JPS60100657A - Surface treatment of metal - Google Patents

Surface treatment of metal

Info

Publication number
JPS60100657A
JPS60100657A JP20834383A JP20834383A JPS60100657A JP S60100657 A JPS60100657 A JP S60100657A JP 20834383 A JP20834383 A JP 20834383A JP 20834383 A JP20834383 A JP 20834383A JP S60100657 A JPS60100657 A JP S60100657A
Authority
JP
Japan
Prior art keywords
metal
thermal
sprayed
ceramics
sprayed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20834383A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takeda
竹田 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20834383A priority Critical patent/JPS60100657A/en
Publication of JPS60100657A publication Critical patent/JPS60100657A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To prevent a metal from causing stress corrosion cracking and thermal fatigue cracking by making the surface of the metal clean and rough, spraying a mixture of a metal with ceramics, roughening the surface of the sprayed layer, finish-spraying ceramics, and sealing the pores in the sprayed layer. CONSTITUTION:The surface of a metallic material is made clean and rough by blasting with shot of cast steel, cast iron and alumina or the like. A mixture of a metal such as Ni, Ti, Zr or Co with ceramics such as alumina, zirconia or titania is sprayed on the surface to 0.1-0.5mm. thickness to form a sprayed underlayer. The surface of the underlayer is roughened by leaching the metal from the surface by treatment with a mixed etching soln. consisting of sulfuric acid, hydrofluoric acid and ammonium fluoride. Ceramics such as zirconia or alumina is then sprayed to 0.2-0.5mm. thickness, and the capillaries in the sprayed layer are sealed with synthetic resin, paraffin or the like.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は金属の表面処理法に関し、更に詳しくは、金属
構造部材の腐食応力腐食割れ及び熱疲労き裂発生の防止
並びにそれらに起因する破壊を防止する機能が長期間に
亘り保持可能な金属の表面処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for surface treatment of metals, and more particularly, to a method for preventing corrosion stress corrosion cracking and thermal fatigue cracking in metal structural members, and preventing fractures caused by them. This invention relates to a metal surface treatment method that can maintain a protective function for a long period of time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、各種発電プラント、化学プラント等の構造部材に
おける腐食応力腐食割れ及び熱疲労き裂発生並びにそれ
らに起因する破壊について、その機構の解明及び防止策
に関しては様々な研究が行われている。実用機器の腐食
及び応力腐食割れ発生の要因としては、構造部材のさら
される環境が電気化学的に活性な場合等の環境条件、ま
た機器母材に使用されるロット自身のばらつき、溶接施
工時の熱影響に伴う材料の鋭敏化等の材料条件、さらに
応力腐食割れの場合には成形加工及び溶接に伴う残留応
力もしくは稼動条件に伴う静的、動的応力等の応力条件
が考えられる。これらの要因に対する対策としては、環
境条件を緩和する目的では、腐食抑制剤の添加、−調整
、陰極防食、アルミクラツド材等の使用、不働態化処理
及び環境しゃ断のためのライニング等が、材料要因に対
しては、溶接施工後の溶体化処理、合金成分の調整によ
る材質改善及び材料転換等が、また、応力条件を緩和す
る目的では、応力除去熱処理、成形加工条件の改善及び
設計変更等の検討がなされてきている。また、実用機器
における熱疲労き裂発生及びそれに起因する破壊が起る
のは、一般に金属構造部材が繰り返し湿度変化を受ける
場合、この温度変化に伴う膨張、収縮を繰り返すが、通
常構造部材は周囲を拘束されている場合が多く、このと
き拘束された歪量に相当する熱応力が生じ、これが繰り
返し負荷されて熱疲労の問題が生じるためである。そし
てこの熱疲労が構造部材の疲労限度を越えるとき裂が発
生する。
In recent years, various studies have been conducted to elucidate the mechanism and preventive measures regarding the occurrence of corrosion stress corrosion cracking and thermal fatigue cracking in structural members of various power plants, chemical plants, etc., and the destruction caused by them. Factors that cause corrosion and stress corrosion cracking in practical equipment include environmental conditions such as when the environment to which structural members are exposed is electrochemically active, variations in the lots used for equipment base materials, and welding during welding. Material conditions such as sensitization of the material due to thermal effects, and in the case of stress corrosion cracking, stress conditions such as residual stress associated with forming and welding, or static and dynamic stress associated with operating conditions are considered. Countermeasures against these factors include the addition of corrosion inhibitors, adjustment, cathodic protection, use of aluminum clad materials, passivation treatment, and lining for environmental isolation, etc., in order to alleviate environmental conditions. For the purpose of reducing stress conditions, solutions such as solution treatment after welding, material improvement and material conversion by adjusting alloy components, stress relief heat treatment, improvement of forming processing conditions, and design changes, etc. Considerations have been made. In addition, thermal fatigue cracks and the resulting destruction in practical equipment generally occur when metal structural members are subjected to repeated humidity changes and undergo repeated expansion and contraction due to these temperature changes. This is because thermal stress corresponding to the amount of strain caused by the restraint is generated in many cases, and this is repeatedly loaded, resulting in the problem of thermal fatigue. Cracks occur when this thermal fatigue exceeds the fatigue limit of the structural member.

一方、構造部材には熱応力以外に1一定の設計応力及び
稼動条件に伴う変動応力が通常負荷されている。これら
の応力を、熱応力に対して、外部応力と規定すると、外
部応力は熱応力に比べて構造部材肉厚方向に比較的均一
に作用するため、熱疲労により生じたき裂の先端におけ
る応力集中はき裂長さのほぼ平方根に比例して増大する
。ところで外部応力によってき裂が進展するためにはき
裂先端にある限度以上の応力集中が必要であり、一定レ
ベルの外部応力によりき裂が進展しうる限界のき裂長さ
が存在する。もし熱疲労により発生したき裂の長さがこ
の限界き裂長さよりも大きい場合、このき裂は外部応力
により進展を開始し、長期間の使用の間には最終的に構
造部材板厚を貫通し、破壊に到る。
On the other hand, in addition to thermal stress, structural members are normally loaded with a constant design stress and variable stress depending on operating conditions. If these stresses are defined as external stress in comparison to thermal stress, external stress acts relatively uniformly in the thickness direction of the structural member compared to thermal stress, so stress concentration at the tip of a crack caused by thermal fatigue increases. increases approximately in proportion to the square root of the crack length. Incidentally, in order for a crack to propagate due to external stress, stress concentration exceeding a certain limit is required at the crack tip, and there is a limit crack length at which a crack can propagate due to a certain level of external stress. If the length of a crack that occurs due to thermal fatigue is larger than this critical crack length, this crack will begin to propagate due to external stress and eventually penetrate the structural member plate thickness during long-term use. And it leads to destruction.

上述のような熱疲労によるき裂の発生とそれ属引き続く
外部応力による発生き裂の成長による構造部材の破壊を
防ぐためには、熱疲労による初期き裂の発生を防ぐこと
が重要である。
In order to prevent the occurrence of cracks due to thermal fatigue as described above and the destruction of structural members due to the subsequent growth of cracks caused by external stress, it is important to prevent the initial cracks from occurring due to thermal fatigue.

一般に構造部材が、熱膨張率が小δく同時に熱伝導率が
大きい材料であれば、温度変化に伴う膨張、収縮も小さ
くまた部材白肉厚方向の温度勾配に伴う応力勾配も小さ
いため、耐熱疲労特性に優れる。また靭性の大きい材料
は熱疲労強度が高いとされている。しかしながら各種構
造部材には機械強度、靭性以外に、耐食性及び耐酸化性
等の種々の特性が要求される場合が多く、構造部材の材
料選定を行う場合さらに熱疲労に対する上述の熱膨張率
、熱伝導性の2点を満足する組成の選択はよル限定され
る。
In general, if a structural member is made of a material with a small coefficient of thermal expansion δ and a high thermal conductivity, the expansion and contraction caused by temperature changes will be small, and the stress gradient caused by the temperature gradient in the white wall thickness direction of the member will also be small, resulting in thermal fatigue resistance. Excellent characteristics. Furthermore, materials with high toughness are said to have high thermal fatigue strength. However, in addition to mechanical strength and toughness, various structural members are often required to have various properties such as corrosion resistance and oxidation resistance. The selection of a composition that satisfies the two conductivity requirements is very limited.

しかしながら、今日、各種プラント等の増設、稼動率向
上の要請に伴い、構造部材の環境条件及び使用条件はさ
らに苛酷なものとなっており、構造部材の腐食応力腐食
割れ及び熱疲労き裂発生並びにそれに起因する破壊の問
題は、極めて重要視されている状況にある。
However, today, with the expansion of various plants and demands for improved operating rates, the environmental and usage conditions for structural members have become even more severe, leading to the occurrence of stress corrosion cracking and thermal fatigue cracking in structural members. The problem of destruction caused by this is now being given great importance.

これらの問題に対する対策の一方法として、金属構造部
材表面にセラミックス層を形成する方法が検前されてい
る。
As a method for dealing with these problems, a method of forming a ceramic layer on the surface of a metal structural member has been investigated.

セラミックスは一般に金属に比べて熱伝導率が小さいた
め、金属母相の温度変化幅を低減するとともに、金属母
相内板厚方向の湿度勾配も低減するため、熱疲労緩和に
非常に有効であるが、長期間の使用の間には、セラミッ
クス層と金属母相とのはく離が問題となってくる。
Ceramics generally have lower thermal conductivity than metals, so they reduce the range of temperature changes in the metal matrix and also reduce the humidity gradient within the metal matrix in the thickness direction, making them very effective in alleviating thermal fatigue. However, during long-term use, peeling between the ceramic layer and the metal matrix becomes a problem.

この原因としてはセラミックスと金属母相との密着強度
の低でに帰因する場合、又はセラミックスと金属との熱
膨張係数の差に帰因する場合がある。その対策として、
サンドブラストあるψはグリッド材によるプラストを施
工し、金属表面を粗面化した後に溶射を行なうことによ
り金属母相とセラミックス溶射層との密着性を向上させ
ろ方法、さらには、境界相における熱応力を緩和するた
め、金属母相とセラミックス溶射層の中間にニラ)rl
y基合金等の下地溶射を行ない金属−セラミックス結合
層を形成する方法等が検討されているが、必ずしも十分
とは言えない。
This may be due to low adhesion strength between the ceramic and the metal matrix, or may be due to a difference in thermal expansion coefficient between the ceramic and the metal. As a countermeasure,
Sandblasting is a method that improves the adhesion between the metal matrix and the ceramic sprayed layer by applying a grid material blast, roughening the metal surface, and then thermal spraying. For relaxation, chive) rl is placed between the metal matrix and the ceramic sprayed layer.
A method of forming a metal-ceramic bonding layer by thermally spraying a base material such as a y-based alloy has been studied, but it cannot be said that this is necessarily sufficient.

〔発明の目的〕 本発明の目的は、上記した欠点の解消にあり、すなわち
、表面処理層と金属母材との密着性及び表面処理層の熱
サイクルに対する安定性を改善することKより、金属構
造部材の腐食応力腐食割れ及び熱疲労き裂発生の防止並
びにそれに起因する破壊を防止する機能が長期間に亘り
保持可能な金属の表面処理法を提供するものである。
[Object of the Invention] The object of the present invention is to eliminate the above-mentioned drawbacks, that is, to improve the adhesion between the surface treatment layer and the metal base material and the stability of the surface treatment layer against thermal cycles. The present invention provides a metal surface treatment method that can maintain the function of preventing the occurrence of stress corrosion cracking and thermal fatigue cracking in structural members, as well as the destruction caused by these cracks, for a long period of time.

〔発明の概要〕[Summary of the invention]

本発明の金属の表面処理法は、金属表面にショット4J
又はグリッド材をブラストして清浄化する工程(第1工
程)と、該金属表面にグリッド材をプラストして粗面化
する工程(第2工程)と、該金属表面に金属及びセラミ
ックスからなる混合材を下地溶射する工程(第3工程)
と、形成された下地溶射層の表面近傍の金属を溶出せし
めるエツチング処理をして下地溶射層の表面を粗面化す
る工程(第4工程)と、該下地溶射層の表面にセラミッ
クスを仕上溶射する工程(第5工程)と、得られた全体
を封孔処理する工程(第6エ程)と、の一連の工程から
成ることを特徴とするものである0 本発明の第1工程及び第2工程は、第3工程により、形
成される下地溶射層の金属母材との密着性を向上するた
めに採用される金属表面の前処理工程である。この前処
理は常用方法を適用すればよい。ここで、使用されるグ
リッド材又はショット利の具体例としては、鋳鉄、鋳鋼
、アルミナ及び炭化ケイ素等が挙げられる。
In the metal surface treatment method of the present invention, shot 4J is applied to the metal surface.
Alternatively, a step of blasting and cleaning the grid material (first step), a step of roughening the surface by blasting the grid material on the metal surface (second step), and a mixture of metal and ceramics on the metal surface. The process of spraying the material on the base (third process)
, a step of roughening the surface of the base sprayed layer by performing an etching process to elute the metal near the surface of the base sprayed layer (fourth step), and finishing spraying of ceramics on the surface of the base sprayed layer. The first step and the first step of the present invention are characterized by comprising a series of steps: a step of pore-sealing the obtained whole (step 5), and a step of sealing the obtained whole (step 6). The second step is a metal surface pretreatment step employed in the third step to improve the adhesion of the base sprayed layer to the metal base material. A commonly used method may be applied to this pretreatment. Here, specific examples of the grid material or shot material used include cast iron, cast steel, alumina, and silicon carbide.

本発明の第3工程は金属母材の表面に下地溶射層を形成
する工程である。この下地溶射層は金属母相表面近くは
金属の比率が高く金属母相表面より遠ざかるに従いセラ
ミックスの比率が高<′fxるように段階的に金属とセ
ラミックスの混合比率を変化させることが望ましい。こ
こで、使用される金属及びセラミックスは金属母材との
密着性及び耐食性等を考慮して適宜に選択でき、この金
属の具体例としては、ニッケル、チタン、ジルコニウム
、コバルト等が挙げられ、また、セラミックスの具体例
としては、アルミナ、ジルコニア、チタニア、等が挙け
られる。また、この下地溶射層の厚みは0.1〜0.5
薫であり、好ましくは0.2〜0.3詣である。さらに
また、この層の形成には通常の溶射法等を適用すればよ
いが、例えば、アルミナの場合は、溶射距離80〜12
0mm、、電流値500〜900A、及び電圧値30〜
40Vが好ましい条件として挙げられる。
The third step of the present invention is a step of forming a base sprayed layer on the surface of the metal base material. In this base sprayed layer, it is desirable to change the mixing ratio of metal and ceramics in stages so that the ratio of metal is high near the surface of the metal matrix and the ratio of ceramics increases <'fx as the distance from the surface of the metal matrix increases. Here, the metals and ceramics used can be appropriately selected in consideration of adhesion with the metal base material, corrosion resistance, etc. Specific examples of the metals include nickel, titanium, zirconium, cobalt, etc. Specific examples of ceramics include alumina, zirconia, titania, and the like. In addition, the thickness of this base sprayed layer is 0.1 to 0.5
It is fragrant, preferably 0.2 to 0.3 degrees. Furthermore, a normal thermal spraying method may be applied to form this layer, but for example, in the case of alumina, the thermal spraying distance is 80 to 12
0mm, current value 500~900A, and voltage value 30~
A preferable condition is 40V.

本発明の第4工程は仕上溶射層の密着性を図るため、下
地溶射層を腐食溶液によりエツチング処理する工程であ
る。このエツチング処理に使用される腐食溶液は、下地
溶射中の金属を腐食するものであれば金属に応じて適宜
に選定すればよく、例えばジルコニウム合金に対しては
、硫酸0.13cc。
The fourth step of the present invention is a step of etching the base sprayed layer with a corrosive solution in order to improve the adhesion of the final sprayed layer. The corrosive solution used in this etching process may be appropriately selected depending on the metal as long as it corrodes the metal being sprayed on the base. For example, for a zirconium alloy, 0.13 cc of sulfuric acid is used.

濃酸2.75 cc、濃化アンモニウム3.661/l
の混合水溶液等が挙げられる0また、腐食溶液の塗布方
法は常用の方法を適用すればよい。
Concentrated acid 2.75 cc, concentrated ammonium 3.661/l
A commonly used method may be used for applying the corrosive solution.

本発明の第5工程は、セラミックスによる仕上溶射する
工程である。このセラミックスは、被処理物の用途に応
じて適宜に選定すればよく、例えば、ジルコニア、チタ
ニア、アルミナ、等が挙げられる。また、この仕上溶射
層の厚みは帆1〜L8朋であり、好ましくは0.2〜0
.5羽である。
The fifth step of the present invention is a finishing thermal spraying step using ceramics. This ceramic may be appropriately selected depending on the use of the object to be treated, and examples thereof include zirconia, titania, alumina, and the like. In addition, the thickness of this finishing sprayed layer is 1 to 8 mm, preferably 0.2 to 0.
.. There are 5 birds.

さらにまた、この層の形成には、通常の方法を適用すれ
ばよく、例えば溶射法等が挙げられる0本発明の第6エ
程は仕上溶射層を形成した後、最終工程として封孔処理
を行なう工程である。こO封孔処理は、仕上溶射層の活
性が持続する時間内に行なうことが好ましい。この封孔
処理に使用される封孔材としては、通常、封孔材として
使用されるものであればいかなるものであってもよく、
例えば、けい素樹脂、エポキシ樹脂、歴青質又はパラフ
ィン等が挙げられる。この封孔処理を行なうことにより
、層中の気孔は毛細管現象による封孔材の浸透により封
孔され、被覆層は環境完全遮断層となる。
Furthermore, for the formation of this layer, a normal method may be applied, such as a thermal spraying method, etc. In the sixth step of the present invention, after forming the finishing thermal spraying layer, a sealing treatment is performed as a final step. This is a process to be carried out. It is preferable that this O sealing treatment be carried out within a time period during which the activity of the final sprayed layer lasts. The sealing material used in this sealing process may be any material that is normally used as a sealing material.
Examples include silicone resin, epoxy resin, bituminous material, and paraffin. By performing this pore sealing treatment, the pores in the layer are sealed by the penetration of the pore sealing material through capillary action, and the coating layer becomes a complete environmental barrier layer.

〔発明の効果〕〔Effect of the invention〕

以上において詳述したとおり、本発明の金属の表面処理
法を適用すれば、得られる被覆層は金属母材との密着性
及び熱サイクルに対する安定性が優れたものであるため
、金属構造部材としての腐食及びき裂発生の防止並びに
それに起因する破壊を防止する機能が長期間に亘り保持
可能であり、その工業的価値は極めて大である。
As detailed above, when the metal surface treatment method of the present invention is applied, the resulting coating layer has excellent adhesion to the metal base material and stability against thermal cycles, so it can be used as a metal structural member. The function of preventing corrosion and cracking, as well as the destruction caused by this, can be maintained for a long period of time, and its industrial value is extremely large.

以下において、本発明の実施例を掲げ、更に詳しく説明
する。
EXAMPLES Below, examples of the present invention will be given and explained in more detail.

〔発明の実施例〕[Embodiments of the invention]

〔実施例1〕 第1工程 ショットブラスト 第2工程 グリッドプラスト 第3工程 ニッケル・アルミナ溶射 第4工程 エツチング 第5工程 ジルコニア溶射 第6エ程 けい素樹脂による封孔処理 〔実施例2〕 第1工程 ショク)ブラスト 第2工程 グリッドブラスト 第3工程 ニッケル・ジルコニア溶射 第4工程 エツチング 第5工程 アルミナ溶射 第6エ程 エポキシ樹脂による封孔処理第1工程では鋳
鋼、鋳鉄等のショットで金属表面をシラストし、金属表
面の清浄化を行なう。
[Example 1] 1st process Shot blasting 2nd process Grid blasting 3rd process Nickel/alumina thermal spraying 4th process Etching 5th process Zirconia thermal spraying 6th process Sealing treatment with silicone resin [Example 2] 1st process 2nd process of blasting 3rd process of grid blasting 4th process of nickel-zirconia thermal spraying 5th process of etching 6th process of alumina thermal spraying Sealing treatment with epoxy resin In the 1st process, the metal surface is shirassed with shot of cast steel, cast iron, etc. , to clean metal surfaces.

第2工程では、アルミナ又は炭化けい素等のプラスト材
でプラストを行ない金属表面を粗面化する。粗面化によ
り、第3工程での溶射層の密着性が良くなる。第2工程
の後、直ちに第3工程の下地溶射を行なう。下地溶射材
料は金属とセラミックスの混合物とし、金属母相との密
着性および耐食性等を考慮して選択される。金属母相と
の密着強度を高めるため金属母相表面近傍では金属富化
状態で、金属母相表面から遠ざかるに従い仕上げ溶射層
との熱膨張係数差を小さくするためセラミックス富化状
態で溶射を行なう。実施例1では下地溶射として、ニッ
ケルアルミナ、実施例2ではニッケルジルフニアが用い
られている。下地溶射の後第4工程では下地溶射材中金
属に対する腐食溶液によりエツチングを行なう。エツチ
ングにより、下地溶射層表面近傍の金属(実施例ではニ
ッケル)が溶出し、その跡に空孔が形成され粗面化した
のと同等の効果が得られる。この効果により第5工程で
の溶射層の密着性が良くなる。エツチングの後第5工程
では、仕上溶射を行なう。実施例1では仕上溶射として
断熱性、耐熱性及び耐酸化性に優れたジルコニア溶射を
行なっている。実施例2では仕上溶射として断熱性、耐
熱性に優れ、高硬度を有するアルミナ溶射を行なってp
る。仕上げ溶射後筒6エ程では最終工程として、封孔処
理を行なう。封孔処理材としてはけい素樹脂、エポキシ
樹脂、歴青質、パラフィン等が望ましい。
In the second step, the metal surface is roughened by blasting with a plastic material such as alumina or silicon carbide. The roughening improves the adhesion of the sprayed layer in the third step. Immediately after the second step, a third step of base thermal spraying is performed. The base thermal spray material is a mixture of metal and ceramics, and is selected in consideration of adhesion to the metal matrix, corrosion resistance, etc. Thermal spraying is performed in a metal-enriched state near the metal matrix surface to increase the adhesion strength with the metal matrix surface, and in a ceramics-enriched state to reduce the difference in thermal expansion coefficient with the finishing sprayed layer as the distance from the metal matrix surface increases. . In Example 1, nickel alumina is used as the base thermal spray, and in Example 2, nickel zilfnia is used. In the fourth step after the base thermal spraying, etching is performed using a corrosive solution for the metal in the base thermal spray material. Etching causes the metal (nickel in the example) near the surface of the base sprayed layer to be eluted, forming pores in its wake and producing the same effect as roughening the surface. This effect improves the adhesion of the sprayed layer in the fifth step. In the fifth step after etching, finishing thermal spraying is performed. In Example 1, zirconia thermal spraying, which has excellent heat insulation properties, heat resistance, and oxidation resistance, is used as the finishing thermal spraying. In Example 2, alumina thermal spraying, which has excellent heat insulation properties, heat resistance, and high hardness, was used as the finishing thermal spraying.
Ru. In step 6 of the cylinder after finishing thermal spraying, a sealing process is performed as the final process. As the sealing material, silicone resin, epoxy resin, bituminous material, paraffin, etc. are preferable.

封孔処理は、仕上溶射被膜の活性が持続する時間内に行
うことが望ましい。
It is desirable that the sealing treatment be performed within a time period during which the activity of the final sprayed coating lasts.

上述の如く本発明に係る金属母相との密着性に優れたセ
ラミックス溶射法はショット又はグリッド工程とグリッ
ドブラスト工程と、下地溶射とエツチングと仕上げ溶射
及び封孔処理の6エ程からなり、1工程たりとも省略す
ることはできない。
As mentioned above, the ceramic thermal spraying method according to the present invention with excellent adhesion to the metal matrix consists of six steps: shot or grid process, grid blasting process, base thermal spraying, etching, finishing thermal spraying, and sealing treatment. It is not possible to omit even a process.

本発明では前処理である第2工程が金属母相表面の粗面
化による、下地溶射層との密着強度を高める作用をなし
、中間処理である第4工程が下地溶射層表面の粗面化に
よる仕上溶射層との密着強度を高める作用をなすととも
に、下地溶射層表面近傍の金属を溶出せしめることによ
るセラミックス富化により仕上溶射セラミックス層との
熱膨張係数差を減少する作用をなし従来問題となってい
た熱疲労によるセラミックス層のはく離を防止するもの
である。
In the present invention, the second step, which is a pretreatment, has the effect of increasing the adhesion strength with the base sprayed layer by roughening the surface of the metal matrix, and the fourth step, which is an intermediate treatment, roughens the surface of the base sprayed layer. This has the effect of increasing the adhesion strength with the final thermal sprayed layer, and also reduces the difference in thermal expansion coefficient with the final thermal sprayed ceramic layer by eluting the metal near the surface of the base thermal sprayed layer, thereby reducing the difference in coefficient of thermal expansion with the final thermal sprayed ceramic layer. This prevents the ceramic layer from peeling off due to thermal fatigue.

本発明は数多くの表面処理法の組合せの中から上記組合
せを見い出したことを特徴とするものであり、高温腐食
性環境中繰り返し熱サイクルを受け、腐食、応力腐食割
れ及び熱疲労が問題となる構造部材に対し、本発明によ
るセラミックス溶射被膜を形成すれば、セラミックスに
よる環境完全遮断により腐食及び応力腐食割れの発生が
防げると同時忙発生する熱応力は大幅に緩和され熱疲労
によるき裂の発生も防止され、ひいては構造部材の破壊
の防止に多大な効果を発揮するものである。
The present invention is characterized in that the above-mentioned combination was found out of many combinations of surface treatment methods, and is subjected to repeated thermal cycles in a high-temperature corrosive environment, resulting in problems of corrosion, stress corrosion cracking, and thermal fatigue. By forming the ceramic sprayed coating according to the present invention on structural members, the ceramic will completely block out the environment, preventing corrosion and stress corrosion cracking, and at the same time, the thermal stress that occurs will be greatly alleviated, preventing the occurrence of cracks due to thermal fatigue. This also prevents the destruction of structural members, which is highly effective in preventing damage to structural members.

Claims (1)

【特許請求の範囲】 1、金属表面にショツト材又はグリッド材をブラストし
て清浄化する工程と、 該金属表面にグリッド材をプラストして粗面化する工程
と、 該金属表面に金属及びセラミックスからなる混合材を下
地溶射する工程と、 形成された下地溶射層の表面近傍の金属を溶出せしめる
エツチング処理をして下地溶射層の表面を粗面化する工
程と、 該下地溶射層の表面に化ラミ・ンクスを仕上溶射する工
程と、 得られた全体を封孔処理する工程と、 の一連の工程から成ることを特徴とする金属の表面処理
法。
[Claims] 1. A step of cleaning a metal surface by blasting a shot material or a grid material; a step of roughening the surface by blasting a grid material on the metal surface; a step of thermally spraying a mixed material on the base sprayed layer; a step of roughening the surface of the base sprayed layer by performing an etching treatment to elute metal near the surface of the formed base sprayed layer; 1. A metal surface treatment method characterized by comprising a series of steps: a step of finishing thermal spraying a chemical laminated ink, a step of sealing the obtained whole.
JP20834383A 1983-11-08 1983-11-08 Surface treatment of metal Pending JPS60100657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20834383A JPS60100657A (en) 1983-11-08 1983-11-08 Surface treatment of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20834383A JPS60100657A (en) 1983-11-08 1983-11-08 Surface treatment of metal

Publications (1)

Publication Number Publication Date
JPS60100657A true JPS60100657A (en) 1985-06-04

Family

ID=16554699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20834383A Pending JPS60100657A (en) 1983-11-08 1983-11-08 Surface treatment of metal

Country Status (1)

Country Link
JP (1) JPS60100657A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589237A2 (en) * 1992-08-27 1994-03-30 Applied Materials, Inc. Vacuum etch chamber and method for treating parts thereof
JPH07126827A (en) * 1993-10-28 1995-05-16 Nippon Alum Co Ltd Composite film of metallic surface and its formation
JPH0853747A (en) * 1994-03-31 1996-02-27 Agency Of Ind Science & Technol Formation of hard grain-dispersed wear-resistant coating film
WO2006036171A1 (en) * 2004-09-16 2006-04-06 Aeromet Technologies, Inc. Superalloy jet engine components with protective coatings and method of forming such protective coatings on superalloy jet engine components
WO2006052277A3 (en) * 2004-09-16 2007-02-15 Aeromet Technologies Inc Gas turbine engine components with aluminide coatings and method of forming such aluminide coatings on gas turbine engine components
CN104827202A (en) * 2015-05-09 2015-08-12 安徽再制造工程设计中心有限公司 Ni-TiO2 nanometer material for part submerged-arc welding restoration
US9133718B2 (en) 2004-12-13 2015-09-15 Mt Coatings, Llc Turbine engine components with non-aluminide silicon-containing and chromium-containing protective coatings and methods of forming such non-aluminide protective coatings

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589237A2 (en) * 1992-08-27 1994-03-30 Applied Materials, Inc. Vacuum etch chamber and method for treating parts thereof
US5401319A (en) * 1992-08-27 1995-03-28 Applied Materials, Inc. Lid and door for a vacuum chamber and pretreatment therefor
EP0589237A3 (en) * 1992-08-27 1995-05-24 Applied Materials Inc Vacuum etch chamber and method for treating parts thereof.
US5565058A (en) * 1992-08-27 1996-10-15 Applied Materials, Inc. Lid and door for a vacuum chamber and pretreatment therefor
JPH07126827A (en) * 1993-10-28 1995-05-16 Nippon Alum Co Ltd Composite film of metallic surface and its formation
JPH0853747A (en) * 1994-03-31 1996-02-27 Agency Of Ind Science & Technol Formation of hard grain-dispersed wear-resistant coating film
WO2006036171A1 (en) * 2004-09-16 2006-04-06 Aeromet Technologies, Inc. Superalloy jet engine components with protective coatings and method of forming such protective coatings on superalloy jet engine components
WO2006052277A3 (en) * 2004-09-16 2007-02-15 Aeromet Technologies Inc Gas turbine engine components with aluminide coatings and method of forming such aluminide coatings on gas turbine engine components
US7901739B2 (en) 2004-09-16 2011-03-08 Mt Coatings, Llc Gas turbine engine components with aluminide coatings and method of forming such aluminide coatings on gas turbine engine components
US8623461B2 (en) 2004-09-16 2014-01-07 Mt Coatings Llc Metal components with silicon-containing protective coatings substantially free of chromium and methods of forming such protective coatings
US9133718B2 (en) 2004-12-13 2015-09-15 Mt Coatings, Llc Turbine engine components with non-aluminide silicon-containing and chromium-containing protective coatings and methods of forming such non-aluminide protective coatings
CN104827202A (en) * 2015-05-09 2015-08-12 安徽再制造工程设计中心有限公司 Ni-TiO2 nanometer material for part submerged-arc welding restoration

Similar Documents

Publication Publication Date Title
Kim et al. Plasticity effects on fracture normal to interfaces with homogeneous and graded compositions
US4588480A (en) Method of producing wear-protection layers on surfaces of structural parts of titanium or titanium-base alloys
TW200925316A (en) Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment
US5413871A (en) Thermal barrier coating system for titanium aluminides
Rangaswamy et al. Thermal expansion study of plasma-sprayed oxide coatings
Xuegang et al. Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation
US4546052A (en) High-temperature protective layer
JPH0715141B2 (en) Heat resistant parts
JPH08501831A (en) Protection of chrome steel substrates against corrosion and erosion at temperatures up to about 500 ° C
JPS60100657A (en) Surface treatment of metal
WO2017005460A1 (en) Contour-following protective coating for compressor components of gas turbines
JPH02503576A (en) Coated near-α titanium product
Higuera Hidalgo et al. Characterisation of NiCr flame and plasma sprayed coatings for use in high temperature regions of boilers
JPH02504289A (en) Coated near-α titanium product
Gurrappa Platinum aluminide coatings for oxidation resistance of titanium alloys
Petersen Hot-salt stress-corrosion of titanium: a review of the problem and methods for improving the resistance of titanium
Lavrushin et al. Cyclic strength of titanium alloys, anodized under micro-arc conditions, in sea water
JP3372185B2 (en) Heat resistant material
Hendricks et al. Residual Stress in Plasma‐Sprayed Ceramic Turbine Tip and Gas‐Path Seal Specimens
JP3064562B2 (en) Crevice corrosion resistant surface-modified Ti or Ti-based alloy member
Zschau et al. Surface modification by ion implantation to improve the oxidation resistance of materials for high temperature technology
Miller et al. Corrosion of beryllium
JPH0348264B2 (en)
CN110023540A (en) The protection coating and component containing aluminium of multilayer
Donchev et al. The Use of Fluorine to Protect β-Solidifying γ-TiAl-Based Alloys against High-Temperature Oxidation