally, infrared gas analyzers are classified into single beam type and double beam type based on their basic optical systems. The main parts of both types are a light source section, a measurement cell section, and a detection section.

以下に本発明の理解を容易にするために、第1図を用い
てシングルビーム方式赤外線ガス分析計の動作原理を簡
単に説明する。第1図において、光源部1内の赤外線光
源2より放射された光束IMは、セクター3により断続
された後測定セル4内に入射する。測定セル4は両側面
に赤外線透過窓10 、11を配置し、測定ガスの導入
口15と排出口16( を待った構造へしており、通常測定ガスが導入115か
ら連続的に供給される。赤外線光束IMは、測定セル4
内で測定ガス知よりその一部が吸収された伊ガス封入検
出器5に:a″fる。この検出器5は、赤外線光束IM
の光路方向に直列に配置されている、測定成分ガスを封
入した第1検出室6と、第2検出室7と、通路とから構
成され、検出器に入射した光束IMfi第1検出室6で
一部吸収さ)1゜た後、第2検出室7でさらに吸収され
る。この第1及び第2検出室6,7内の測定成分ガスに
よる光束IMの吸収により生じた圧力上昇の差が、通路
8に設置された差圧検出素子9により検出され、電気信
号に変換される。
In order to facilitate understanding of the present invention, the operating principle of a single beam infrared gas analyzer will be briefly explained below using FIG. 1. In FIG. 1, a light beam IM emitted from an infrared light source 2 in a light source section 1 is interrupted by a sector 3 and then enters a measurement cell 4. The measurement cell 4 has infrared transmitting windows 10 and 11 arranged on both sides, and has an inlet 15 and an outlet 16 for the measurement gas, and normally the measurement gas is continuously supplied from the inlet 115. The infrared light flux IM is measured by the measurement cell 4.
A part of the measured gas is absorbed into the gas-filled detector 5: a″f.
It consists of a first detection chamber 6 filled with a measurement component gas, a second detection chamber 7, and a passage, which are arranged in series in the optical path direction of the detector. After a temperature of 1°, it is further absorbed in the second detection chamber 7. The difference in pressure increase caused by the absorption of the luminous flux IM by the measurement component gases in the first and second detection chambers 6 and 7 is detected by the differential pressure detection element 9 installed in the passage 8 and converted into an electrical signal. Ru.

今、燃焼排ガスのようにダスト、ミストおよび水分を含
む測定ガスを測定セル4に導入した場合について考える
。第1.笥2検出室の光路長をそれぞれZl 、z2、
体積を”1 +v2 、検出器封入ガス濃度をCO1測
定セル入射光量を■H1小測定セル長をt、測定ガスに
含まれる測定成分ガス鑓度、ダス+−6度をそれぞれC
M、CD1ミストおよび水分の露結による赤外線光束の
減衰係数なKcとすると、検出器出力はおよそ次式で表
される。
Now, consider a case where a measurement gas containing dust, mist, and moisture, such as combustion exhaust gas, is introduced into the measurement cell 4. 1st. Let the optical path length of the second detection chamber be Zl, z2,
The volume is 1 +v2, the concentration of the gas filled in the detector is CO1, the amount of light incident on the measurement cell is H1, the length of the small measurement cell is t, the temperature of the gas component to be measured contained in the measurement gas, and C is +6 degrees, respectively.
M, CD1 mist, and Kc, which is the attenuation coefficient of the infrared light flux due to moisture condensation, the detector output is approximately expressed by the following equation.

Soe (、aPl −6P2 ) ocKc IM(
λ、 ) e ”MCM+βMCD)toc KCIM
 (λ1)(i−(αMCM+βM(−u)t)・・・
・・・・・・・(1) (1)式より明らかなように、測定成分ガス濃度とダス
ト濃度あるいはミスト・水分の露結による赤外線残塵の
減衰量に応じた電気信号が得られ、このままでは他の手
段でダスト一度および赤外線強度の減衰量を測定しない
限り正確な測定成分ガスの濃度を測定することができな
い。ここで1M4λ1)は赤外線光束の中の測定成分ガ
スの吸収帯の中心波長における光強度、αM、βMは中
心波長λ1における測定成分ガス、ダストの吸光係数で
ある。
Soe (, aPl -6P2) ocKc IM (
λ, ) e ”MCM+βMCD)toc KCIM
(λ1)(i-(αMCM+βM(-u)t)...
・・・・・・・・・(1) As is clear from equation (1), an electrical signal is obtained according to the attenuation amount of the infrared residual dust due to the concentration of the gas to be measured and the dust concentration or the condensation of mist and moisture. In this state, it is not possible to accurately measure the concentration of the component gas to be measured unless dust and infrared intensity attenuation are measured by other means. Here, 1M4λ1) is the light intensity at the center wavelength of the absorption band of the measurement component gas in the infrared light flux, and αM and βM are the extinction coefficients of the measurement component gas and dust at the center wavelength λ1.

したがって、赤外線ガス分析11を煙道排ガスのように
多量のダスト、ミストおよび水分を含む測定ガスに適用
する場合には、測定セル4に測定ガスを導入する前処理
として、ダスト、ミストおよび水分を除く処理を含むガ
スサンプリング系を必要とする。第2図は典型的なガス
サンプリング系の系統図を示したものである。図におい
て1測定ガス採集器21の中には測定ガス中に含まれる
ダストを除去する第1段目の粗フィルタが収容されてお
り、さらにドレインボット22にょる露結水の除去、フ
ィルタ乙にょるミスト除去などの工程を得て清浄化し、
さらにガス乾燥器26により測定カス中の水分を除去し
、最終段階として赤外線ガス分析計29に導入される直
前において第2段目のミクロフィルタ27により完全に
測定ガス中のダストを除去する。このようなダスト、ミ
ストおよび水分除去をすれば(1)式より明らかなよう
に赤外線ガス分析計の出力信号へのダスト、ミストおよ
び水分の影響は無くなり、正確に測定成分ガス濃度を測
定できる。
Therefore, when applying the infrared gas analysis 11 to a measurement gas containing a large amount of dust, mist, and moisture, such as flue gas, the dust, mist, and moisture should be removed as a pretreatment before introducing the measurement gas into the measurement cell 4. Requires gas sampling system including removal process. FIG. 2 shows a diagram of a typical gas sampling system. In the figure, one measurement gas collector 21 houses a first-stage coarse filter that removes dust contained in the measurement gas, and a drain bot 22 removes dew condensation water. It is cleaned through processes such as mist removal,
Furthermore, moisture in the measurement gas is removed by a gas dryer 26, and as a final step, dust in the measurement gas is completely removed by a second-stage microfilter 27 immediately before being introduced into an infrared gas analyzer 29. If dust, mist, and moisture are removed in this manner, as is clear from equation (1), the influence of dust, mist, and moisture on the output signal of the infrared gas analyzer will be eliminated, and the concentration of the gas component to be measured can be accurately measured.

しかし近年赤外線ガス分析計を単なるガス成分モニタに
用いるのみでなく、燃焼制御のように赤外線ガス分析計
の信号をシステムの制御信号として用いることが色々な
分野で進められている。このような場合には、赤外線ガ
ス分析計の信号の精度が要求されるのみでなく、高速応
答性が大きな要求特性となる。赤外線ガス分析側本体は
制御に適用する釦十分な早い応答性を持っているが、前
記のとおりダスト、ミストおよび水分を含む測定ガスに
対してはガスサンプリング系を絶対に必要とするので、
測定系全体としての応答速度は数10秒から分のオーダ
となり、制御のような早い応答性が要求される用途に対
しては通用が困t1ξであるという欠点を持っている。
However, in recent years, the use of infrared gas analyzers not only to simply monitor gas components, but also the use of signals from infrared gas analyzers as system control signals, such as combustion control, has been promoted in various fields. In such a case, not only is the signal accuracy of the infrared gas analyzer required, but also high-speed response is a major requirement. The main unit on the infrared gas analysis side has fast enough response to control the buttons, but as mentioned above, a gas sampling system is absolutely necessary for measurement gases containing dust, mist, and moisture.
The response speed of the measurement system as a whole is on the order of several tens of seconds to minutes, and it has the disadvantage that it is difficult to use for applications such as control that require fast response.

〔本発明の目的〕[Object of the present invention]

本発明の目的は、律速のダスト、ミストおよび水分除去
などのサンプリング処理系を含む赤外線ガス分析計の持
っている次点を除き、直接ダスト、ミストおよび水分を
含む測定ガスを赤外線ガス分析計に導入し℃、ダスト、
ミストおよび水分の影響を受けない高精度の測定を可能
とし、しかも高速応答性を可能にした赤外線ガス分析計
を提供することである。
The purpose of the present invention is to eliminate the disadvantages of infrared gas analyzers that include rate-limiting sampling processing systems such as dust, mist, and moisture removal, and to directly transfer measurement gases containing dust, mist, and moisture to infrared gas analyzers. Introduced ℃, dust,
An object of the present invention is to provide an infrared gas analyzer that enables highly accurate measurement unaffected by mist and moisture and also enables high-speed response.

〔発明の要点〕[Key points of the invention]

本発明は、赤外線光源部、測定セル部および赤外検出部
より構成される赤外線ガス分析計において、測定セルを
基本的には筒状ガスフィルタと、これを加熱するヒータ
および両側面に赤外線透過窓を持ち、前記フィルタと内
面が同軸の筒状外筐体とで構成し、ヒータで所定の温度
に加熱されたガスフィルタと前記外筐体の間隙に測定ガ
スを流すことによりダストを除去し、測定セルにおける
ミストおよび水分の露結を防止して測定セル内ガスの拡
散、対流による置換速度を早くして高速応答を可能にし
たダスト、ミストおよび水分除去などの前処理を必要と
しない赤外線ガス分析側を提供するものである。
The present invention provides an infrared gas analyzer consisting of an infrared light source section, a measurement cell section, and an infrared detection section. It consists of a cylindrical outer casing with a window and an inner surface coaxial with the filter, and dust is removed by flowing the measurement gas into the gap between the gas filter and the outer casing, which are heated to a predetermined temperature by a heater. , infrared rays that do not require pre-treatment such as dust, mist, and moisture removal, which prevents condensation of mist and moisture in the measurement cell, increases the diffusion of gas in the measurement cell, and accelerates the replacement rate by convection, enabling high-speed response. It provides the gas analysis side.

〔発明の実施例〕[Embodiments of the invention]

第Δ図falK本づら明を実施した測定セルの具体例の
一つを示す。この測定でルは、基本的には赤外線光源部
加、31、円筒状ガスフ・rルタ33、加熱ヒータ37
、円筒状外筐体あから成る。図において、ガスフィルタ
材、例えば石英繊維あるいはセラミック多孔性焼結体か
ら成る円筒状フィルタ33は、外部筺体34に、取りは
ずし可能に、しかもフィルタ部を通じてのみ測定ガスが
入るように固定されている。赤外線透過窓部1.31は
赤外線透過性の窓材、例えば単結晶弗化カルシウム次そ
の固定J(から成り、ガスシール可能な構造で外部筐体
讃に固定されている。外部筐体34は、例えば金属4合
金あるいはセラミックから成り、対向して配置された測
定ガスの導入口15と排出口16を持ち・さらに円筒状
フィルタ33の長さ方向に同フィルタとの間に拡散空間
32を持つ構造となっている。フィルタ部はヒータ37
、例えばコイル状ヒータにより表面部から加熱される構
造となっており、電力は外部より端子ア、39より供給
される。フィルタ部の温度が大巾に変動すると測定精度
に影響が生ずるので、測温体40がフィルタ:(30表
面あるいは内部に設置してあり、その出力を端子41 
、42でとり出すことによって、外部の温度訓節器でフ
ィルタ部温度を一定に保持したり、赤外線ガス分析計の
出力に対する温度補正をしたりすることが出来る。
Fig. Δ shows one specific example of a measurement cell in which the falK book review was carried out. In this measurement, the elements basically include an infrared light source part 31, a cylindrical gas filter 33, and a heater 37.
, consisting of a cylindrical outer casing. In the figure, a cylindrical filter 33 made of gas filter material, for example quartz fibers or a ceramic porous sintered body, is fixed in an external housing 34 in a removable manner so that the measuring gas can only enter through the filter part. The infrared transmitting window section 1.31 is made of an infrared transmitting window material, such as monocrystalline calcium fluoride, and is fixed to the external housing with a gas-sealable structure. , made of, for example, metal 4 alloy or ceramic, has an inlet 15 and an outlet 16 for the measurement gas arranged opposite to each other, and further has a diffusion space 32 between the cylindrical filter 33 and the filter in the length direction. The filter part has a heater 37
The structure is such that the surface is heated by, for example, a coil-shaped heater, and power is supplied from the outside through terminals A and 39. If the temperature of the filter part fluctuates widely, it will affect the measurement accuracy, so the temperature measuring element 40 is installed on or inside the filter 30, and its output is connected to the terminal 41.
, 42, it is possible to maintain the temperature of the filter section constant with an external temperature adjuster or to perform temperature correction on the output of the infrared gas analyzer.

第3図(1))は測定セル断面方向の測定ガスの流れを
示したもので、測定ガス流は本実施例の場合には主に導
入口15において2つに分割され、加熱された円筒状ガ
スフィルタ330円周方向にそって流れた後排出口16
で再び一体となって排出される。
Figure 3 (1)) shows the flow of the measurement gas in the cross-sectional direction of the measurement cell. In the case of this embodiment, the measurement gas flow is mainly divided into two at the inlet 15, and After the gas filter 330 flows along the circumferential direction, the discharge port 16
It is then ejected as a whole again.

この構造は測定セル長が短い場合に特に有効である。This structure is particularly effective when the measurement cell length is short.

第4図+a+は第2の実施例に基づく測定セルの外形を
示したもので、基本的には第3図の具体例と構成は同じ
であるが、本実施例では測定ガスの導入口15と排出口
16が測定セルの長さ方向に位置を異にして配置されて
いる。第4図(blは測定セル断面方向のガス流を示す
。この場合には導入025がら導入された測定ガスは、
加熱された円筒状フィルタ330円周方向にそってしか
も長さ方向に流れるので測定セルか長い場合特如有効で
ある。
FIG. 4+a+ shows the external shape of a measurement cell based on the second embodiment, and the configuration is basically the same as the specific example in FIG. 3, but in this embodiment, the measurement gas inlet 15 and discharge ports 16 are arranged at different positions in the length direction of the measuring cell. FIG. 4 (bl indicates the gas flow in the cross-sectional direction of the measurement cell. In this case, the measurement gas introduced from the inlet 025 is
Since the heated cylindrical filter 330 flows along its circumference and lengthwise, it is particularly effective when the measuring cell is long.

第5図(aiは第3の実施例に基づく測定セル断面を示
したもので、基本構成は第3図の具体例と同じであるが
、本実施例では測定カスの尋人口15と排出口16が一
体化された構造となっている。したがって、この実施例
の場合には第5図fblに示したように、測定ガスは加
熱された円筒状ガスフィルタ330円周を一回転するこ
とになり、測定ガス流に対して導入方向と排出方向を明
確に区分し、より応答性の改良をほどこすためにしきり
板35が挿入されている。この実施例に示した測定セル
構成を持つ赤外線ガス分析計は、有害ガス、例えば−酸
化炭素を測定成分ガスとするときのように、測定ガスを
外気に放出しないで発生掠に戻す必要があるようなとき
に有効である。
Fig. 5 (ai shows the cross section of the measurement cell based on the third embodiment; the basic configuration is the same as the specific example in Fig. 3; however, in this embodiment, the number of fathoms of measurement waste 15 and the discharge port are Therefore, in the case of this embodiment, as shown in FIG. A baffle plate 35 is inserted in order to clearly distinguish the introduction direction and the discharge direction for the measurement gas flow and further improve the response.Infrared rays having the measurement cell configuration shown in this example The gas analyzer is effective when a harmful gas, such as -carbon oxide, is used as a component gas to be measured, and when the gas to be measured needs to be returned to the generation source without being released to the outside air.

曾 第6図ialに第4の実施例に基づい懺測定セルの断面
構造を示す。本実施例においては、第1層フィルタとし
ての繊維あるいは焼結体から成る円筒フィルタ33の外
側表面に、第2層フィルタとして金網あるいは第1層フ
ィルタよりも目の粗いフィルタ、例えばセラミック焼結
体から成る円筒フィルタ36を積層した構造になってお
り、その表面部にヒータ37を配置してフィルタ部全体
を加熱している。この構成により測定ガス中に含まれる
色々な粒径めダストに対してフィルタ層が分級作用な持
りているので、フィルタ部の目づまりの性能但下を防止
し、長寿命化をはかることができる。なお導入口15、
排出口16の取付位置については、第3図と同じ構成を
示したが、第4,5図の配置も当然可Hじである。
FIG. 6 shows a cross-sectional structure of a measurement cell based on the fourth embodiment. In this embodiment, the outer surface of the cylindrical filter 33 made of fibers or a sintered body as the first layer filter is coated with a wire mesh or a filter with a coarser mesh than the first layer filter, such as a ceramic sintered body, as the second layer filter. It has a structure in which cylindrical filters 36 are stacked, and a heater 37 is placed on the surface of the filter to heat the entire filter section. With this configuration, the filter layer has a classification effect on dust of various particle sizes contained in the measurement gas, so it is possible to prevent performance deterioration due to clogging of the filter section and to extend the service life. . In addition, the introduction port 15,
Regarding the mounting position of the discharge port 16, the same configuration as that shown in FIG. 3 is shown, but the arrangement shown in FIGS. 4 and 5 is naturally applicable.

以上各種の本発明に基づいた実施例を示したが、本発明
の内容は実施例に限定されるものではなく。
Although various embodiments based on the present invention have been shown above, the content of the present invention is not limited to the embodiments.

発明の精神の範囲で多くの他の改良をなしえるものであ
り、例えばフィルタ層を3層以上に積層したり、セラミ
ックフィルタの代りに焼結金属フィルタを使用したり、
ヒータを円筒状フィルタの内側に配置しあるいは円筒以
外の形状にしたりすることも可能であり、またシングル
ビーム方式のみでなくダブルビーム方式の赤外線ガス分
析計にも本発明に基づく測定セルは適用可能である。
Many other improvements can be made within the spirit of the invention, such as stacking more than two filter layers, using sintered metal filters instead of ceramic filters,
It is also possible to place the heater inside a cylindrical filter or to have a shape other than a cylinder, and the measurement cell based on the present invention can be applied not only to single-beam type infrared gas analyzers but also to double-beam type infrared gas analyzers. It is.

(発明の効果〕 本発明によれば光源部、測定セル部、検出部から成る赤
外線ガス分析計において、測定セルとして基本的には筒
状ガスフィルタ、加熱ヒータ、外部筐体、赤外線透過窓
で構成し、筒状ガスフィルタと内面が同軸な筒状外部筐
体との空間にガスフィルタの円周にそってダストを含む
測定ガスを流すことにより、測定ガス中に含まれるダス
トを効果的に除去し、測定セル内部におけるミストおよ
び水分の露結を防止して、従来の赤外線ガス分析計を利
用するに際して必要とした、ダスト除去、ミスト、水分
除去を含むサンプリング系な必要としないで直接測定を
可能にした赤外線ガス分析計を提供するもので、高精度
、高速応答性を要求する分野への適用に際してトータル
コストとじて低価格の赤外線分析計となる。
(Effects of the Invention) According to the present invention, in an infrared gas analyzer consisting of a light source section, a measurement cell section, and a detection section, the measurement cell basically consists of a cylindrical gas filter, a heater, an external casing, and an infrared transmitting window. By flowing the measurement gas containing dust along the circumference of the gas filter into the space between the cylindrical gas filter and the cylindrical outer casing whose inner surface is coaxial, the dust contained in the measurement gas can be effectively removed. This prevents mist and moisture condensation inside the measurement cell, allowing direct measurement without the need for a sampling system that includes dust removal, mist, and moisture removal, which is required when using conventional infrared gas analyzers. This product provides an infrared gas analyzer that enables high accuracy and high-speed response, making it a low-cost infrared analyzer in terms of total cost when applied to fields that require high precision and high-speed response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシングルビーム方式赤外線ガス分析計の
構成図、第2図は従来の赤外線ガス分析計に14iいら
れるサンプリング系の系統図、第3図(a)。 :第Δ図tbt Vi本発明に基づく赤外線ガス分析計
に適用される測定セルの一実施例を示す断面図、第4図
(a)、第4図fbl、第5図(a)、第5図fblお
よび第6図(a)、第6図(blは本発明に基づく赤外
線ガス分析計に適用されろ測定セルの他の実施例を示す
断面図もしくは正面図である。 1・・赤外線光源部、2・・・赤外線光源、4・・・測
定セル、5・・・検出部、30 、 :31・・・赤外
線透過窓部、33・・・円筒状ガスフィルタ、34・・
・円筒状外筐体、あ・・・仕切板、36・・・金網状フ
ィルタ、37・・・ヒータ、羽、39・・・ヒータ端子
、40・・・測温体、41.42・・・測温体端子。 73 図 <(1) 7 3 m (b) じr 4 図 (a) 74 圓 (b) TS@(をン□ン ?5 図 (b) 才 乙 g (a) 7 6 1回 (b)
Figure 1 is a block diagram of a conventional single beam infrared gas analyzer, Figure 2 is a system diagram of a sampling system included in a conventional infrared gas analyzer, and Figure 3 (a). : Fig. Δtbt Vi Cross-sectional view showing one embodiment of a measurement cell applied to an infrared gas analyzer based on the present invention, Fig. 4(a), Fig. 4fbl, Fig. 5(a), Fig. 5 FIG. fbl, FIG. 6(a), and FIG. 6(bl are cross-sectional views or front views showing other embodiments of the measurement cell applied to the infrared gas analyzer based on the present invention. 1. Infrared light source 2... Infrared light source, 4... Measurement cell, 5... Detection unit, 30, : 31... Infrared transmission window part, 33... Cylindrical gas filter, 34...
- Cylindrical outer casing, A... Partition plate, 36... Wire mesh filter, 37... Heater, blade, 39... Heater terminal, 40... Temperature measuring element, 41.42...・Thermometer terminal. 73 Figure <(1) 7 3 m (b) Jir 4 Figure (a) 74 En (b) TS@(woon□n?5 Figure (b) Sai Otsu g (a) 7 6 1 time (b)

Claims (1)

【特許請求の範囲】 1)赤外線光源部、測定セル部および赤外線検出部より
構成され、測定ガスによる赤外線吸収量から測定成分ガ
スの濃度を測定する赤外線ガス分析針において、測定セ
ル部をヒータにより所定の温らに前記外筐体の両側面に
赤外線透過窓を配置するとともに、前記筒状フィルタと
外筐体の間隙に筒状フィルタの外周にそって測定ガスを
流すことを特徴とする赤外線ガス分析計。 2、特許請求の範囲第1項記載の赤外線ガス分析計にお
いて、測定セルのフィルタは筒状の繊維質あるいは多孔
質焼結体からなる第1層と、その外表面を覆う筒状の金
網あるいは第1層よりも目の粗い焼結体からなる第2層
との積層構造を持ち、その表面にヒータを巻回してなる
ことを特徴とする赤外線ガス分析計。 3)特許請求の範囲第1またFi第第2記記記載赤外線
ガス分析計において、前記加熱ヒータによりフィルタ部
温度が一定に制御されることを特徴とする赤外線ガス分
析計。
[Claims] 1) In an infrared gas analysis needle that is composed of an infrared light source section, a measurement cell section, and an infrared detection section and measures the concentration of a component gas to be measured from the amount of infrared absorption by the measurement gas, the measurement cell section is heated by a heater. Infrared rays transmitting windows are arranged on both sides of the outer casing at a predetermined temperature, and a measurement gas is caused to flow along the outer periphery of the cylindrical filter into a gap between the cylindrical filter and the outer casing. Gas analyzer. 2. In the infrared gas analyzer according to claim 1, the filter of the measurement cell includes a first layer made of a cylindrical fibrous or porous sintered body, and a cylindrical wire mesh or a cylindrical wire mesh covering the outer surface of the first layer. An infrared gas analyzer characterized in that it has a laminated structure with a second layer made of a sintered body whose mesh is coarser than that of the first layer, and a heater is wound around the surface of the second layer. 3) An infrared gas analyzer according to claim 1 or claim 2, wherein the temperature of the filter portion is controlled to be constant by the heater.
JP58214443A 1983-11-15 1983-11-15 Infrared gas analyzer Granted JPS60105947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214443A JPS60105947A (en) 1983-11-15 1983-11-15 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214443A JPS60105947A (en) 1983-11-15 1983-11-15 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JPS60105947A true JPS60105947A (en) 1985-06-11
JPS649569B2 JPS649569B2 (en) 1989-02-17

Family

ID=16655855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214443A Granted JPS60105947A (en) 1983-11-15 1983-11-15 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPS60105947A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414446A2 (en) * 1989-08-19 1991-02-27 Engine Test Technique Limited Gas analysis
US5163332A (en) * 1990-04-02 1992-11-17 Gaztech International Corporation Gas sample chamber
US5222389A (en) * 1990-04-02 1993-06-29 Gaztech International Corporation Multi-channel gas sample chamber
CN103245616A (en) * 2012-02-14 2013-08-14 利得仪器股份有限公司 Optical path measuration reflection unit for environmental monitoring

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414446A2 (en) * 1989-08-19 1991-02-27 Engine Test Technique Limited Gas analysis
EP0414446A3 (en) * 1989-08-19 1991-09-25 Engine Test Technique Limited Gas analysis
US5163332A (en) * 1990-04-02 1992-11-17 Gaztech International Corporation Gas sample chamber
WO1993011418A1 (en) * 1990-04-02 1993-06-10 Gaztech International Corporation Improved gas sample chamber
US5222389A (en) * 1990-04-02 1993-06-29 Gaztech International Corporation Multi-channel gas sample chamber
AU658855B2 (en) * 1990-04-02 1995-05-04 Gaztech International Corporation Improved gas sample chamber
WO1993013401A1 (en) * 1991-12-31 1993-07-08 Gaztech International Corporation Multi-channel gas sample chamber
CN103245616A (en) * 2012-02-14 2013-08-14 利得仪器股份有限公司 Optical path measuration reflection unit for environmental monitoring

Also Published As

Publication number Publication date
JPS649569B2 (en) 1989-02-17

Similar Documents

Publication Publication Date Title
JPS649568B2 (en)
US5341214A (en) NDIR gas analysis using spectral ratioing technique
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
US3628028A (en) Window cleaning apparatus for photometric instruments
US7656532B2 (en) Cavity ring-down spectrometer having mirror isolation
US4236827A (en) Opto-acoustic gas analyzer
FI95322B (en) Spectroscopic measuring sensor for the analysis of media
US6410918B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
JPH0736050U (en) Non-dispersive infrared gas analyzer
US2685649A (en) Analyzer
CA2307782C (en) Diffusion-type ndir gas analyzer with convection flow
JPS60105947A (en) Infrared gas analyzer
JPH03221843A (en) Analyzer by light
JPH0330847Y2 (en)
WO1996001418A1 (en) Ndir gas analysis using spectral ratioing technique
US4277179A (en) Resonant subcavity differential spectrophone
WO1998052020A1 (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
US3173016A (en) Method and apparatus for measurement of mercury vapor
US3178572A (en) Ultra-violet radiation absorption analysis apparatus for the detection of mercury vapor in a gas
CN114486796A (en) NDIR multi-component gas detection module
JP2007225386A (en) Gas analyzer and semiconductor manufacturing apparatus
JPS61108947A (en) Optical gas analyzer
JP3347264B2 (en) Concentration analyzer
JPS59173734A (en) Infrared-ray gas analysis meter
JPH0545286A (en) Optical analyzer