JPS60103015A - Manufacture of silicon - Google Patents

Manufacture of silicon

Info

Publication number
JPS60103015A
JPS60103015A JP21152083A JP21152083A JPS60103015A JP S60103015 A JPS60103015 A JP S60103015A JP 21152083 A JP21152083 A JP 21152083A JP 21152083 A JP21152083 A JP 21152083A JP S60103015 A JPS60103015 A JP S60103015A
Authority
JP
Japan
Prior art keywords
silicon
alloy
shaft furnace
sicl4
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21152083A
Other languages
Japanese (ja)
Inventor
Masao Onozawa
昌男 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21152083A priority Critical patent/JPS60103015A/en
Publication of JPS60103015A publication Critical patent/JPS60103015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce polycrystalline silicon with low power consumption by blowing SiCl4 into a molten bath of silicon alloy formed by using a shaft furnace, and by obtaining pure Si from the gaseous mixture generated thereby and together by returning the residual alloy to said shaft furnace. CONSTITUTION:A briquette for reduction composed of silica, copper powder, carbon powder for reduction and coal powder is reduced in a shaft furnace. The produced molten Cu-Si alloy is sent to a reactor via a refining vessel and on one hand gaseous SiCl4 is blown into the molten silicon alloy in said reactor to produce the gaseous mixture of SiCl4 and H2SiCl2. Next, after the gaseous mixture is purified in the refining vessel, pure Si is separated in a separator and the remaining gas (SiCl4) is supplied via a condenser. On one hand, the waste liquid from said reactor is cooled, coagulated and crushed, and copper powder is recovered from the obtained low Si alloy powder in an extractor, thereafter is used as copper powder of raw material for the formation of the briguette used for reduction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えばJIS G 2312の金属珪素1号、
2号品に見合うか、ないしはより純度の高い珪素を、シ
ャフト炉における粗合金の製造と、その精製過程を含む
二段方式で製造する方法を提供するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention applies to metal silicon No. 1 of JIS G 2312,
The present invention provides a method for producing silicon with a purity equivalent to or higher than that of the No. 2 product in a two-step process including production of a crude alloy in a shaft furnace and a refining process.

(従来波や1、r) 従来、珪素はすべて開放式アーク電気炉で製造されてお
り、約13,000 kWh/lもの電力を必要とする
。これは電力費が高い場合大きな問題である。
(Conventional wave 1, r) Conventionally, all silicon has been manufactured in open arc electric furnaces, which require a power of about 13,000 kWh/l. This is a big problem when electricity costs are high.

なおこのようにして1Uだ金應珪素1号品に塩化水素全
作用さ中トリクロルシランを得、1′N製したトリクロ
ルシランを熱分解および水素還元して半導体に用いる高
純1−′1多結晶珪素が製造されている。
In this way, trichlorosilane was obtained from the 1U gold oxide silicon No. 1 product under the complete action of hydrogen chloride, and the 1'N trichlorosilane was thermally decomposed and reduced with hydrogen to produce high purity 1-'1 polysilane used in semiconductors. Crystalline silicon is produced.

(発明の目的と構成) 本発明者はさきに珪素の製造にあたシできるだけ電力を
用いない方法全研究した結果、シャフト炉方式によると
きは、銅、ニッケルまたは鉄を主成分とする珪素合金を
用いることによって珪素が回収可能である。1“11度
の珪素合金を製造できることを見出した。シャフト炉の
製造工程は例えi特願昭57−182613号に示した
ような方法によって可能となる。そこで得られた合金か
ら珪素の分離方法について研究した結果、本発明が構成
されたものである。
(Objective and Structure of the Invention) The present inventor has previously conducted research on methods for manufacturing silicon that use as little electricity as possible, and found that when using a shaft furnace method, silicon alloys containing copper, nickel, or iron as the main components Silicon can be recovered by using We have discovered that it is possible to produce a silicon alloy with a temperature of 11 degrees.The manufacturing process in a shaft furnace is made possible by the method shown in Japanese Patent Application No. 57-182613.A method for separating silicon from the alloy obtained therein The present invention was constructed as a result of research on the above.

前述の特願昭57−182613号の発明においてはシ
リカ、アルミナの少なくとも一方金3有する鉱石と炭素
原料とを粉砕混合して団鉱化L7、更に鉄、ニッケル、
銅または錫もしくはこdzらを主成分とする合金を団鉱
内またはその周囲に含ませ、更にその外層を炭素原料で
:t&4.4して二重層とし、この二重層の団鉱全シャ
フト炉に装入し炉の下方から高濃度の酸素を含む燃焼支
持ilスを送入し、外層の炭素原料の燃焼によって発生
する高温によって前記叡化物を還元し、珪素またはアル
ミニウムと前記鉄キfとの合金を14することかできる
In the invention of the above-mentioned Japanese Patent Application No. 57-182613, an ore having at least one of silica and alumina containing gold 3 and a carbon raw material are pulverized and mixed to form a briquette L7, and further iron, nickel,
An alloy mainly composed of copper, tin, or carbon is contained in or around the briquette, and the outer layer is made of a carbon material: t & 4.4 to form a double layer. A combustion supporting illuminant containing high concentration of oxygen is introduced from the bottom of the furnace, and the high temperature generated by the combustion of the carbon material in the outer layer reduces the silica, and the silicon or aluminum and the iron alloy are reduced. It is possible to make 14 alloys.

本方式によpシャフト炉で珪素に限って合金を製造した
ところ&11flでは最高50%(Ml□′L条以下同
じ)鉄、ニッケルは最高55係1での珪素合金溶湯るこ
とができた。なお錫を用いるとせいぜい12%までしか
珪素を含ませることができなかった。このようにして得
られる珪素合金は極めて用途が乏しく鉄では珪素40〜
45%のものがフェロシリコン3号として用いられるの
みであるが、使用は限定されたものである。一方珪素の
用途、使用量Qよ多大なものがあるからこの珪素合金か
ら珪素r分取する必戸がある。1コ11記先願発明はそ
の−、二の方法を示したが、木う′う1月Cよ更に進ん
だ方法を提供するものである。
When an alloy was produced using only silicon in a P-shaft furnace using this method, a molten silicon alloy with a maximum of 50% (Ml□'L strips and below) iron and nickel with a maximum of 55 factor 1 could be obtained in &11fl. Note that when tin is used, silicon can only be contained up to 12% at most. The silicon alloy obtained in this way has very few uses, and in iron it has a silicon alloy of 40~
Only 45% of the material is used as ferrosilicon No. 3, but its use is limited. On the other hand, since there are many uses of silicon and a larger amount than Q, it is necessary to fractionate silicon r from this silicon alloy. The invention of the prior application No. 1 and No. 11 showed methods 1 and 2, but the invention provided by Thursday January 1, 2003 and C provides a more advanced method.

珪素に高温で四(、liA化珪素ガス全反応させるとき
Cま次の反応で二I:i、7を化珪素を生じ、低温にす
るとふたたび珪素と四」ヨ・A化珪素がスに戻ることは
知られている。
When silicon is subjected to a total reaction with silicon 4(, liA) gas at high temperature, the next reaction produces 2I:i, 7 to silicon oxide, and when the temperature is lowered, silicon and 4'' return to S. This is known.

そこで本反応によって珪素を分取する研究を行なった。Therefore, we conducted research to separate silicon using this reaction.

都合のよいことにシャフト炉がらid%融状態の珪素合
金がイ(fられる。この珪素合金を面]人物製の容器に
入れ、同じく耐火物製のノズル全71・lして四塩化珪
素ガス全通人した。この際前記反応は右辺に動くときは
吸熱反応であるため容器全体を高周波炉に入れて加熱保
温した。
Conveniently, the silicon alloy in a molten state is heated in a shaft furnace, and the silicon alloy is placed in a container made by a human being, and a total of 71 l of nozzle also made of refractory is used to inject silicon tetrachloride gas. At this time, since the reaction described above is an endothermic reaction when it moves to the right side, the entire container was placed in a high frequency furnace and heated and kept warm.

このようにしてシャフト炉からイMられた40if(量
係の珪素を含む銅合金を処理し、発生するガス全低温部
に導き玲却して生成物を分析した。醇湯金1430℃に
保ち初期の珪素含有量が40チから38%の間では生成
した珪素中の」ト]含有1’iLは0.2%でちったが
、末期の珪素片有量18チから16係に至る間の】伺含
鳴j−は7,5裂イ■度にも達した。珪素含有量の高い
間だけ本方法を用い19.は純度の高い珪素が得られる
が、それでは原合金中の珪素を十分に利用することがで
きない。
In this way, the copper alloy containing 40if (quantity) of silicon extracted from the shaft furnace was treated, and all the generated gas was led to the low temperature section and the product was analyzed. When the initial silicon content was between 40 and 38%, the content of 1'iL in the produced silicon was 0.2%, but when the silicon content in the final stage ranged from 18 to 16. 19. The resonant temperature reached as high as 7.5 degrees.19. Using this method only when the silicon content is high, high purity silicon can be obtained, but in this case, the silicon in the raw alloy cannot be removed. cannot be fully utilized.

なお、シャフト炉から得られた50チの珪素を含む鉄、
珪素合金を48%に至るまで、1430℃で四塩化珪素
で処理するときの生成珪素中の鉄含量は8%にも及ぶの
でこの方法をその一1ニーまではとても利用できない。
In addition, 50 inches of silicon-containing iron obtained from a shaft furnace,
When a silicon alloy is treated with silicon tetrachloride at 1430° C. up to 48%, the iron content in the silicon produced is as high as 8%, so this method cannot be used up to that point.

例えば銅珪素合金では初期にイ8られる珪、(ζは銅0
.2%と十分な純度を保っているのであるから、向流方
式をとQ常に最終的に反応製置をlり’161 L、る
がスが高純度の珪素合金と接するようにすれ&、l、よ
い。
For example, in a copper-silicon alloy, silicon is initially 8, (ζ is copper 0
.. Since it maintains a sufficient purity of 2%, it is recommended to use a counter-current method and always perform the final reaction preparation so that the gas is in contact with the high-purity silicon alloy. l, good.

このような考え方から81!1図に示したような装置I
/l−をつくり上げた。
Based on this idea, the device I shown in Figure 81!
/l- was created.

第1図の3は保持炉で低周波コイル9によシ珪素合金浴
湯6が加熱される。内張I針人物7?黒鉛とする場合に
は内張110]火物にも凸が伝えられる。
Reference numeral 3 in FIG. 1 denotes a holding furnace in which silicon alloy bath water 6 is heated by a low frequency coil 9. Uchihari I needle person 7? If graphite is used, the convexity is also transmitted to the lining 110].

8は断熱材、lOは支持栴体である。浴湯は制御;lp
H金介して連S+’+1’l i 3を辿って充填塔2
にfile下する。なお12は保持炉3と充填塔2を結
合するi′lij!I!71性の7ランクである。
8 is a heat insulating material, and lO is a support body. The bathtub is controlled; lp
Follow the chain S+'+1'l i 3 through H gold to packed tower 2
File down to. Note that 12 is i'lij! which connects the holding furnace 3 and the packed column 2. I! It is ranked 7th with 71 genders.

プ己9(j五: zでil、−I:、 FXIIからシ
ャフト炉で11!星造された珪素合金溶湯かυ+i: 
”l’する。16はペブルで内張耐火物14と同様な1
111j大物でできており上部からbiL下する珪素台
金浴湯と反応器1から上昇する二塩化珪素を主成分とす
るガスとの反応を効率的に行なわせるものである。最終
的に珪素合金溶湯は格子17から流ドし)11シ結官1
8金通って反応器lにpIC人する。光’i+i jh
 2において15は断熱材であり、候述するようK :
A〕Ji°I(塔に加熱様構を設けないときは全体金鋼
機!IζVの″が器としてもよい。
Puki 9 (j5: il at z, -I:, 11 from FXII in the shaft furnace! Star-made silicon alloy molten metal υ+i:
``l''. 16 is a pebble and 1 is similar to the lining refractory 14.
111j large material, and allows the reaction between the silicon base metal bath water flowing down biL from the top and the gas mainly composed of silicon dichloride rising from the reactor 1 to be carried out efficiently. Finally, the molten silicon alloy flows through the grid 17) 11
8 gold is passed through the pIC to the reactor. Light'i+i jh
In 2, 15 is a heat insulating material, and K as mentioned below:
A] Ji°I (If the tower is not provided with a heating structure, the entire metal steel machine!IζV') may be used as the vessel.

流下した珪素合金1′ド湯25には、低周波加熱コイル
24で加熱−1>Iρ[定温度に保ちつつ、耐火物製ラ
ンス22から四塩化珪素ガスを通ずる。灰地、器lの2
0は内張1IIIj火物であり21は断熱耐火物、23
は支持(1″Ij体である。処理された浴湯は連続もし
くは間欠的に炉腹または炉底の流出口26゜26′から
流出させる。また1 9 、28 &j:反応器1と充
填塔2ff:つなぐ可動性のフランジである。反応によ
り生じたガスは上昇管27全通って充填塔内のベゾル充
填眉で、流下する合金と反応して純化され、連結°α2
9を通って析出器4に入る。
The flowing down silicon alloy 1' hot water 25 is heated by a low frequency heating coil 24 and is maintained at a constant temperature of -1>Iρ, while silicon tetrachloride gas is passed through it from a refractory lance 22. Gray ground, pottery 2
0 is the lining 1IIIj refractory, 21 is the insulation refractory, 23
is a support (1" Ij body. The treated bath water is continuously or intermittently discharged from the outlet 26° 26' of the furnace belly or furnace bottom. Also, 1 9 , 28 &j: Reactor 1 and packed column 2ff: It is a movable flange that connects.The gas generated by the reaction passes through the entire riser pipe 27 and is purified by reacting with the alloy flowing down in the besol filling column in the packed tower.
9 and enters the precipitator 4.

析出器4は耐火物内張30または金属板製でほぼ全面が
水冷ジャケット31により冷却されている。冷却水は3
2から入933から出て析出器4内のガスを冷却する。
The precipitator 4 is made of a refractory lining 30 or a metal plate, and almost the entire surface is cooled by a water cooling jacket 31. Cooling water is 3
2 and exits from 933 to cool the gas in the precipitator 4.

析出器4の表面には珪素が析出するので適宜排出弁34
全開いでぶパ1品をと9出す。
Since silicon is deposited on the surface of the precipitator 4, the discharge valve 34 is
One full-fat open dish costs 9.

逆反応によって生じた四塩化珪素は連結□q’3sを辿
り凝縮器5の冷却器38で冷却され四塩化珪素の液体3
6となって凝縮するので取出口37から取り出す。なお
未凝縮の低沸点分は39を辿して?ンプで引き必吸々化
学的物理的処理をし7て回収または分解する。
Silicon tetrachloride generated by the reverse reaction follows the connection □q'3s and is cooled by the cooler 38 of the condenser 5, and becomes a silicon tetrachloride liquid 3.
6 and condenses, so it is taken out from the outlet 37. In addition, the uncondensed low boiling point part is traced to 39? The waste must be pulled through a pump, subjected to chemical and physical treatment, and then recovered or decomposed.

後述するごとく鉄珪素合金全処理する場合や、高純度の
珪妬を製造する場合、二次純化塔40を充’ut’7F
2と析11旨::(4の間に設置する。この賜金ホッノ
941に金属珪(・5または本方法で析出器4から得ら
れた高純度珪素の卸1塊を一供給する。これを弁42を
介して加j’j、1!曽:i 50に入れ加熱する。珪
素は抵抗体であるから内張45は黒鉛で形成しこの器壁
を加熱して伝熱する。43は高周波コイルであシ、44
は肋熱月である。下部は充」側塔2と同じ充填層でここ
には加−1シされた珪素粒が充填ぜれでいる。
As will be described later, when completely processing the iron-silicon alloy or when producing high-purity silicone, the secondary purification tower 40 is filled up to 7F.
2 and analysis 11 effect:: (Installed between 4. To this gift 941, supply one lump of metal silicon (.5 or high purity silicon obtained from the precipitator 4 by this method. It is heated through the valve 42 by heating it in the chamber 50.Since silicon is a resistor, the lining 45 is made of graphite, and the wall of this vessel is heated to transfer heat.43 is a high frequency Coil Ash, 44
is a cold month. The lower part is the same packed bed as the full side column 2, and the added silicon grains are packed here.

連結管29から入った二塩化珪素を主成分とするがス(
σ珪素粒と反応し純化され連結管29′から析出器4に
入る。46i1.t、111t火物内張で47は断熱1
]d」大物、48は格子である。この場合二次純化1(
≦内は1300〜1400’Cに保ち上部では珪素は線
屑せず、下部格子1;1]近では鉄などを多kkに含み
融k[シた金属が格子からt+S’q下するようにする
The main component is silicon dichloride, which entered from the connecting pipe 29.
It reacts with the σ silicon particles, is purified, and enters the precipitator 4 through the connecting pipe 29'. 46i1. t, 111t fire lining, 47 is insulation 1
] d” big game, 48 is a grid. In this case, secondary purification 1 (
The temperature within ≦ is maintained at 1300 to 1400'C, and silicon does not form wire scraps in the upper part, and near the lower grid 1; do.

二次純化基本また充填塔と同様に耐火物被プルを用い、
より高痕度の珪素または蛙話合金を滴下させる構成とす
ることも考えられる。その場合加熱器50は十分な入力
とすることによシm解器として働くことになる〇 装置の要部は鋼板製の容器とすべきは当然であるが低周
波または高周波のコイルを設置する部分に金属板を使え
ないのでマイカまたは他のセラミック板でシールドし周
囲’tlo、23のように支持枠による桟体としている
。なお両図とも装置?“を組立てのフランジ等は一部省
略されている。
Secondary purification basics also uses a refractory covering similar to a packed column,
It is also conceivable to adopt a structure in which silicon or a frog alloy with a higher scar density is dropped. In that case, the heater 50 will function as a simulator by providing sufficient input power.Obviously, the main part of the device should be a container made of steel plate, but a low-frequency or high-frequency coil should be installed. Since a metal plate cannot be used for this part, it is shielded with mica or other ceramic plates, and a support frame is used as a support frame as shown in Figure 23. Are both figures devices? Some flanges, etc. of the assembly are omitted.

更に四塩化珪素および二塩化珪素の連路ならびに珪素合
金の容器はこれらと反応しないものでなければならない
が一般的には黒鉛または炭化珪素音用いる。また析出器
4の様に低温部分には石英ガラスを用いることもできる
Additionally, the channels for silicon tetrachloride and silicon dichloride and the silicon alloy container must be of a type that does not react with them, although graphite or silicon carbide is generally used. Furthermore, quartz glass can also be used for a low-temperature portion such as the precipitator 4.

黒鉛は表面が珪素又は二塩化珪素と反応して炭化珪素と
なるがあとは安定であり、誘導加熱を行なう場合にはそ
の導%;体、発熱体となる利点があるO 派出口26から取り出した合金溶湯はまだ相当量の珪素
を含む。これは冷却後破砕して粉末とし、可能であれば
更に珪素の抽出を行なうべきであるが、できない場合は
そのまま前述したシャフト炉への装入金1ツ4粉として
循環する。
The surface of graphite reacts with silicon or silicon dichloride to form silicon carbide, but the rest is stable, and when induction heating is performed, it has the advantage of becoming a conductive body and a heating element. The molten alloy still contains a significant amount of silicon. After cooling, this should be crushed into powder, and if possible, further extraction of silicon should be carried out, but if this is not possible, it should be recycled as one powder to be charged into the shaft furnace described above.

特に銅を用いるJlは流出口26から流出した合金はな
お14〜20%程度の珪素を含む@これ全微粒化して凝
固させ、更に珪素18チ以上のものはもろい合金となる
のでこれ全破砕して微粉とし乾いた塩化水p’4s f
 300〜400℃で作用させトリクロルシランを製造
することができる。現在トリクロルシランはd頭に述べ
たように金属珪素をj=tA化水素で処理して得ている
が、本発明によればより安価な原料全提供することがで
きる。
In particular, for JL that uses copper, the alloy that flows out from the outlet 26 still contains about 14 to 20% silicon, which is completely atomized and solidified, and if it contains more than 18 inches of silicon, it becomes a brittle alloy, so it is completely crushed. Finely powdered and dried chloride water p'4s f
Trichlorosilane can be produced by reacting at 300 to 400°C. At present, trichlorosilane is obtained by treating metallic silicon with j=tA hydrogen hydride as described in section d, but according to the present invention, it is possible to provide all the raw materials at lower cost.

以上述べた本発明による方法を理解するだめの典型的な
実施例を以下に示す。
A typical example for understanding the method according to the invention described above is shown below.

実施例1 !トリ合金の処理例 オイルコークスおよび珪石を夫々100メツシユ以下に
粉砕しなたこの実施例でイ()られる6裂の珪・素を含
む銅合金粉を用意する。珪石、オイルコークス、銅合金
粉を1:0.37:0.80の割合で混合し、混合粉末
全に4に対し、50チアスフアルドを含むアスファルト
乳剤6%を加え、25酎φ×25順のタブレットヲ製造
する。次いで強粘結炭を含む数I+1【の石炭を配合し
た混合石炭を100メツシー以下に粉砕した原料を珪石
に対し258部用意し、同じく50%アスファルト乳剤
6係を加え、前述のタプレッl−を核として32.5m
mφX32.5罷のタブレットを製造する。これヶ12
0℃で2時間乾燥したのちシャフト炉に装入し、下部か
ら燃9J’b /J″ス全送シこみ最iej*1000
℃まで加熱して、;、2溜しコーソス化する。
Example 1! Example of treatment of tri-alloy Oil coke and silica stone were each crushed to 100 meshes or less, and a copper alloy powder containing 6-fiber silicon/element as described in Example 1 was prepared. Silica stone, oil coke, and copper alloy powder were mixed in a ratio of 1:0.37:0.80, and 6% asphalt emulsion containing 50 thiasphald was added to the total mixed powder. Manufacture tablets. Next, 258 parts of a raw material prepared by pulverizing a mixed coal of number I + 1 including strongly coking coal to 100 meshes or less was prepared for silica stone, 6 parts of the same 50% asphalt emulsion was added, and the above-mentioned taplet l- was prepared. 32.5m as core
A tablet of mφX32.5 strips is manufactured. This is 12
After drying at 0°C for 2 hours, it was charged into a shaft furnace and heated from the bottom at a rate of 9J'b/J''.
Heat to ℃ and make 2 batches.

コノコークス化したタブレットを内ff: 0.8 +
nφ、簡さ5mのシャフト炉に575 KV/hの割合
で供給し、下方から200 Nm3/hの純削素を3本
ずつの2段の水冷銅羽口を通して吹きこむと炉上部から
COt主成分とするガスが約350℃のi&7t +帆
で発生し炉下部からは5138チを含む畑合金全178
1iihの割合で生ノ戊するので、2時間毎に出湯[]
 ’lc開いて取り出した。
Including conocoke tablets ff: 0.8 +
COt was supplied from the top of the furnace at a rate of 575 KV/h to a shaft furnace of nφ, 5 m in length, and 200 Nm3/h of pure milled material was blown from below through three water-cooled copper tuyeres in two stages. The component gas is generated in the i&7t + sail at approximately 350℃, and from the lower part of the furnace, a total of 178 hata alloys, including 5138chi, are generated.
Since the raw water is poured at a rate of 1iih, the hot water is poured every 2 hours.
I opened the 'lc and took it out.

得られた合金350Kgを第1図の保温炉6に入れ、1
114間かけて一足厘のNす1合で流下lAせる。fd
填塔2は1)11回利用の予熱で十分な温度があるもの
とする。また反応器1も前回処理の溶湯の半基(約13
0Ky)が貯留されている。υIC下した合金ともども
低周波コイルで加熱され1400℃に保だ、nた合金に
1ijJ火物シ:/ス22から図に示されていない気化
器で四1.;を化11素が1.26t/hの割合で供給
1′ され、浴中の珪素と反工し、して二塩化珪素を止し、ル
; JJ”’−塔2で純イ[旨き)1析出器4[1身て
珪素を析出する。
350 kg of the obtained alloy was placed in the heat insulating furnace 6 shown in Fig. 1.
It takes 114 hours to flow 1A at 1 foot of N. fd
It is assumed that the packing tower 2 has a temperature sufficient for 1) preheating for 11 uses. In addition, reactor 1 is also filled with half of the molten metal from the previous treatment (approximately 13
0Ky) is stored. Both alloys were heated with a low-frequency coil and maintained at 1400°C, and the alloys were heated with a vaporizer (not shown) from a pyrotechnic source 22 to a vaporizer not shown. 1' is supplied at a rate of 1.26 t/h, reacts with silicon in the bath, stops silicon dichloride, and produces pure chloride in column 2. 1) Precipitate silicon using 1 precipitator 4 [1].

1、J・られた珪−4′、はめ861くりであり、一方
反応器lの//し易中のfI 、、?、はrslj、 
l 8チであった、得られた珪−(−&i ;i同含イ
1)徒が0.()4係で1・;1いアルミニウムぐ、・
lのネオ中物の合計も0.2%l、−4ろたず99.8
%以上の純度であっン1(−〇 反応器の残r易rr・団出し微粒化させて(区画させた
のりその粒を(+?(粉砕する。これ全300℃でI’
+llL化水素ガスと反応、54七、イ1)られたガス
を’41’i (Mf塔で処」;11する。残渣中の1
1−素は6%であり、これをシャフト炉に保゛榎する。
1.J. , is rslj,
The obtained dielectric mass was 0. () 1 in 4 sections; 1 aluminum, ・
The total of 1 neonakamono is also 0.2% 1, -4 Rotazu 99.8
With a purity of 1% or higher, the residue from the reactor was aggregated and atomized (divided into particles).
React with +llL hydrogen hydride gas, 547, 1) The resulting gas is treated with '41'i (Mf tower)'; 11. 1 in the residue
1-element is 6%, which is stored in a shaft furnace.

この処理の前【4・における利用珪系に対し約60%の
収率でトリクロルシランを、約15%の収率で四塩化珪
素が11IらJした残流はそのままシャフト炉に装入す
ることにより残った珪素も兄全に利用される。
Before this treatment, the residual streams, in which trichlorosilane was produced at a yield of about 60% and silicon tetrachloride was produced at a yield of about 15%, were charged into the shaft furnace as they were based on the silicon system used in [4. The silicon left over from this process is also used by the older brother.

実施例の説明の理衿工をたすけるため211j3トIに
実施例1をフローシートの形で示し/こ。内容tま既述
To assist in explaining the embodiment, Example 1 is presented in the form of a flow sheet in Section 211j3. The contents have already been described.

のとおpであるが、フローシートによって(伺が完全に
循環すること、および珪石、還元用炭素粉、石炭を原料
として珪素が得られることり−(に塩化水素を補助原料
としてトリクロルシラン、四塩化珪素が1!lられるこ
とか分る。ミた原料の石炭からシーYフト炉に至るー」
:ではいわば石炭ガス化炉の役割を呆すことも分る。
However, according to the flow sheet, it is possible to obtain silicon using silica stone, reducing carbon powder, and coal as raw materials. I know that silicon is reduced by 1!L.From the raw material coal to the thief furnace.''
:Then, I understand that you are disappointed in the role of coal gasifiers, so to speak.

実施例2 鉄合金の処理例 実み山側1と同一の処理工程で、但し珪石、オイルコー
クス、30%フェロシリコy粉6= I : 0.37
:1.08の比率で混合した内核タブレッl”(r有す
る32.5mmφ×3 ’l、 5 mm の+21 
n−4のタブレットk $43’+:t L、これtコ
ークス化する。更にこのタブレソ)’ttiil記シャ
フト炉に入れ約50係sti’=む鉄合金全2221(
g/hのにイ!」合で生成する。
Example 2 Iron alloy treatment example The same treatment steps as in 1, except that silica stone, oil coke, and 30% ferrosilico y powder 6 = I: 0.37
: Inner core tablet l'' (r with 32.5 mmφ x 3'l, 5 mm +21
n-4 tablet k $43'+: t L, make this t coke. Furthermore, this iron alloy was put into a shaft furnace for about 50 min.
g/h no nii! ”.

得られた合金45or<yw第1図の保熱炉6に入れ、
1時間かけて1定量の割合で流下さぜた。充填塔は繰り
返し使用により十分余熱を保イ1している0史に灰地、
’t’、、’r 1も1)1」回処理のfry 113
tの半1]1: (約160に9)がIb’ (i3さ
jL テイル。1400 ’CVC保k した浴湯に+
tgt火物1伎シンス22から四塩化珪素が1、73 
t/hの、)jllイ1でIJ()訂され浴中の珪夕)
、と反j心し二塩化珪素を生1〕、充填塔2で純化され
セ1出器4中に比集を析出−jる。しかしなかもこのノ
、7第合イH)られる珪素の純11L?よ7“Il、゛
、く94係イM度でりった。
The obtained alloy 45or<yw was placed in the heat retention furnace 6 shown in FIG.
It was allowed to flow down at a rate of 1 fixed amount over 1 hour. The packed tower retains sufficient residual heat through repeated use.
't',,'r 1 also 1) 1'' processing fry 113
t's half 1] 1: (approximately 160 to 9) is Ib' (i3 sajL tail. 1400 'CVC maintained +
Silicon tetrachloride from tgt fireworks 1.22 to 1.73
t/h,)jlli1 in IJ()revised Keiyu in the bath)
, to produce silicon dichloride (1), purified in a packed column (2), and precipitated as a fraction in a separator (4). However, this is the pure 11L of silicon that can be combined with the 7th one? 7 "Il, ゛, Ku 94 I got M degree.

そこで8jj2図の二次、1vl!化塔ケ用い、ユB内
にJ l5G2312金属1)喪(41号を元部!して
る・く。これ全光’l1142と析出益4の間に設置し
予熱コイル43′で7トノ工350℃&(l呆りでコー
]′L葡運1iバした。このよう(tQして5i99.
8%以上、F60.08 %以下の珪i’1126Ky
/hの;刊合でイυることができた。
Therefore, the secondary of 8jj2 figure, 1vl! Using the conversion tower, install Jl5G2312 metal 1) mourning (No. 41) in YuB.This is installed between Zenko'l1142 and Precipitate gain 4, and preheating coil 43' is used for 7 tonneau work 350. ℃&(l in shock) 'L grape luck 1i bar. Like this (tQ and 5i99.
Silicon i'1126Ky of 8% or more and F60.08% or less
/h's ;I was able to do it in the publication.

このとき反Liバ1ン1からQま3201<7/hの、
’411合で51つ30襲SIを3゛むフェロシリコン
が副生ずるが、これは粒状化さぜながら&ig固さぜ、
イ、) c)ノLグこものは粉砕して循環する。
At this time, from anti-Li ban 1 to Q 3201<7/h,
In the '411 process, ferrosilicon with 51 and 30 SI is produced as a by-product, but this becomes granular and hard.
b,) c) No Lg Komono is crushed and circulated.

以上2つの丈力山例によって述べたように、本発明はシ
ャフト炉を利用して熱効率よく中間γ6度の珪素とi:
’!1 %ニッケル、鉄等との合金rつくり、これから
珪素全抽出し純度のよい珪素をイ1ようとするものであ
る。
As described above with the above two examples, the present invention utilizes a shaft furnace to thermally efficiently process silicon with an intermediate γ of 6 degrees and i:
'! The idea is to create an alloy with 1% nickel, iron, etc., and extract all the silicon from it to obtain highly pure silicon.

本発明ではシャフト炉で多量の石炭またはコークスを使
用し、純化過柱で若干の電力を用いて加熱し珪素を分け
とっている。実施例1,2から大型装置で本発明を実施
した場合は珪素1tをイするために石炭6.5〜8t、
in素3000〜350ONm3および8’k ’A用
電力約5000 kvVh を使用し一方一酸化炭素7
90ONm3およびコークス炉ガスを回収することがで
きる。これらはいづれも燃料として用いうるほか一酸化
炭素はかなり純度が高いので化学会成原料として利用で
きる。このようなプロセスと現在の電気炉法とを比較し
た場合、イl−I央は必ずしも一概にはきめかねるが、
・概ね次のような利点を有する。
In the present invention, a large amount of coal or coke is used in a shaft furnace, and silicon is separated by heating with a small amount of electric power in a purifying column. From Examples 1 and 2, when the present invention is carried out using a large-scale device, 6.5 to 8 tons of coal are used to produce 1 ton of silicon.
using a power of about 5000 kvVh for 3000 to 350 ON m3 and 8'k'A, while carbon monoxide 7
90 ONm3 and coke oven gas can be recovered. All of these can be used as fuel, and carbon monoxide has a fairly high purity, so it can be used as a raw material for chemical synthesis. When comparing such a process with the current electric furnace method, it is not necessarily possible to make a general conclusion;
・It generally has the following advantages.

(1)使用電力は少なく熱源を石炭又はコークスで代替
しシャフト炉は石炭ガス化炉的な性格分有し高酸度高純
1■の一酸化炭素が回収できる。
(1) Electricity consumption is low, the heat source is replaced with coal or coke, and the shaft furnace has the characteristics of a coal gasifier, and can recover 1 quart of highly acidic and highly pure carbon monoxide.

(2) 使用する合金材を循環使用することによって究
局的にシャフト炉で還元される珪素の全量ヲ利用できる
(2) By recycling the alloy material used, the entire amount of silicon that is ultimately reduced in the shaft furnace can be utilized.

(3)生成する珪素純度は実施例1,2にみるように荀
製段階を強化することによって変わるが、一般的にはJ
IS規格の金属珪素よシかなり純度のよいものがイ8ら
れ′電子材オ・1との中間IRF’&のもの寸でイ4ら
れる。
(3) The purity of the silicon produced varies by strengthening the grain production step as shown in Examples 1 and 2, but in general, J
A material with considerably higher purity than IS standard metal silicon is used, and the size of the intermediate IRF between the electronic material and the electronic material is measured.

(4)二塩化珪素生成のための炉は4111造上、1j
−(周波または高周波で’ilj、気的に入力するのが
好ましいが純珪素でなく、割、ニッケル、鉄との合金で
あシ、j7+電性がよいため入力が・d易である。
(4) The furnace for producing silicon dichloride is built in 4111, 1j
-(It is preferable to input it electrically with frequency or high frequency, but it is not pure silicon but an alloy of silicon, nickel, and iron, and it has good j7+ electric property, so it is easy to input.

(5)二塩化珪素全分取したあとの合金(は、珪素を高
めに抑えた1ん)合は粉砕されやすくシャフト炉への循
環が゛1子易である。
(5) An alloy after all silicon dichloride has been separated (or one with a high silicon content) is easily crushed and recycled to the shaft furnace.

(6) このため鉄は安価なのでともかくとしても1.
111111ニツケルのようにやや’1V7J価な金属
ヲ用いてもほとんどロスろ、しで請環できる。
(6) For this reason, iron is cheap, so anyway, 1.
Even if you use a metal like 111111 nickel, which has a valence of 1V7J, it can be recycled with almost no loss.

以上の213点でもみられるように本発明i、J:媒体
金属として銅、:b”2、ニッケルを使用していること
が基本的なプロセスの特徴を形成している。
As can be seen in the above 213 points, the basic process characteristics of the present invention i and J are that copper, b"2, and nickel are used as the medium metal.

二塩化珪素5IC12の四塩化珪素5ICt4と珪素8
1への複分解反応は知られているが本発明tよ俗媒とす
る金属をシャフト炉を介して循環し、熱効率のよいシャ
フトによシ珪緊分を還元できることにl1徴がある。ま
た溶湯浴中で反応させたあと、よシ珪素濃度の高い餅湯
による純化工程により珪素純度を島める方法を提供して
いる。
Silicon dichloride 5IC12, silicon tetrachloride 5ICt4 and silicon 8
Although the metathesis reaction to 1 is known, the present invention is unique in that the metal as a medium can be circulated through a shaft furnace and the silica fraction can be reduced through the shaft with good thermal efficiency. The company also provides a method of reducing silicon purity by performing a reaction in a molten metal bath and then using a purification process using mochito (mochito) with a high silicon concentration.

なお本発明を利用する上でもっとも有利なのは銅を用い
る方法でを)る。銅を用いるときは実施例1.2の対比
でもわかるように容易に純度を高めイ!)、更に珪素2
0 % 7+、+度の銅合金は極めて容易に粉砕でき、
合金のり、 Hill性ももっともよく珪素含有612
0%以下の合金からもトリクロルシランを収率高く回収
できるく今一の利点があるからである。
Note that the most advantageous method for utilizing the present invention is a method using copper. When using copper, the purity can be easily increased as seen in the comparison of Examples 1 and 2! ), and further silicon 2
0% 7+, + grade copper alloys are extremely easy to crush;
Alloy paste, silicon-containing 612 with the best hill properties
This is because it has the greatest advantage of being able to recover trichlorosilane at a high yield even from alloys containing 0% or less.

但し鉄、ニック′ルを用いるときは合金中の珪素濃度を
高めつる利点がありこれら二金属を主成分とした珪素合
金に、第三の合金元素を併用して本発明の利点を更に拡
張できる余地があることは容易に想到できよう。
However, when iron or nickel is used, it has the advantage of increasing the silicon concentration in the alloy, and the advantages of the present invention can be further expanded by using a third alloying element in combination with a silicon alloy mainly composed of these two metals. It is easy to imagine that there is room.

本発明においで、本文で銅合金の場合で述べたように単
一の溶湯音用いると純度の高い珪素を回収できる反応器
の合金溶湯の珪素濃度は極めて限られてしまい、純珪ス
4の収率は著るしく低下す−ることになる。それ故より
珪素濃度の高い合金と接触させることは必然的な要請で
あるが例えば既述した実施例1ではシャフト炉から得ら
れた溶湯と向流的に接触させることによって他の合金、
珪素原料を用いずに解決している。これによって反応R
:(1は反応により珪素を失ない珪素M’L度の低1ニ
ジた溶湯を甲に使い続けて収率を高め得る訳である。
In the present invention, as described in the case of copper alloy in the main text, if a single molten metal sound is used, the silicon concentration of the alloy molten metal in the reactor from which highly pure silicon can be recovered is extremely limited, and pure silicon 4. The yield will drop significantly. Therefore, it is an inevitable requirement to bring the alloy into contact with an alloy having a higher silicon concentration.
This problem was solved without using silicon raw materials. This allows the reaction R
:(1) The yield can be increased by continuing to use a molten metal with a low silicon M'L degree that does not lose silicon through the reaction.

また実施例1,2とも向流式反応卦を用いる例を示した
がパッチの溶湯溜を数段用い、純度のよりよい合金溶湯
を逐次低純度の段階に切りかえてゆくような方法も当然
ながら本発明のlil、 #に属するものである。実施
例2の様に別途の純化用原料を用いるとき、その使用量
はイnられる純珪累よりずっと少ないことは当然である
In addition, both Examples 1 and 2 show an example of using a countercurrent reaction system, but it is also natural to use a method in which a patch molten metal reservoir is used in several stages, and the molten alloy with higher purity is sequentially switched to the lower purity stage. It belongs to lil and # of the present invention. When a separate raw material for purification is used as in Example 2, it is natural that the amount used is much smaller than the amount of pure silicon that is injected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するのに用いる装嵌の一例を示す
説1明図である。図中の1は反応器、2は充填塔、3は
保持炉、4は析出器を示す。 第2図は二次純化塔の説明図であり、21i; 3図は
実施例1をフローシートの形で示したもので、本発明の
内容を典型的に示した図である。
FIG. 1 is a first explanatory diagram showing an example of a fitting used to carry out the present invention. In the figure, 1 is a reactor, 2 is a packed column, 3 is a holding furnace, and 4 is a precipitator. FIG. 2 is an explanatory diagram of the secondary purification column, and FIG. 21i; FIG. 3 shows Example 1 in the form of a flow sheet, and is a diagram typically showing the contents of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 銅、ニッケルまたは鉄のいずれかを主成分とする珪素合
金をシャフト炉を用いて製造し、前記珪素合金の溶融浴
中に四塩化珪素ガスを通じ、発生するガスを該合金浴よ
り珪素含有量が高い珪素又は珪素合金と1回又は数回接
触させて純化し、次いでこの純化ガスを冷却して純度の
よい珪素を製造し、一方残渣の銅、ニッケルまたは鉄の
いずれかを主成分とする合金は冷却後もしくは更に珪素
を除去したのちシャフト炉の装入原料として循環するこ
とを特徴とする珪素の製造方法。
A silicon alloy containing copper, nickel, or iron as a main component is manufactured using a shaft furnace, and silicon tetrachloride gas is passed into the molten bath of the silicon alloy, and the generated gas is removed from the alloy bath to reduce the silicon content. The purified gas is purified by contacting it once or several times with high silicon or a silicon alloy, and then the purified gas is cooled to produce high purity silicon, while the residual alloy is mainly composed of either copper, nickel or iron. A method for producing silicon, which is characterized in that the silicon is recycled as a charging material in a shaft furnace after cooling or after silicon is further removed.
JP21152083A 1983-11-10 1983-11-10 Manufacture of silicon Pending JPS60103015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21152083A JPS60103015A (en) 1983-11-10 1983-11-10 Manufacture of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21152083A JPS60103015A (en) 1983-11-10 1983-11-10 Manufacture of silicon

Publications (1)

Publication Number Publication Date
JPS60103015A true JPS60103015A (en) 1985-06-07

Family

ID=16607265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21152083A Pending JPS60103015A (en) 1983-11-10 1983-11-10 Manufacture of silicon

Country Status (1)

Country Link
JP (1) JPS60103015A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532316A (en) * 2006-04-04 2009-09-10 6エヌ シリコン インク. Silicon purification method
US8580218B2 (en) 2009-08-21 2013-11-12 Silicor Materials Inc. Method of purifying silicon utilizing cascading process
US8801855B2 (en) 2007-10-03 2014-08-12 Silicor Materials Inc. Method for processing silicon powder to obtain silicon crystals
JP2017507881A (en) * 2014-01-23 2017-03-23 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Method for surface modification of metal silicide, method and apparatus for manufacturing silane trichloride using surface-modified metal silicide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532316A (en) * 2006-04-04 2009-09-10 6エヌ シリコン インク. Silicon purification method
US8801855B2 (en) 2007-10-03 2014-08-12 Silicor Materials Inc. Method for processing silicon powder to obtain silicon crystals
US8580218B2 (en) 2009-08-21 2013-11-12 Silicor Materials Inc. Method of purifying silicon utilizing cascading process
JP2017507881A (en) * 2014-01-23 2017-03-23 コリア リサーチ インスティテュート オブ ケミカル テクノロジー Method for surface modification of metal silicide, method and apparatus for manufacturing silane trichloride using surface-modified metal silicide

Similar Documents

Publication Publication Date Title
US3215522A (en) Silicon metal production
US2974032A (en) Reduction of alumina
Tangstad Ferrosilicon and silicon technology
CA1094329A (en) Method of carbothermically producing aluminum-silicon alloys
US4388107A (en) Minimum-energy process for carbothermic reduction of alumina
EP0126810A1 (en) Process for carbothermic reduction of alumina
CA1150518A (en) Recovering non-volatile metals from dust containing metal oxides
US4148628A (en) Process of producing metallic chromium
US4897852A (en) Silicon smelting process
CN109055781A (en) A method of titanium products are prepared using ferrotianium grandidierite as raw material
US4526612A (en) Method of manufacturing ferrosilicon
US4533386A (en) Process for producing aluminum
CA1189478A (en) Manufacture of aluminium-silicon alloys
JPS60103015A (en) Manufacture of silicon
US4997474A (en) Silicon smelting process
Tangstad Handbook of Ferroalloys: Chapter 6. Ferrosilicon and Silicon Technology
US4061492A (en) Method of ore reduction with an arc heater
US4394167A (en) Method of carbothermically producing aluminum
US3918959A (en) Process for production of magnesium
US4898712A (en) Two-stage ferrosilicon smelting process
AU616181B2 (en) A method and apparatus for continuously producing liquid silicon from carbon and silica
CN115011817B (en) Titanium carbide production equipment and method
SU1333229A3 (en) Method of producing silicon
US3179514A (en) Upgrading primary manganese matte
Mukashev et al. Development of a technology of silicon production by recycling phosphorous industry wastes