JPS6010370B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS6010370B2
JPS6010370B2 JP52074702A JP7470277A JPS6010370B2 JP S6010370 B2 JPS6010370 B2 JP S6010370B2 JP 52074702 A JP52074702 A JP 52074702A JP 7470277 A JP7470277 A JP 7470277A JP S6010370 B2 JPS6010370 B2 JP S6010370B2
Authority
JP
Japan
Prior art keywords
cylindrical
base material
evaporation
magnetic recording
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52074702A
Other languages
Japanese (ja)
Other versions
JPS549607A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52074702A priority Critical patent/JPS6010370B2/en
Priority to GB53072/77A priority patent/GB1596385A/en
Priority to FR7739205A priority patent/FR2376485A1/en
Priority to CA294,014A priority patent/CA1096968A/en
Priority to NLAANVRAGE7714538,A priority patent/NL181059C/en
Priority to DE2758772A priority patent/DE2758772C2/en
Publication of JPS549607A publication Critical patent/JPS549607A/en
Priority to US06/008,083 priority patent/US4220117A/en
Publication of JPS6010370B2 publication Critical patent/JPS6010370B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、高密度記録に適する磁気テープ等の磁気記録
媒体の製造方法の改良を目的とし、特にZ真空蒸着法の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve a method of manufacturing a magnetic recording medium such as a magnetic tape suitable for high-density recording, and particularly relates to an improvement of the Z vacuum evaporation method.

近年、記録密度の向上に対する要望が強まっていて、強
磁性金属薄膜と記録層とする記録媒体の開発が進められ
ている。
In recent years, there has been a growing demand for improved recording density, and development of recording media using a ferromagnetic metal thin film as a recording layer is progressing.

記録密度を高める上で必須の条件である高い抗磁力を達
成するには、侍公2昭41−19磁針号公報に開示され
ている真空蒸着技術に属する斜め蒸着法が一般的である
。この技術では、基材上にたてた法線と基材に差し向け
られる蒸気流のなす角度で示される入射角が45o以上
必要であるとしており、例えば鉄の1000Aの膿で4
5はおの抗磁力を得るに必要な入射角は70o以上とな
り、公知のいかなる蒸発源を用いても蒸気流の大部分は
目的の記録層の形成に用いることができず、葵着効率が
2〜3%と低く、実用化にはいまだに不満足な状況であ
る。特に民生用の長尺磁気記録媒体の製法に用いるには
、蒸着効率を20%程度には高める必要がある。
In order to achieve high coercive force, which is an essential condition for increasing recording density, an oblique evaporation method, which belongs to the vacuum evaporation technique disclosed in Samurai Ko 2, 1977-19 Magnetic Needle Publication, is generally used. This technology states that the angle of incidence, which is the angle between the normal line on the base material and the vapor flow directed toward the base material, must be 45 degrees or more.
5, the incident angle required to obtain the coercive force is 70 degrees or more, and even if any known evaporation source is used, most of the vapor flow cannot be used to form the intended recording layer, and the deposition efficiency is 2. The rate is as low as ~3%, and the situation is still unsatisfactory for practical use. In particular, when used in the manufacturing method of long magnetic recording media for consumer use, it is necessary to increase the deposition efficiency to about 20%.

本発明は、上述のような問題点を除去し、入射角の大き
な成分のみによらずに、蒸着技術によって高抗磁力を達
成すること、量産規模で最尺の磁気記録媒体を特性良く
安定に作ることができる製造方法を提供せんとするもの
である。本発明を達成することにより構成される磁気記
録媒体は、高分子成形物または蓮続捲取り性のある可榛
性非磁性金属材を基材とし、記録層としてFe、Ni、
Coもしくはこれらの合金よりなる強磁性薄膜を配する
もので、薄膜の層状構成の数、各強磁性薄膜間の分離層
としての非磁性層の有無等についての限定を受けるもの
ではなく、少くとも記録層として用いられる強磁性薄膜
の形成において用いることで顕著な工業的有価慣性をも
つ製造方法である。
The present invention eliminates the above-mentioned problems, achieves high coercive force by vapor deposition technology without relying only on components with large incident angles, and makes the largest magnetic recording medium on a mass-produced scale stable with good characteristics. The purpose is to provide a manufacturing method that allows for the production of such materials. A magnetic recording medium constructed by achieving the present invention has a base material made of a polymer molded product or a flexible non-magnetic metal material that can be wound in a continuous manner, and has a recording layer made of Fe, Ni,
A ferromagnetic thin film made of Co or an alloy thereof is arranged, and there are no limitations on the number of layered structures of the thin film, the presence or absence of a nonmagnetic layer as a separation layer between each ferromagnetic thin film, and at least This is a manufacturing method that has significant industrial inertia when used in the formation of ferromagnetic thin films used as recording layers.

第1図に本発明の製造方法を実施する装置の一例を示す
FIG. 1 shows an example of an apparatus for carrying out the manufacturing method of the present invention.

最も簡単な構成であるポリエチレンテレフタレートフイ
ルムの上に、一層、ボロン層を配し、その上に、Co一
Niの合金からなる強磁性層を形成してなる磁気記録媒
体を製造する場合を例にとって説明する。
Let us take as an example the case where a magnetic recording medium is manufactured by disposing a single boron layer on a polyethylene terephthalate film, which has the simplest structure, and forming a ferromagnetic layer made of an alloy of Co and Ni on top of that. explain.

真空糟1内に円筒状のキャン2.3を蒸発源4,5とそ
れぞれ対向配設する。
A cylindrical can 2.3 is disposed within the vacuum chamber 1, facing the evaporation sources 4 and 5, respectively.

蒸発源4,5は公知の蒸発源のいずれでもよく、蒸発源
の数についても規定はないが、本発明の要点である強磁
性薄膜を形成するための蒸発源において蒸発面の中心に
たてた線法が円筒状キャン2の中心軸○と一致しないよ
うに後述の基材の入ってくる側にずらして配設すること
が基材の円筒状キャン2に接している部分の表面上のみ
において強磁性薄膜を形成することを前提としての基本
となる。すなわちキャンの直下に蒸発源を配する従来の
蒸着技術と基本的に異なる点である。この効果は後述す
るが、相互配置、形状等の細部については、目的に応じ
て考慮すべき設計的事項を含んでいるが、蒸発源よりの
熱頚射等により、基材が高分子フィルムであれば、その
フィルムが損傷を受けない範囲で第2図における1を小
さくとり、x(基材が矢印方向に移動する場合はキャン
に基材が入ってくる側に)を大きくとることにより、最
も好ましい効果が得られるものである。ここでいう蒸発
面は、常に平面状ではないが、平面でない場合も平面に
投影した上で第3図に示すような中心に垂線&をたてた
ものについて、本発明では考えている。またポロン層の
形成等の非磁性層を必要に応じて形成する場合について
も、前述のような相互関係により、本発明の効果をより
強調しうろことは勿論であるが、非磁性層の形成に関し
ては、本発明は前述の制約を必ずしも必要とするもので
はない。
The evaporation sources 4 and 5 may be any known evaporation sources, and there is no regulation regarding the number of evaporation sources, but in the evaporation sources for forming a ferromagnetic thin film, which is the main point of the present invention, it is possible to erect one at the center of the evaporation surface. To ensure that the line direction does not coincide with the central axis ○ of the cylindrical can 2, it is necessary to shift the line toward the incoming side of the base material (described later) only on the surface of the part of the base material that is in contact with the cylindrical can 2. The basic premise is to form a ferromagnetic thin film. In other words, this is fundamentally different from conventional evaporation technology in which the evaporation source is placed directly below the can. This effect will be discussed later, but details such as mutual arrangement and shape include design matters that should be considered depending on the purpose. If there is, set 1 in Fig. 2 to a small value within a range that does not damage the film, and set x (if the base material moves in the direction of the arrow, to the side where the base material enters the can) to a large value. This is the one that provides the most favorable effect. The evaporation surface referred to here is not always flat, but even if it is not flat, the present invention considers a surface projected onto a flat surface with a perpendicular line & at the center as shown in FIG. In addition, when forming a non-magnetic layer as necessary, such as forming a poron layer, the effects of the present invention can be further emphasized due to the above-mentioned interaction. Regarding this, the present invention does not necessarily require the above-mentioned limitations.

6は基材の原反ロールを模式的に示し、7は蒸着後の基
材の捲き取りロールを示している。
Reference numeral 6 schematically shows an original roll of the base material, and 7 shows a roll for winding up the base material after vapor deposition.

基材8はローラ9、主キャン3,2を介して移動するよ
う配設される。10は防看板であるが、これにより真空
槽1内を二室に分離しかつ差圧状態に積極的に保持する
等は自由に選択される。
The base material 8 is arranged to move via rollers 9 and main cans 3 and 2. Reference numeral 10 denotes a security signboard, which can be freely selected to separate the inside of the vacuum chamber 1 into two chambers and actively maintain a differential pressure state.

11は真空槽1内を所定の真空雰囲気に保持するための
真空ポンプで、本発明の蒸着を実施するに当つ3て、必
要に応じて、不活性気体、または02、C0、CH4等
の導入は図示せぬ導入バルブの調節によって出来るよう
に配設するのも自由である。
11 is a vacuum pump for maintaining the inside of the vacuum chamber 1 in a predetermined vacuum atmosphere, and when carrying out the vapor deposition of the present invention, if necessary, it is filled with an inert gas or 02, CO, CH4, etc. The introduction can be freely arranged by adjusting an introduction valve (not shown).

12,13は蒸着源用の加熱電源で、抵抗加熱を便宜上
示したが、好ましくは電子ピ−ム加熱が4本発明の実施
においては優れている。
Reference numerals 12 and 13 denote heating power sources for the vapor deposition source, and although resistance heating is shown for convenience, electron beam heating is preferably used in carrying out the present invention.

14は絶縁導入端子を示している。14 indicates an insulation introduction terminal.

第4図に本発明の一実施例により得られる効果の一例を
示した。
FIG. 4 shows an example of the effect obtained by one embodiment of the present invention.

すなわち蒸発源とキャンの距離(第2図の1)を25仇
廠とし、水平位置xをずらした場合、縛られる強磁性膜
の抗磁力を示してある。キャンの直径は35仇舷で、用
いた基材はポリエチレンテレフタレートフイルム(20
ム厚)で、キャン温度は−290の一定とした。真空排
気は、あらかじめ1×10‐5Ton以下に排気し、A
rと02の混合気体を5×10‐5Tomになるまで導
入し、Co90%、Nilo%をあらかじめ混合溶鱗し
た合金を黍着させた。0 ボ。
That is, when the distance between the evaporation source and the can (1 in FIG. 2) is set to 25 meters, and the horizontal position x is shifted, the coercive force of the ferromagnetic film is shown. The diameter of the can is 35 m, and the base material used is polyethylene terephthalate film (20 m).
thickness), and the can temperature was kept constant at -290. Vacuum evacuation is performed in advance to 1×10-5Ton or less, and A
A mixed gas of r and 02 was introduced until it reached 5 x 10-5 Tom, and an alloy in which 90% Co and % Nilo were mixed and scaled in advance was deposited. 0 Bo.

ンの濃厚、CONiの膜厚はそれぞれ250A、900
Aの一定とした。図にみられるように、本発明によれば
、従来の技術(すなわちx=0の点)で得られる膜の有
する抗磁力の2倍近い高抗磁力が達成される。さらに、
この方法でか円筒状キャンを用いているので、基材の走
行中の位置によって蒸着源から放射する葵着物質の基板
主面への入射角が大幅に変化する。すなわち、最初は蒸
着物質は入射角が90o近くの大きな角度で入射され、
基材が蒸着源に近づくにつれて小さい入射角で基材に入
射する。このように変化する入射角度によって付着して
形成された粒子は、基材との距離によって成長方向が異
なり、わん曲したような形状となる。そして、この方法
では、蒸着源の法線を円筒状キャンの回転軸に対して基
材の入ってくる側にずらすことにより入射角が90o付
近での基材への蒸着速度が大きくなり、この方向の粒子
の成長が大きくなる。このような結晶粒よりなる強磁性
膜は斜めの一定方向より入射して形成した強磁性膜に比
べても高い抗磁力を示す。
The film thickness of CONi is 250A and 900A, respectively.
It was assumed that A was constant. As seen in the figure, according to the present invention, a coercive force nearly twice as high as that of a film obtained using the conventional technique (ie, at the point where x=0) is achieved. moreover,
Since this method uses a cylindrical can, the angle of incidence of the deposition material emitted from the evaporation source onto the main surface of the substrate changes significantly depending on the position of the substrate while it is traveling. That is, initially, the deposition material is incident at a large angle of incidence close to 90 degrees,
As the substrate approaches the deposition source, it is incident on the substrate at a smaller angle of incidence. Particles formed by adhesion due to the changing incident angle grow in different directions depending on the distance from the base material, and have a curved shape. In this method, by shifting the normal line of the evaporation source to the side where the substrate enters with respect to the rotation axis of the cylindrical can, the rate of evaporation onto the substrate increases when the incident angle is around 90 degrees. The growth of particles in the direction becomes larger. A ferromagnetic film made of such crystal grains exhibits a higher coercive force than a ferromagnetic film formed by incident light from a certain oblique direction.

これは高密度記録用の媒体にとって重要な必要条件を満
たすものであり、本発明により得られる強磁性薄膜は、
Co、Fe、Niまたはそれらの合金、およびそれぞれ
に添加元素を加えたものを含み、高抗磁力のみならず、
角形比の優れた、記録用媒体としては極めて優れたもの
で、かつ量産性に富むもので、その産業性は極めて大き
いものである。
This satisfies an important requirement for high-density recording media, and the ferromagnetic thin film obtained by the present invention
Contains Co, Fe, Ni or their alloys, as well as those with added elements, and not only has high coercive force, but also
It is an excellent recording medium with an excellent squareness ratio, and is highly suitable for mass production, so its industrial potential is extremely large.

以上のように本発明の製造方法は、基材を円筒状キャン
の周側面に沿って移動させながら基材の円筒状キャンに
接している部分の表面上のみに強磁性薄膜を形成する磁
気記録媒体の製造方法にあって、強磁性材料を蒸発物質
とする蒸発源の蒸発面の中心にたてた法線と円筒状キャ
ンの回転軸とを一致させずに蒸着源の前記法線を円筒状
キャンの回転軸に対して基村の入ってくる側にずらした
状態で強磁性薄膜を形成するものであるため、特性的に
極めて優れている磁気記録媒体が得られるものであり、
磁気記録の分野に貢献するところ大なるものである。
As described above, the manufacturing method of the present invention enables magnetic recording in which a ferromagnetic thin film is formed only on the surface of the portion of the base material that is in contact with the cylindrical can while the base material is moved along the circumferential side of the cylindrical can. In a method for producing a medium, the normal line drawn to the center of the evaporation surface of an evaporation source whose evaporation substance is a ferromagnetic material does not coincide with the rotation axis of the cylindrical can, and the normal line to the evaporation source is set to the cylindrical can. Since the ferromagnetic thin film is formed in a state shifted to the side where the magnetic field enters with respect to the rotation axis of the shaped can, a magnetic recording medium with extremely excellent characteristics can be obtained.
This is a great contribution to the field of magnetic recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を実施するために便用する装
置の−実施例の断面正面図、第2図、第3図は同装置の
要部の説明図、第4図は本発明によって得られた磁気記
録媒体の抗磁力特性図である。 1・・・・・・真空糟、2,3・…・・円筒状キヤン、
4,5・…・・蒸発源、8・・・・・・基材。 第1図 第2図 第3図 第4図
FIG. 1 is a cross-sectional front view of an embodiment of an apparatus conveniently used for carrying out the manufacturing method of the present invention, FIGS. 2 and 3 are explanatory views of the main parts of the apparatus, and FIG. 4 is an illustration of the present invention. FIG. 3 is a coercive force characteristic diagram of a magnetic recording medium obtained by the method. 1... Vacuum chamber, 2, 3... Cylindrical can,
4, 5... Evaporation source, 8... Base material. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 真空雰囲気内で高分子成形物または非磁性金属材を
基材とし、その基材を円筒状キヤンの周側面に沿って移
動させながら基材の円筒状キヤンに接している部分の表
面上のみに強磁性薄膜を形成する磁気記録媒体の製造方
法にあって、強磁性材料を蒸発物質とする蒸発源の蒸発
面の中心にたてた法線と円筒状キヤンの回転軸とを一致
させずに蒸発源の前記法線を円筒状キヤンの回転軸に対
して基材の入ってくる側にずらした状態で強磁性薄膜を
形成することを特徴とする磁気記録媒体の製造方法。
1 Using a polymer molded product or a non-magnetic metal material as a base material in a vacuum atmosphere, while moving the base material along the circumferential side of the cylindrical can, only the surface of the part of the base material that is in contact with the cylindrical can is In a method of manufacturing a magnetic recording medium in which a ferromagnetic thin film is formed on a ferromagnetic material, the normal line set at the center of the evaporation surface of an evaporation source whose evaporation substance is a ferromagnetic material is not aligned with the rotation axis of a cylindrical can. A method for manufacturing a magnetic recording medium, characterized in that a ferromagnetic thin film is formed with the normal line of the evaporation source being shifted toward the side where the substrate enters with respect to the rotation axis of the cylindrical can.
JP52074702A 1976-12-29 1977-06-22 Method for manufacturing magnetic recording media Expired JPS6010370B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP52074702A JPS6010370B2 (en) 1977-06-22 1977-06-22 Method for manufacturing magnetic recording media
GB53072/77A GB1596385A (en) 1976-12-29 1977-12-20 Methods and apparatus for manufacturing magnetic recording media
FR7739205A FR2376485A1 (en) 1976-12-29 1977-12-26 METHOD AND DEVICE FOR MANUFACTURING MAGNETIC BANDS
CA294,014A CA1096968A (en) 1976-12-29 1977-12-28 Method and apparatus for fabrication of magnetic recording media
NLAANVRAGE7714538,A NL181059C (en) 1976-12-29 1977-12-29 METHOD FOR MANUFACTURING A MAGNETIC REGISTRATION MEDIUM
DE2758772A DE2758772C2 (en) 1976-12-29 1977-12-29 Process for the production of a tape-shaped, magnetic recording medium
US06/008,083 US4220117A (en) 1976-12-29 1979-01-31 Apparatus for fabrication of magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52074702A JPS6010370B2 (en) 1977-06-22 1977-06-22 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS549607A JPS549607A (en) 1979-01-24
JPS6010370B2 true JPS6010370B2 (en) 1985-03-16

Family

ID=13554813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52074702A Expired JPS6010370B2 (en) 1976-12-29 1977-06-22 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS6010370B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD82859A (en) *
US2665228A (en) * 1950-07-19 1954-01-05 Nat Res Corp Apparatus and process for vapor coating
US3342632A (en) * 1964-08-05 1967-09-19 Ibm Magnetic coating
DE1621343A1 (en) * 1967-07-12 1971-02-18
JPS4929286A (en) * 1972-07-14 1974-03-15
JPS5033811A (en) * 1973-07-25 1975-04-01

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD82859A (en) *
US2665228A (en) * 1950-07-19 1954-01-05 Nat Res Corp Apparatus and process for vapor coating
US3342632A (en) * 1964-08-05 1967-09-19 Ibm Magnetic coating
DE1621343A1 (en) * 1967-07-12 1971-02-18
JPS4929286A (en) * 1972-07-14 1974-03-15
JPS5033811A (en) * 1973-07-25 1975-04-01

Also Published As

Publication number Publication date
JPS549607A (en) 1979-01-24

Similar Documents

Publication Publication Date Title
GB1599161A (en) Magnetic recording medium and method of making the same
US4387136A (en) Magnetic recording medium and apparatus for preparing the same
JPS6010370B2 (en) Method for manufacturing magnetic recording media
JPS5837842A (en) Production of magnetic recording medium
JPS61242321A (en) Magnetic recording medium
JPS608305B2 (en) Vacuum deposition method
JPS58158030A (en) Magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPS5840248B2 (en) Magnetic recording medium and its manufacturing method
JPH053052B2 (en)
JPS61273738A (en) Production of magnetic recording medium
JPH0337724B2 (en)
JPS608304B2 (en) vacuum evaporation method
JPS5814329A (en) Production of magnetic recording medium
JPS6246435A (en) Method and apparatus for producing magnetic recording medium
JPH027228A (en) Production of magnetic recording medium
JPS6043916B2 (en) vacuum evaporation method
JPS61250836A (en) Production of magnetic recording medium
JPS6045271B2 (en) Vacuum deposition equipment
JPS6378336A (en) Production of magnetic recording medium
JPS61214120A (en) Magnetic recording medium
JPS619823A (en) Magnetic recording medium
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPS6194237A (en) Preparation of vertical magnetic recording medium
JPH01303623A (en) Magnetic recording medium