JPS6010258B2 - Electrochemical bioassay method - Google Patents

Electrochemical bioassay method

Info

Publication number
JPS6010258B2
JPS6010258B2 JP52034655A JP3465577A JPS6010258B2 JP S6010258 B2 JPS6010258 B2 JP S6010258B2 JP 52034655 A JP52034655 A JP 52034655A JP 3465577 A JP3465577 A JP 3465577A JP S6010258 B2 JPS6010258 B2 JP S6010258B2
Authority
JP
Japan
Prior art keywords
vitamins
current value
amino acids
specific
antibiotics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52034655A
Other languages
Japanese (ja)
Other versions
JPS53120594A (en
Inventor
周一 鈴木
征夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP52034655A priority Critical patent/JPS6010258B2/en
Publication of JPS53120594A publication Critical patent/JPS53120594A/en
Publication of JPS6010258B2 publication Critical patent/JPS6010258B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は電気化学的手段によって迅速かつ簡単にバイオ
アッセィを行なう方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for performing bioassays quickly and simply by electrochemical means.

従来アミノ酸やビタミンの分析法としては特定のビタミ
ンまたはアミノ酸が存在しないと生育2できない微生物
を用いて試料中のビタミンやアミノ酸を分析するバイオ
アッセィ方法が行なわれている。またある種の抗生物質
が存在すると生育できない抗生物質感受性微生物を用い
る抗生物質のバイオアツセィ法などが広く行なわれてき
た。こ2の方法はこれら特定のアミノ酸、ビタミン、抗
生物質を含む試料液と測定対象になるビタミン、アミノ
酸、抗生物質を除き微生物の生育に必要なすべての栄養
を含む完全合成培地とを含む液に上記微生物を楯菌し一
定時間培養後、‘ィー微生物の生育を濁度で測定するか
、{口}微生物の代謝する有機酸を瓶定又はpHで測定
するか、し一抗生物質による微生物の生育阻害をペーパ
ーデスク法あるいはカップ法で測定する。あらかじめ既
知量のアミノ酸、ビタミン、抗生物質を用い同様の方法
で作成した検量線により試料中の特定のアミノ酸、ビタ
ミン、抗生物質などの量を測定する方法である。しかし
、この方法は{ィ)の濁度法、し一のペーパーデスク法
あるいはカップ法では最低1日、‘o)の方法では約3
日の培養が必要であり、‘ィ}の方法では着色試料やに
ごつた試料の測定が困難であった。本発明は上述したよ
うな公知のバイオアツセイ法にみられる諸欠点を伴なわ
ない電気化学的なバイオアッセィ法に関するもので本発
明により種々のアミノ酸、ビタミン、抗生物質などを数
時間という短時間で測定でき、着色試料やにごつた試料
の測定が可能になった。本発明は上述した研究結果に基
いて完成されたものであって、前記特許請求の範囲に記
載される事項から構成される。
Conventional methods for analyzing amino acids and vitamins include bioassay methods in which vitamins and amino acids in samples are analyzed using microorganisms that cannot grow in the absence of specific vitamins or amino acids. Furthermore, antibiotic bioassay methods using antibiotic-sensitive microorganisms that cannot grow in the presence of certain antibiotics have been widely used. This second method uses a solution containing a sample solution containing these specific amino acids, vitamins, and antibiotics, and a completely synthetic medium containing all nutrients necessary for the growth of microorganisms except for the vitamins, amino acids, and antibiotics to be measured. After the above microorganisms are shielded and cultured for a certain period of time, the growth of the microorganisms is measured by turbidity, or the organic acids metabolized by the microorganisms are measured in a bottle or by pH. Growth inhibition is measured using the paper desk method or cup method. This is a method of measuring the amount of a specific amino acid, vitamin, antibiotic, etc. in a sample using a calibration curve created in a similar manner using known amounts of amino acids, vitamins, and antibiotics. However, this method takes at least 1 day for the turbidity method (a), Shiichi's paper desk method or cup method, and about 3 days for the method 'o).
This method requires incubation for several days, and it was difficult to measure colored or cloudy samples using the method described in 'I'. The present invention relates to an electrochemical bioassay method that does not have the drawbacks of the known bioassay methods as described above.The present invention allows various amino acids, vitamins, antibiotics, etc. to be measured in a short period of time, such as a few hours. It is now possible to measure colored and cloudy samples. The present invention was completed based on the above-mentioned research results, and is comprised of the matters described in the claims.

以下本発明を詳しく説明する。本発明において用いられ
る電池とは一種の燃料電池の原理に基づくもので第1図
に示したような装置を用いる。
The present invention will be explained in detail below. The battery used in the present invention is based on the principle of a kind of fuel cell, and a device as shown in FIG. 1 is used.

第1図において1は白金板陰極(1肌x5肌)、2は過
酸化銀陽極(1肌×4肌)、3はアニオン交換膜(3の
)、4は陰極液(微生物培養液50の‘)、5は陽極液
(0.1Mリン酸緩衝液、pH7.2)6は電流計、7
は記録計である。陰極液中の微生物は培地中の成分を基
質として露極活物質であるギ酸などを生成し、これが陰
極である白金上で電極反応し、電極上で酸化され、電子
を放出する。陽極では過酸化銀がこの電子を受けとり還
元され酸化銀になりさらに銀になることにより電流が流
れる。陽極の過酸化銀は充分に存在するため電流量は陰
極側の雷極活物質であるギ酸の濃度に依存する。ビタミ
ンやアミノ酸の分析の場合、霞極活物質の生成量を特定
のビタミンまたはアミノ酸量の間には直線関係が或る濃
度範囲では成立するため測定が可能である。また抗生物
質の場合試料液中の抗生物質量の増加とともに微生物の
増殖がおさえられるので代謝される電極活物質量が減少
する。したがって電極活物質生成量と抗生物質濃度の間
に或る濃度範囲で直線関係が成立する。なおこの装置に
用いる陽極としては過酸化銀以外に酸化鉛、塩化銀、酸
化マンガン、炭素などの通常の電池の陽極材料の使用が
可能である。本発明において微生物は公知のある種のビ
タミン、アミノ酸を要求する菌株や抗生物質に敏感な菌
株が用いられる。
In Figure 1, 1 is a platinum plate cathode (1 skin x 5 skins), 2 is a silver peroxide anode (1 skin x 4 skins), 3 is an anion exchange membrane (3 skins), and 4 is a catholyte (microbial culture solution 50 skins). ), 5 is anolyte (0.1M phosphate buffer, pH 7.2) 6 is ammeter, 7 is
is a recorder. Microorganisms in the catholyte use the components in the medium as substrates to produce formic acid, which is an active material for the exposed electrode, and this reacts on the platinum cathode, where it is oxidized and releases electrons. At the anode, silver peroxide receives these electrons and is reduced to silver oxide, which then becomes silver, which causes a current to flow. Since there is sufficient silver peroxide at the anode, the amount of current depends on the concentration of formic acid, which is the lightning electrode active material, at the cathode side. In the case of analysis of vitamins and amino acids, it is possible to measure the amount of haze electrode active material produced because a linear relationship exists between the amounts of specific vitamins or amino acids within a certain concentration range. Furthermore, in the case of antibiotics, as the amount of antibiotics in the sample solution increases, the growth of microorganisms is suppressed, so the amount of electrode active material metabolized decreases. Therefore, a linear relationship is established between the amount of electrode active material produced and the antibiotic concentration within a certain concentration range. In addition to silver peroxide, ordinary battery anode materials such as lead oxide, silver chloride, manganese oxide, and carbon can be used as the anode used in this device. In the present invention, known microorganisms that require certain vitamins and amino acids and strains that are sensitive to antibiotics are used.

これらの微生物を一定時間培養後、集菌しpHを調整し
た緩衝液を用いて洗浄し再び集菌する。この操作をもう
一度繰り返した後、培養液の1M音濃度の菌体懸濁液を
楯菌用菌体として用いる。培地は測定対象となるビタミ
ン、アミノ酸、抗生物質を除いた公知の完全合成培地が
用いられる。これらの培地中には他のビタミンまたはア
ミノ酸を炭素源として糖や種々の無機塩が含まれている
。検量線の作成は一定の量のビタミン、アミノ酸、抗生
物質を含む培地に、上述したように調製した菌体の懸濁
液50山そを楯菌し一定時間培養後、その培養液を第1
図に示した陰極室に入れ、電流が一定になったところで
電流値を測定し、ビタミン、アミノ酸、抗生物質濃度と
電流値の関係から検量線を作成した。
After culturing these microorganisms for a certain period of time, they are collected, washed with a pH-adjusted buffer, and collected again. After repeating this operation once more, a bacterial cell suspension of the culture solution with a sonic concentration of 1M is used as bacterial cells for shield bacteria. A known complete synthetic medium excluding the vitamins, amino acids, and antibiotics to be measured is used as the medium. These media contain sugars and various inorganic salts using other vitamins or amino acids as carbon sources. To create a calibration curve, 50 pieces of the suspension of bacterial cells prepared as described above are plated on a medium containing a certain amount of vitamins, amino acids, and antibiotics, and after culturing for a certain period of time, the culture solution is incubated with the first incubator.
The device was placed in the cathode chamber shown in the figure, and the current value was measured when the current became constant, and a calibration curve was created from the relationship between the vitamin, amino acid, and antibiotic concentrations and the current value.

この関係はある一定の濃度の範囲においては直線関係に
なる。(第2図参照)試料の測定は試料液と培地の2倍
液等量混合液を検量線作製時と同じ要領で菌体を楯菌し
一定時間培養した後陰極室に入れ電流を測定し、この電
流値からあらかじめ作製した検量線により未知の試料中
のビタミン、アミノ酸、抗生物質の濃度を求めた。
This relationship becomes a linear relationship within a certain concentration range. (See Figure 2) To measure the sample, use the same method as when preparing the calibration curve to shield the bacteria from a mixture of twice the sample solution and the culture medium, incubate it for a certain period of time, and then place it in the cathode chamber and measure the current. From this current value, the concentrations of vitamins, amino acids, and antibiotics in the unknown sample were determined using a calibration curve prepared in advance.

本発明は直接微生物の生成する露極活物質を電流に変換
するために、従来の濁度法などに比べ大量に楯菌するこ
とが可能になった。
Since the present invention directly converts the open electrode active material produced by microorganisms into an electric current, it has become possible to shield a large amount of bacteria compared to conventional turbidity methods.

しかし、この際、菌体に付着しているビタミン、アミノ
酸はよく洗浄することにより除いてやることが必要であ
る。とくに洗浄後、測定すべきビタミンやアミノ酸を含
まない靖地で菌体を数時間培養してやれば完全にそれら
を取り除くことが出来る。培養時間は使用する菌体培地
、櫨菌量、培養条件によって異なるが、ビタミン、アミ
ノ酸、抗生物質を含む培地に菌を橘菌し、約6時間後陰
極室に入れると20分以内に定常電流値が得られる。以
上述べたように本発明は従来のバイオアッセィ法に較べ
短時間に手軽な操作でビタミン、アミノ酸、抗生物質な
どを測定する方法である。
However, at this time, it is necessary to remove vitamins and amino acids adhering to the bacterial cells by thorough washing. In particular, after washing, culturing the bacterial cells for several hours in a vacuum that does not contain the vitamins and amino acids to be measured can completely remove them. Cultivation time varies depending on the bacterial culture medium used, the amount of bacteria, and culture conditions, but if the bacteria are grown in a medium containing vitamins, amino acids, and antibiotics, and placed in the cathode chamber after about 6 hours, a steady current will be generated within 20 minutes. value is obtained. As described above, the present invention is a method for measuring vitamins, amino acids, antibiotics, etc. in a shorter time and with easier operations than conventional bioassay methods.

次に実施例を示す。実施例 1 ビタミンB,要求性の乳酸菌ラクトバチリス・フアメン
ティATCC9338を常法により培養後、袋菌し、p
H6.98、0.1Mリン酸緩衝液により2回洗浄して
再び集菌し、培養液と同量の、pH6.98、0.1M
のリン酸緩衝液に懸濁させる。
Next, examples will be shown. Example 1 Vitamin B-requiring lactic acid bacterium Lactobacillus famentii ATCC9338 was cultured in a conventional manner, and then bagged and p.
Wash twice with H6.98, 0.1M phosphate buffer, collect the bacteria again, and add the same amount of culture solution, pH6.98, 0.1M.
Suspend in phosphate buffer.

次に滅菌した市販のビタミンB,、定量用基礎塔地(宝
興産社製)液と検量線作成用に0から100my′の‘
のビタミンB,を溶かした標準液あるいは未知量のビタ
ミンB,を含む試料液をそれぞれ2の‘づつ試験管中で
混合し、それぞれに前もって調製した乳酸菌懸濁液を5
0の‘づつ楯菌し、6時間培養後、第1図に示した陰極
室にそれぞれの標準液試料液を入れ、電流値を測定した
結果標準液中のビタミンBの濃度と電流値間に表1に示
すような関係が得られた。
Next, we used sterilized commercially available vitamin B solution for quantitative determination (manufactured by Takarakosan Co., Ltd.) and 0 to 100 my' for preparing a calibration curve.
A standard solution containing vitamin B, or a sample solution containing an unknown amount of vitamin B, was mixed in a test tube.
After incubating for 6 hours, each standard solution sample solution was placed in the cathode chamber shown in Figure 1, and the current value was measured. As a result, there was a difference between the concentration of vitamin B in the standard solution and the current value. The relationships shown in Table 1 were obtained.

この表1に示された濃度と電流値から、第2図図示の検
量線が得られた。
From the concentrations and current values shown in Table 1, the calibration curve shown in FIG. 2 was obtained.

この検量線から未知試料液中のビタミンBの濃度が求め
られた。
The concentration of vitamin B in the unknown sample solution was determined from this calibration curve.

この結果は従来のバイオアッセィ法で求められた結果と
比較すると±5%以内の誤差範囲で一致した。表1実施
例 2 実施例1で示した方法と同様の方法でグルタミン酸の定
量を行った。
When compared with the results obtained by conventional bioassay methods, this result agreed within an error range of ±5%. Table 1 Example 2 Glutamic acid was determined in the same manner as in Example 1.

グルタミン酸要求性の乳酸菌としてはラクトバチリス‘
メセントロイデスATCC8042を用いた。上記実施
例1と同様な操作でグルタミン酸を定量した結果、測定
までの培養時間は9時間で定量範囲は0〜20夕/叫で
あった。また、未知試料中のグルタミン酸の濃度をこの
方法で求めた結果、従釆のバイオアッセィ法で求めた結
果と±4%以内の誤差範囲で一致した。実施例 3実施
例1で示した方法と同様の方法でコリンの定量を行った
Lactobacillus is a lactic acid bacterium that requires glutamate.
Mescentroides ATCC8042 was used. As a result of quantifying glutamic acid in the same manner as in Example 1, the culture time until measurement was 9 hours, and the quantification range was 0 to 20 days/day. Furthermore, the results of determining the concentration of glutamic acid in the unknown sample using this method agreed with the results determined using the related bioassay method within an error range of ±4%. Example 3 Choline was determined in the same manner as in Example 1.

コリン要求性の菌株としては赤パンカビと一般に呼ばれ
るニュウロスポラ・クラスタATCC9277を用いた
。コリン定量の場合は使用菌株がカビであるため上記の
実施例1、2と比べ長い培養時間を必要とし、測定まで
3斑時間かかった。定量範囲は0〜1夕/私であった。
この方法で未知試料中のコリンの濃度を求めた結果を従
来のバイオアツセイ法で求めた結果と比較するとき8%
以内の誤差範囲で一致した。実施例 4 ペニシリン感受性菌のスタピロコッカス・アウレゥスA
TCC65$花を常法により培養後、集菌し、PH7.
2、0.09Mリン酸緩衝液により2回洗浄して再び集
菌し、培養液と同量の軸7.2、0.08Mリン酸緩衝
液に懸濁させる。
Neurospora cluster ATCC 9277, commonly called red bread mold, was used as the choline-requiring bacterial strain. In the case of choline quantification, since the bacterial strain used was a mold, a longer culture time was required than in Examples 1 and 2, and it took three hours to complete the measurement. The quantitative range was 0 to 1 night/me.
When comparing the result of determining the concentration of choline in an unknown sample using this method with the result determined using the conventional bioassay method, it is 8%
They agreed within the error range. Example 4 Stapirococcus aureus A, a penicillin-susceptible bacterium
After culturing TCC65$ flowers in a conventional manner, the bacteria were collected and the pH was adjusted to 7.
2. Wash twice with 0.09M phosphate buffer to collect the bacteria again, and suspend in 7.2, 0.08M phosphate buffer in the same volume as the culture solution.

次にペニシリンGO.01〜10単位/泌を含む5泌の
試料液を試験管にとり、上記スタピロコッカス・アウレ
ウス懸濁液をそれぞれ50ムぐずつ棺菌し、10時間培
養し、第1図に示した陰極室に入れ定常電流値を測定し
た結果、表2に示すように試料液中のペニシリンG濃度
0.01〜2単位/の【でペニシリン濃度と電流値の間
に比例関係があり、試料液中のペニシリンG濃度の増加
とともに電流値は減少した。この関係を用いて未知試料
液中のペニシリンG濃度が容易に測定できることが示さ
れた。表2
Next, penicillin GO. Take 5 sample solutions containing 0.01 to 10 units/secretion into test tubes, inoculate 50 mg of each of the above Stapirococcus aureus suspensions, culture for 10 hours, and place in the cathode chamber shown in Figure 1. As a result of measuring the steady current value in the sample solution, as shown in Table 2, there is a proportional relationship between the penicillin concentration and the current value at the penicillin G concentration in the sample solution of 0.01 to 2 units/. The current value decreased with increasing penicillin G concentration. It was shown that the concentration of penicillin G in an unknown sample solution can be easily measured using this relationship. Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するのに通した装置の一例
を示す概略図である。 第2図は本発明に於ける検量線の一実施例を示した線図
である。第1図第2図
FIG. 1 is a schematic diagram illustrating an example of an apparatus through which the method of the invention may be carried out. FIG. 2 is a diagram showing an example of a calibration curve in the present invention. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 アミノ酸、ビタミン、抗生物質などの特定物質の定
量測定方法であって、 特定物質を要求するか特定物質
に感受性の微生物を、該特定物質を含有しない培地に、
該特定物質含有試料を加えて一定時間培養し、生成した
電極活物質の量を、陰極板及び陽極板で構成される電池
で電流値として求め、 これとは別途に、該特定物質含
有量が既知の試料について上記と同様にして求めた該特
定物質濃度と電流値の関係を示す検量線を作成しておき
、 前記の測定すべき試料中の該特定物質による前記電
流値から前記検知線により特定物質を定量することを特
徴とする電気化学的バイオアツセイ法。
1. A method for quantitatively measuring specific substances such as amino acids, vitamins, and antibiotics, in which microorganisms that require or are sensitive to specific substances are placed in a medium that does not contain the specific substances.
A sample containing the specific substance is added and cultured for a certain period of time, and the amount of the generated electrode active material is determined as a current value in a battery consisting of a cathode plate and an anode plate, and separately, the content of the specific substance is determined. A calibration curve showing the relationship between the concentration of the specific substance and the current value obtained in the same manner as above for a known sample is created, and the current value due to the specific substance in the sample to be measured is calculated based on the detection line. An electrochemical bioassay method characterized by quantifying specific substances.
JP52034655A 1977-03-30 1977-03-30 Electrochemical bioassay method Expired JPS6010258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52034655A JPS6010258B2 (en) 1977-03-30 1977-03-30 Electrochemical bioassay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52034655A JPS6010258B2 (en) 1977-03-30 1977-03-30 Electrochemical bioassay method

Publications (2)

Publication Number Publication Date
JPS53120594A JPS53120594A (en) 1978-10-21
JPS6010258B2 true JPS6010258B2 (en) 1985-03-15

Family

ID=12420445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52034655A Expired JPS6010258B2 (en) 1977-03-30 1977-03-30 Electrochemical bioassay method

Country Status (1)

Country Link
JP (1) JPS6010258B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656552U (en) * 1979-10-06 1981-05-16
AU2010328173B9 (en) * 2009-12-08 2015-07-23 Cambrian Innovation, Inc. Microbially-based sensors for environmental monitoring

Also Published As

Publication number Publication date
JPS53120594A (en) 1978-10-21

Similar Documents

Publication Publication Date Title
Watanabe et al. Determination of hypoxanthine in fish meat with an enzyme sensor
Matsunaga et al. Electrode system for the determination of microbial populations
US4288544A (en) Method and apparatus for measuring microorganism activity
Youmans et al. A method for the determination of the rate of growth of tubercle bacilli by the use of small inocula
GB2131954A (en) Electrochemical method for detection and classification of microbial cells
CN102796660A (en) Detection device for monitoring water quality on line and water quality on-line monitoring method
Hanks Measurement of the hydrogen transfer capacity of mycobacteria
Mattiasson Analytical applications of immobilized cells
US4390620A (en) Method and composition for the detection and study of cellular activity or the like and means for applying such method
Han et al. Voltammetric measurement of microorganism populations
Eyer et al. On‐line estimation of viable cells in a hybridoma culture at various DO levels using ATP balancing and redox potential measurement
GB2059990A (en) Enhancement of the sensitivity of viable microbial cell count by bioluminescent assay of ATP and its use for identification of microbes by means of a short incubation in nutrient media
Hatcher et al. Radiometric analysis of frozen concentrated orange juice for total viable microorganisms
JPS6010258B2 (en) Electrochemical bioassay method
US4532206A (en) β-Streptococcus selective medium
Evans A note on two uses for impedimetry in brewing microbiology
US3843453A (en) Process and composition for use in microbiological quality assurance
Grobler et al. Bacterial electrode for L-arginine
Palenzuela et al. Amperometric screening of bacterial food contamination using a composite modified electrode
Schär et al. Hyphomicrobium bacterial electrode for determination of monomethyl sulfate
Evans A note on the use of conductimetry in brewery microbiological control
TW201226896A (en) Microbe or cell inspection system and method thereof
Karube Possible developments in microbial and other sensors for fermentation control
IRIÉ et al. Preparation of a clean sample of bacterial spores
CA2549658A1 (en) Electrochemical assay for the identification of microorganisms