JPS60105281A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS60105281A
JPS60105281A JP58212029A JP21202983A JPS60105281A JP S60105281 A JPS60105281 A JP S60105281A JP 58212029 A JP58212029 A JP 58212029A JP 21202983 A JP21202983 A JP 21202983A JP S60105281 A JPS60105281 A JP S60105281A
Authority
JP
Japan
Prior art keywords
layer
region
type
avalanche multiplication
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58212029A
Other languages
Japanese (ja)
Inventor
Takao Kaneda
隆夫 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58212029A priority Critical patent/JPS60105281A/en
Publication of JPS60105281A publication Critical patent/JPS60105281A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce noises and dark currents from an avalanche photodiode, etc. simultaneously by constituting an avalanche multiplication region by a semiconductor material, carriers therein are multiplied by a resonance ionization phenomenon, and forming an optical absorption region between a P-N junction and the avalanche multiplication region. CONSTITUTION:A P type Ga0.935Al0.065Sb layer 12 as an avalanche multiplication region, a P type Ga0.9Al0.1Sb layer 13 as an optical absorption region and a P type Ga0.6Al0.4Sb layer 14 as a window layer are grown on a P<+> type GaSb substrate 11 in succession. The ions of a substance such as silicon are implanted to the window layer 14, and an N<+> type region 15 is formed through activation and heat treatment. Consequently, maximum field intensity is generated in the interface of a P-N junction of the window layer 14 in a value such as approximately 3X10<5>V/cm, and it is generated in a lowest value such as approximately 5X10<4>V/cm in the avalanche multiplication region layer 12. Accordingly, both field intensity in the avalanche multiplication region and field intensity in the interface of the P-N junction can be lowered.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体受光装置、特に雑音と暗電流との両特性
が顕著に改善されるアバランシフォトダイオードに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor light receiving device, and particularly to an avalanche photodiode in which both noise and dark current characteristics are significantly improved.

(b) 技術の背景 光を情報信号の媒体とする光通信その他のシステムにお
いて、光信号を電気信号に変換する半導体受光装置には
重要で基本的な構成要素の一つであシ、既に多数実用化
されている。これらの半導体受光装置のうち、光電流が
なだれ降伏によって増倍されて感度が高められるアバラ
ンシフォトダイオード(以下APDと略称する)は光検
知器の信号対雑音比を改善する効果が大きい。
(b) Technical Background In optical communication and other systems that use light as a medium for information signals, semiconductor photodetectors that convert optical signals into electrical signals are one of the important and basic components, and there are already many of them. It has been put into practical use. Among these semiconductor light receiving devices, an avalanche photodiode (hereinafter abbreviated as APD), whose sensitivity is increased by multiplying the photocurrent by avalanche breakdown, is highly effective in improving the signal-to-noise ratio of a photodetector.

光通信システムは情報化社会の実現に向って、大容量化
、中継の長距離化などが推進されており、光伝送に用い
られる石英系光フアイバ内の撰失が少ない波長1.3乃
至1.65(μfn)程度の帯域に対応する光通信用A
PDについて、更に雑音の低減が要望されている。
In order to realize an information-oriented society, optical communication systems are being promoted to have higher capacity and longer relay distances. A for optical communication that corresponds to a band of about .65 (μfn)
There is a demand for further noise reduction in PDs.

(c) 従来技術と問題点 波長1〔μm3以上の帯域を対象とするAPDとしては
、既にゲルマニウム(Ge )及び+U−V族化合物半
導体、例えばインジウム・燐−インジウム・ガリウム・
砒素(InP −InGaAs )を半導体材料とする
APDが提供されている。
(c) Prior art and problems APDs targeting wavelengths of 1 [μm3 or more] have already been developed using germanium (Ge) and +UV group compound semiconductors, such as indium, phosphorus-indium, gallium, etc.
APDs using arsenic (InP-InGaAs) as a semiconductor material have been provided.

第1図はInP −InGaAs系APDの代表的構造
を示す断面図である。図において、1tよn+型InP
基板、2 //′i、n型InPバッファ層、3はn型
InGaAs光吸収層、4はn型1nPウィンド層、5
はInPつインド層4に形成されたダ型領域、6はガー
ドリングを構成するp型領域、7は保護絶縁膜、8は反
射防止膜、9はp側電極、10はn側電極を示す。
FIG. 1 is a sectional view showing a typical structure of an InP-InGaAs APD. In the figure, 1t and n+ type InP
Substrate, 2 //'i, n-type InP buffer layer, 3, n-type InGaAs light absorption layer, 4, n-type 1nP window layer, 5
denotes a type region formed in the InP layer 4, 6 denotes a p-type region constituting a guard ring, 7 denotes a protective insulating film, 8 denotes an antireflection film, 9 denotes a p-side electrode, and 10 denotes an n-side electrode. .

このA P D Ic n lll電極10を正、p側
電極9を負の極性とする逆バイアス電圧を印加すること
により、Pn接合すなわちp+型領領域5n型工」ウィ
ンド層4との界面を挾んで空乏層が形成され、これがn
型InGaAs光吸収層3までひろがシ、この元吸収層
3内で入力信号光によって電子が伝導帯に励起されるこ
とによって電子正孔対が発生し、正孔はp側電極9に向
ってドリフトする。この正孔が電界によって加速されエ
ネルギーを得て、n型InPウィンド層4において結晶
格子を構成する原子に衝突した際に電子正孔対を生ずる
に到る。
By applying a reverse bias voltage with positive polarity on the A P D Ic n llll electrode 10 and negative polarity on the p-side electrode 9, a Pn junction, that is, the interface between the p+ type region 5n type window layer 4 is sandwiched. A depletion layer is formed, and this
The type InGaAs light absorption layer 3 is expanded, and within this original absorption layer 3, electrons are excited to the conduction band by the input signal light, thereby generating electron-hole pairs, and the holes are directed toward the p-side electrode 9. Drift. These holes are accelerated by the electric field, gain energy, and when they collide with atoms forming the crystal lattice in the n-type InP wind layer 4, electron-hole pairs are generated.

この正孔及び電子による衝突電離が繰返されてなだれ増
倍された正孔がpn接合を横切ることによって電気的応
答が得られる。このためにnm、1rlPウィンド層4
は増倍層もしくは増倍領域とも呼ばれる。
This impact ionization by holes and electrons is repeated, and the avalanche-multiplied holes cross the p-n junction, thereby producing an electrical response. For this purpose, nm, 1rlP wind layer 4
is also called a multiplication layer or a multiplication region.

前記の衝突回数の統計的なゆらぎによって通常増倍雑音
と呼ばれる固有のショット雑音が現われる。電子が単位
長当たり衝突電離を起す回数すなわち電子のイオン化率
をα、正孔のイオン化率をβとするとき、イオン化率比
β/αもしくはα/βが1に近いときに前記増倍雑音が
大きくなり、イオン化率比が大きいときに増倍雑音は減
少することが既によく知られている。
Due to the above-mentioned statistical fluctuations in the number of collisions, an inherent shot noise, usually called multiplication noise, appears. When the number of times an electron undergoes collision ionization per unit length, that is, the ionization rate of electrons is α, and the ionization rate of holes is β, then when the ionization rate ratio β/α or α/β is close to 1, the multiplication noise is It is already well known that the multiplication noise decreases when the ionization rate ratio increases.

半導体受光装置については更に暗電流(pn接合部のト
ンネル電流)特性が重要である。先に述べた如き従来構
造のAPDにおいては、なだれ降伏を発生するために1
05(V/Gり程度以上の強電界を必要とし、また電界
の分布はpn接合界面において最大となるためにpn接
合がなだれ増倍領域を形成する半導体層に設けられてい
る。この結果増倍雑音と暗電流とのAPDの重要な2%
性がこの半導体層によって支配される。しかるに例えば
前記従来例のInP等の半導体材料では、イオン化率比
が大きいこととトンネル電流が少ないこと七が両立せず
、低増幅雑音でかつ低暗電流である新1.1nAPDが
要望されている。
For semiconductor light receiving devices, dark current (tunnel current at the pn junction) characteristics are also important. In the APD of the conventional structure as described above, 1
05 (A strong electric field of about V/G or higher is required, and the electric field distribution is maximum at the pn junction interface, so the pn junction is provided in the semiconductor layer forming the avalanche multiplication region. As a result, the avalanche multiplication region is Significant 2% of APD with double noise and dark current
properties are controlled by this semiconductor layer. However, for example, with semiconductor materials such as InP of the conventional example, a high ionization rate ratio and a low tunnel current are not compatible, and a new 1.1 n APD with low amplification noise and low dark current is desired. .

最近半導体祠料のイオン化率比が特に大きくなる共鳴イ
オン化現象の具体的な例が報告されている。すなわち例
えばガリウムアルミニウムアンチモン(Gal−xAI
XSb)について、アルミニウム(Al)の組成比x 
= 0.065において価電子帯のスピン軌道分離準位
△が伝導帯と価電子帯とのバンドギャップエネルギーE
gに等しくなって、正孔のイオン化率比βが著しく増大
しイオン化率比β/α〉20が例えば電界強度4 x’
io’[V/cIrL〕程度において得られている。(
IEEE J、Qh?−17゜pp、284− .19
8υ 同様の共鳴イオン化現象によるイオン化率比β/αの著
しい増大が、インジウム砒素(InAs) 1カドミウ
ム水銀テルル(Cd073Hg027Te)などについ
ても知られている。これらの半導体材料をなだれ増倍領
域に用いるならば増倍雑音の低減が6J能であるが、一
方において仁れらの半導体材料はバンドギャップが狭く
、先に説明した構造の如<pn接合をこの半導体層内に
設けた場合には暗電流が増大して良好な受光装置は得ら
れない。従って共鳴イオン化現象を活用して増倍雑音を
低減し、併せて暗電流が抑制される半導体受光装置的の
構造が要求されている。
Recently, a specific example of a resonance ionization phenomenon in which the ionization rate ratio of a semiconductor abrasive material becomes particularly large has been reported. That is, for example, gallium aluminum antimony (Gal-xAI
For XSb), the composition ratio x of aluminum (Al)
= 0.065, the spin-orbit separation level △ of the valence band is the band gap energy E between the conduction band and the valence band
g, the hole ionization rate ratio β increases significantly, and the ionization rate ratio β/α〉20 becomes equal to, for example, the electric field strength 4 x'
io'[V/cIrL]. (
IEEE J, Qh? -17°pp, 284-. 19
8υ A remarkable increase in the ionization rate ratio β/α due to a similar resonance ionization phenomenon is also known for indium arsenide (InAs) 1 cadmium mercury tellurium (Cd073Hg027Te) and the like. If these semiconductor materials are used in the avalanche multiplication region, the multiplication noise can be reduced by 6J, but on the other hand, the semiconductor materials of Nire et al. have a narrow band gap, making it difficult to form a pn junction like the structure described above. If it is provided within this semiconductor layer, dark current will increase and a good light receiving device cannot be obtained. Therefore, there is a need for a semiconductor photodetector-like structure that utilizes the resonance ionization phenomenon to reduce multiplication noise and suppress dark current.

(d) 発明の目的 本発明は前記状況に対処して、FM電流と雑音とが共に
低減される半導体受光装置、特にアバランシフォトダイ
オードの構造を提供することを目的とする。
(d) Object of the Invention The present invention addresses the above-mentioned situation and aims to provide a structure of a semiconductor light receiving device, particularly an avalanche photodiode, in which both FM current and noise are reduced.

(e) 発明の構成 本発明の前記目的は、Pn接合となだれ増倍領域との間
に光吸収領域を備えて々る半導体受光装置により達成さ
れる。
(e) Structure of the Invention The above object of the present invention is achieved by a semiconductor light receiving device including a light absorption region between a Pn junction and an avalanche multiplication region.

前記半導体受光装置は、前記なだれ増倍領域を、共鳴イ
オン化現象によりキャリア増倍が行なわれる半導体劇料
によって構成することにょシ芥易に実現する仁とができ
る。
The semiconductor light-receiving device can be easily realized by constructing the avalanche multiplication region using a semiconductor material in which carrier multiplication is performed by a resonance ionization phenomenon.

すなわち本発明においては、従来性なわれているAPD
のなだれ増倍領域を構成する半導体材料よシもなだれ降
伏電圧の低い半導体材料によって増倍領域を構成し、p
n接合を設けるウィンド層はトンネル電流の少ない、す
なわちバンドギャップの大きい半導体材料によって構成
する。この両生導体領域間に意図する受光波長帯域に適
合するバンドギャップを有する光吸収領域を設ける。
That is, in the present invention, the conventional APD
The multiplication region is made of a semiconductor material having a lower avalanche breakdown voltage than the semiconductor material forming the avalanche multiplication region, and p
The window layer providing the n-junction is made of a semiconductor material with a small tunnel current, that is, a large band gap. A light absorption region having a bandgap matching the intended receiving wavelength band is provided between the bidirectional conductor regions.

この様なヘテロ接合半導体基体は、例えばなだれ降伏が
共鳴イオン化現象によって従来一般に使用されている半
導体材料より遥に低い電圧において発生する半導体によ
ってなだれ増倍領域を構成することにより実現されて、
雑音の低減が達成され、同時にpn接合近傍における電
界強度の低減によって暗電流も低減される。
Such a heterojunction semiconductor body is realized, for example, by constructing an avalanche multiplication region with a semiconductor whose avalanche breakdown occurs due to the resonance ionization phenomenon at a much lower voltage than the semiconductor materials commonly used in the past.
A reduction in noise is achieved, and at the same time dark current is also reduced due to the reduction in electric field strength in the vicinity of the pn junction.

(f) 発明の実施例 以下本発明を実施例によ勺図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will now be described in detail by way of embodiments with reference to the drawings.

第2図(a)rI′i本発明の実施例を示す断面図、同
図(bl &−t、本実施例の半導体基体内の電界強度
の分布の例を示す図である。
FIG. 2(a) rI'i is a cross-sectional view showing an embodiment of the present invention; FIG.

第2図(a)に示す如く本実施例の半導体基体は、不純
物濃度が1x1o18(GrrL”)程度のp++ガリ
ウムアンチモン(Ga Sb )基板11上に、なだれ
増倍領域として例えば不純物濃度がlXl0I5(礪二
3〕程度のp型Ga OQ35 Alooss Sb 
M 12が厚さ例えば0.5乃至1(71m)程度に、
次に光吸収領域として例えば不純物濃度がI X I 
Q lfl ((s−3)程度のp型GaoeAlot
Sb層13が厚さ例えば2〔/1t11〕程度ニ、次に
ウィンド層として例えば不純物濃度が1×1016(c
In−8)程度のp型GaosAJo4Sb層14が厚
さ例えば2〔μm〕程度に順次成長されている。このp
型GaosAJl!o4Sbウィンド層14に例えばシ
リコン(Si)をイオン注入し活性化熱処理を施して不
純物濃度I X 1o18(ci−3)程度のn+型領
領域15設けられている。また17は保護絶縁膜、18
は反射防止膜、19はp側電極、20はn側電極を示す
As shown in FIG. 2(a), the semiconductor substrate of this embodiment is formed by forming an avalanche multiplication region on a p++ gallium antimony (Ga Sb ) substrate 11 with an impurity concentration of about 1×1018 (GrrL”), for example, with an impurity concentration of 1×10I5 (GrrL”). p-type Ga OQ35 Alooss Sb
M12 has a thickness of, for example, about 0.5 to 1 (71 m),
Next, as a light absorption region, for example, the impurity concentration is I
Q lfl (p-type GaoeAlot of (s-3)
The Sb layer 13 has a thickness of, for example, about 2[/1t11], and then the window layer has an impurity concentration of, for example, 1×1016(c).
A p-type GaosAJo4Sb layer 14 of approximately In-8) is sequentially grown to a thickness of, for example, approximately 2 [μm]. This p
TypeGaosAJl! For example, silicon (Si) is ion-implanted into the o4Sb window layer 14, and an activation heat treatment is performed to provide an n+ type region 15 having an impurity concentration of about I x 1o18 (ci-3). Further, 17 is a protective insulating film, 18
1 is an antireflection film, 19 is a p-side electrode, and 20 is an n-side electrode.

本実施例の電界強度は第2図(b)に示す例の如く分布
せしめる。すなわち最大の電界強[はp型Gao、aA
j?o4Sbウィンド1−14のpn接合界面に生じて
例えば3 X 10’[V/儂]程度であシ、なだれ増
倍領域であるp型Gao、ossAJ!io、oas 
Sbbl2は例えば5 X 104 (V/Gm)程度
と最も低い。なだれ増倍領域の電界強度はこの様に前記
従来例の1710程度にて足り、pn接合界面の電界強
度も従来より低くすることが可能である。
The electric field strength in this embodiment is distributed as shown in the example shown in FIG. 2(b). That is, the maximum electric field strength [is p-type Gao, aA
j? Formed at the p-n junction interface of the o4Sb window 1-14, the p-type Gao, ossAJ!, which is an avalanche multiplication region, is formed, for example, on the order of 3 x 10' [V/儂]. io, oas
Sbbl2 is the lowest, for example, about 5×104 (V/Gm). In this way, the electric field strength in the avalanche multiplication region is sufficient to be about 1710 as in the conventional example, and the electric field strength at the pn junction interface can also be made lower than in the conventional example.

以上説明した本発明の実施例を先に説明したInP−I
nGaAs系APDの従来例と比較すれば、動作電圧は
従来例が1oov程度であるのに対して本実施例では2
0V程度と大幅に低くすることができる。
The embodiment of the present invention described above is applied to the InP-I described above.
Compared to the conventional example of nGaAs-based APD, the operating voltage of the conventional example is about 1oov, whereas in this example it is about 2oov.
It can be significantly lowered to around 0V.

また実効的な増倍雑音パラメータには従来例では2程度
であるのに対して本実施例ではlO程度であって約5d
Bの改善が達成されている。更に暗電流はなだれ降伏電
圧の9o(%)の逆バイアス′電圧を印加して、従来例
では50nA程度であるのに対して本実施例では5nA
程度に減少している。
In addition, the effective multiplication noise parameter is about 2 in the conventional example, but in this embodiment it is about lO and about 5 d.
Improvement of B has been achieved. Furthermore, by applying a reverse bias voltage of 90 (%) of the avalanche breakdown voltage, the dark current is approximately 50 nA in the conventional example, but is 5 nA in this example.
It has decreased to a certain extent.

以上説明した如く本発明の構造によって、雑音と暗電流
との両特性について従来のAPDに比較して大きく改善
されるが、更に本発明の構造によれば光吸収領域がなだ
れ増倍領域より前面に配設されるために、なだれ増倍領
域のバンドギャップが光吸収領域より小さい組合わせを
行なっても光吸収に影響はなく、最適の吸収帯域特性を
選択することかできる。
As explained above, the structure of the present invention greatly improves both noise and dark current characteristics compared to conventional APDs. Therefore, even if a combination is made in which the bandgap of the avalanche multiplication region is smaller than that of the light absorption region, light absorption is not affected, and the optimum absorption band characteristics can be selected.

(g) 発明の効果 以上説明した如く本発明によれば、半導体受光装置、特
にアバランシフォトダイオードの雑音と暗電流とを同時
に低減することが可能となり、例えば光通信システムの
大容量化、中継間隔の延技などの光情報システムの進展
に寄与することができる。
(g) Effects of the Invention As explained above, according to the present invention, it is possible to simultaneously reduce the noise and dark current of a semiconductor photodetector, especially an avalanche photodiode, and this is useful, for example, in increasing the capacity of optical communication systems and relaying. It can contribute to the progress of optical information systems such as spacing extension technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAPDの例を示す断面図、第2図(a)
は本発明の実施例を示す断面図、同図(b)は該実施例
における電界強度分布の例を示す図である。 図において、11はp+型Garb基板、12はp型G
a o、ess Alo、oss Sb層)13はp型
Gao971olSb層、14はp型Ga o、a A
A! 0.4 Sb層、15はn1領域、19はp側電
極、20はn側電極を示す。
Figure 1 is a sectional view showing an example of a conventional APD, Figure 2 (a)
1 is a cross-sectional view showing an embodiment of the present invention, and FIG. 2B is a diagram showing an example of electric field strength distribution in this embodiment. In the figure, 11 is a p+ type Garb substrate, 12 is a p type G
ao, ess Alo, oss Sb layer) 13 is p-type Gao971olSb layer, 14 is p-type Gao, a A
A! 0.4 Sb layer, 15 is the n1 region, 19 is the p-side electrode, and 20 is the n-side electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)p−n接合となだれ増倍領域との間に光吸収領域
を備えてなることを特徴とする半導体受光装置。
(1) A semiconductor light receiving device comprising a light absorption region between a pn junction and an avalanche multiplication region.
(2) 前記なだれ増倍領域が、共鳴イオン化現象によ
シキャリア増倍が行なわれる半導体材料によって構成さ
れてなることを特徴とする特許請求の範囲第1項記載の
半導体受光装置。
(2) The semiconductor light receiving device according to claim 1, wherein the avalanche multiplication region is made of a semiconductor material in which carrier multiplication is performed by a resonance ionization phenomenon.
JP58212029A 1983-11-11 1983-11-11 Semiconductor photodetector Pending JPS60105281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212029A JPS60105281A (en) 1983-11-11 1983-11-11 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212029A JPS60105281A (en) 1983-11-11 1983-11-11 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS60105281A true JPS60105281A (en) 1985-06-10

Family

ID=16615687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212029A Pending JPS60105281A (en) 1983-11-11 1983-11-11 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS60105281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242298A2 (en) * 1986-04-15 1987-10-21 Fujitsu Limited Avalanche photo-diode
US4984032A (en) * 1988-01-18 1991-01-08 Fujitsu Limited Semiconductor photodiode
JP2009292473A (en) * 1998-03-27 2009-12-17 Manitowoc Crane Companies Ltd Four-truck type crawler crane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242298A2 (en) * 1986-04-15 1987-10-21 Fujitsu Limited Avalanche photo-diode
JPS62259481A (en) * 1986-04-15 1987-11-11 Fujitsu Ltd Semiconductor light receiving device
US4935795A (en) * 1986-04-15 1990-06-19 Fujitsu Limited Avalanche photodiode with uniform avalanche multiplication
US4984032A (en) * 1988-01-18 1991-01-08 Fujitsu Limited Semiconductor photodiode
JP2009292473A (en) * 1998-03-27 2009-12-17 Manitowoc Crane Companies Ltd Four-truck type crawler crane

Similar Documents

Publication Publication Date Title
US6515315B1 (en) Avalanche photodiode for high-speed applications
Decoster et al. Optoelectronic sensors
US4142200A (en) Semiconductor photodiodes
JPS6328506B2 (en)
Lee Photodetectors
JP4702977B2 (en) Receiver
US5446293A (en) Resonant tunneling opto-electronic device having a plurality of window layers
US4701773A (en) Semiconductor device for receiving light
JPS62259481A (en) Semiconductor light receiving device
JP2002231992A (en) Semiconductor light receiving element
JPS63955B2 (en)
JPS60105281A (en) Semiconductor photodetector
Wang et al. High gain and wide dynamic range punchthrough heterojunction phototransistors
JPS61170079A (en) Semiconductor light-receiving element
WO2021100088A1 (en) Avalanche photodiode
JPH051629B2 (en)
Law et al. State‐of‐the‐art performance of GaAlAs/GaAs avalanche photodiodes
JPS59151475A (en) Hetero-structure avalanche-photodiode with buffer layer
JPH05291609A (en) Optical semiconductor device
KR100198423B1 (en) Long wavelength optic detector of avalanche photo diode type
JPS63198383A (en) Semiconductor photodetector and its manufacture
Arshad et al. Comparison on IV characteristics analysis between Silicon and InGaAs PIN photodiode
JPH0265279A (en) Semiconductor photodetecting element
JPS63142683A (en) Avalanche photodiode
JPS6373676A (en) Semiconductor photodetector