JPS60100341A - Deflection device for cathode-ray tube - Google Patents

Deflection device for cathode-ray tube

Info

Publication number
JPS60100341A
JPS60100341A JP20774083A JP20774083A JPS60100341A JP S60100341 A JPS60100341 A JP S60100341A JP 20774083 A JP20774083 A JP 20774083A JP 20774083 A JP20774083 A JP 20774083A JP S60100341 A JPS60100341 A JP S60100341A
Authority
JP
Japan
Prior art keywords
deflection
coil
ray tube
green
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20774083A
Other languages
Japanese (ja)
Inventor
Michio Ogasa
小笠 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20774083A priority Critical patent/JPS60100341A/en
Publication of JPS60100341A publication Critical patent/JPS60100341A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only

Abstract

PURPOSE:To remove green drooping by providing, in a deflection yoke, a coil generating a six poles magnetic field by winding six sets of coils about a ring core, while making a part of the current of a vertical deflection coil to branch thereto. CONSTITUTION:The deflection yoke 4 of an inline type color cathode-ray tube having plural electron guns 3 arranged in an inline shape is provided with a coil 12 generating a six poles magnetic field inside a core 1 while winding six sets of coils 14 around a ring core 13 made of plastics of acryl resin. And a part of a current to be guided to flow through a vertical deflection coil is made to branch to said terminals 15 and 16. Accordingly, the sensitivity in the vertical direction of a green electron beam positioned in the center among three electron beams can be corrected from being more reduced due to its horizontal deflection, than the green and red electron beams positioned on both sides, while eliminating green drooping generated as the result of misconvergence.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、インライン状に配列された複数個の電子銃
を有する、いわゆるインライン型カラー陰8i線管の偏
向装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a deflection device for a so-called in-line color negative 8i-ray tube having a plurality of electron guns arranged in-line.

[従来技術] まず、インライン型カラー陰極線管に用いられるセルフ
コンバーゼンス型偏向装置(以下、偏向ヨークと称す。
[Prior Art] First, there is a self-convergence type deflection device (hereinafter referred to as a deflection yoke) used in an in-line color cathode ray tube.

)について説明する。) will be explained.

第1図は、カラー陰極線管の概要を説明するだめの断面
図である。図において、パネルカラス(1)とファンネ
ルガラス(2)とにより陰極線管の外容器部が構成され
、この外容器の内部は真空に保持されている。漏斗状の
ファンネルガラス(2)の細くなった部分はネック部(
2N)と称され、この部分に通常3木の電子ビーム(1
00B)、(100G)、(100R)を発ノ1:する
電子銃(3)か配置されている。ここで、3木の電子ビ
ームを説明上、それぞれ青電子ビーム(100B)、緑
電子ビーム(1’oOG)、および赤電子ビーム(10
0R)と名刺けるものとする。
FIG. 1 is a cross-sectional view for explaining the outline of a color cathode ray tube. In the figure, a panel glass (1) and a funnel glass (2) constitute an outer container portion of a cathode ray tube, and the inside of this outer container is maintained in a vacuum. The narrow part of the funnel-shaped funnel glass (2) is the neck part (
2N), and there are usually 3 electron beams (1N) in this part.
An electron gun (3) that emits 00B), (100G), and (100R) is also arranged. Here, three trees of electron beams are explained, respectively: blue electron beam (100B), green electron beam (1'oOG), and red electron beam (100B).
0R) on your business card.

また、ファンネルカーラス(2)のネック部(2N)か
ら続くラッパ状に広くなっている部分はコーン部(2C
)と称され、この外側に偏向ヨーク(4)が配置される
。さらに、パネルガラス(1)の内面には、゛rL子ビ
ームの射突により、通常、冑、緑およυ赤に発光する蛍
光体(図示せず)がモザイク状に塗布されている。
In addition, the wide trumpet-shaped part continuing from the neck part (2N) of the funnel curlus (2) is the cone part (2C).
), and a deflection yoke (4) is arranged on the outside thereof. Further, the inner surface of the panel glass (1) is coated with a mosaic of phosphors (not shown) that usually emit light in green and red by the impingement of the rL beam.

さらに、このパネルガラス(1)の内側には、色選別機
能を達成する多数の小孔を有したシャドウマスク(5)
が、パネルカラス(1)の側壁に埋め込まれたピンによ
り支持固定されている。また、ネック部(2N)の外側
には、3木の電子ビーム(100B)、(looG)、
(100R)の軌道を微妙に変化させて色純度および画
面中央部での静的な電子ビー1、の集中を補正する2極
、4極および6極のマグネットが一体となって構成され
たC −Pマグネッ1−(6)と称される電子ビームの
軌道修正装置か取り伺けられている。
Furthermore, inside this panel glass (1), there is a shadow mask (5) having a large number of small holes to achieve a color selection function.
is supported and fixed by pins embedded in the side wall of the panel crow (1). Also, on the outside of the neck part (2N), there are three electron beams (100B), (looG),
(100R), which corrects the color purity and the concentration of the static electronic beam 1 at the center of the screen. An electron beam orbit correction device called -P Magnet 1-(6) has been investigated.

以1−がカラー陰極線管およびその主なイτ1属装置つ
ぎに、3木の電子ビーム(100B、)、(100G)
、(100R)の偏向と電子ヒームの集中について説明
する。
The following is a color cathode ray tube and its main equipment.
, (100R) and concentration of the electron beam will be explained.

C−Pマグネット(6)により、画面中心部で3木の電
子ビームが集中するように調整さ゛れた状態で、偏向ヨ
ーク(4)に設けられた水平偏向コイルおよび垂直偏向
コイルに1時間に対して、のこぎり波状に変化する電流
を流すと、3木の゛電子ビームは、パネルカラス(1)
内面の蛍光体面」−を水平および垂直方向に偏向され、
移動をくり返す。一般に、テレビジョン受像管などで用
いられるラスク走査では、画面の左から右、および」−
から下への偏向がなされる。
With the C-P magnet (6) adjusted so that three electron beams are concentrated at the center of the screen, the horizontal and vertical deflection coils provided on the deflection yoke (4) are heated for one hour. When a current that changes in a sawtooth waveform is applied, the three-dimensional electron beam is
The inner phosphor surface is deflected horizontally and vertically,
Repeat the movement. Generally, in the rask scanning used in television picture tubes, etc., the screen is scanned from left to right, and
A downward deflection is made.

ここで、偏向コイルの磁界分布が均一な状態で偏向を受
けると、3木の電子ビームの到達軌跡は第2図に示すよ
うになる。すなわち、電子銃(3)の端部に位置する青
電子ビーム出用孔(200B)、緑電子ビーム出躬孔(
200G)、および光電子ビーム出射孔(200R)か
ら発生される電子ヒームは、(晶面ヨーク(4)により
偏向を受け、画面J−での各色に対応する電子ビーム到
達軌跡は、それぞれ青電子ビーム到達軌跡(300B)
、緑電子ビーム到達軌跡(300G)、および光電子ビ
ーム到達軌跡(300R)のようになる。
Here, if the deflection is applied while the magnetic field distribution of the deflection coil is uniform, the trajectory of the three electron beams will be as shown in FIG. That is, the blue electron beam exit hole (200B) and the green electron beam exit hole (200B) are located at the end of the electron gun (3).
200G) and the photoelectron beam exit hole (200R) are deflected by the crystal plane yoke (4), and the electron beam arrival trajectories corresponding to each color on screen J- are blue electron beams. Arrival trajectory (300B)
, the green electron beam arrival trajectory (300G), and the photoelectron beam arrival trajectory (300R).

図中、青電r−ビーム到達軌跡(300B)は実線、緑
電子ビーム到達軌Vfi(300G)は1点鎖線、およ
び光電子ビーJ・到達軌跡(30OR’)は破線で示し
である。
In the figure, the blue electron beam arrival trajectory (300B) is shown by a solid line, the green electron beam arrival trajectory Vfi (300G) is shown by a dashed line, and the photoelectron beam J arrival trajectory (30OR') is shown by a broken line.

この図のように、3木の電子ビームは偏向されるのにと
もなって、電子ビーム出射孔と電子ビーム到達点との距
即が中心のそれとは異なってくるため、それぞれの到達
点は一致せず、色ずれが生じる。この色ずれは、ミスコ
ンパーセンスと呼ばれ、このミスコンバーゼンスを小さ
くするために、偏向ヨークと陰極線管に工夫を加えたの
がミスコンバーゼンスシステムの偏向ヨークおよヒ陰極
線管である。
As shown in this figure, as the three electron beams are deflected, the distance between the electron beam exit aperture and the electron beam arrival point differs from that at the center, so the respective arrival points do not coincide. Otherwise, color shift will occur. This color shift is called misconvergence, and in order to reduce this misconvergence, the deflection yoke and cathode ray tube of the misconvergence system are made by adding innovations to the deflection yoke and cathode ray tube.

つまり、第3図に示すように、偏向ヨークの水平偏向磁
界(7H)をビンクッション型(糸巻型)の磁界分布に
、また垂直偏向コイル(7v)をバレル型(たる型)の
磁界分布に形成すると、両側に位置する宵電子ビーム(
100B)および光電子ビーム(100R)は、偏向さ
れるのにともなって、それぞれ偏向磁界から差動的な力
を受けて画面周辺でも重なり、第4図に示すような電子
ビーム到達軌跡を形成する。
In other words, as shown in Figure 3, the horizontal deflection magnetic field (7H) of the deflection yoke has a bottle cushion type (pincushion type) magnetic field distribution, and the vertical deflection coil (7V) has a barrel type (barrel type) magnetic field distribution. Once formed, the evening electron beams located on both sides (
As the photoelectron beam (100B) and the photoelectron beam (100R) are deflected, they each receive a differential force from the deflection magnetic field and overlap around the screen, forming an electron beam arrival trajectory as shown in FIG.

また陰極線管の電子銃(3)の出用孔伺近に、第5図に
示すような中央の電子ビームに対する磁界の作用の程度
を両側の電子ビームのそれよりも相対的に強化する働き
をするマグネチックエンハンサ(8)および逆に両側に
位置する電子ビームに対する磁界の働きを弱めるマグネ
チックシャント(9)を適当に配置することにより、中
央に位置する緑電子ビーム到達軌跡(300G)を古電
子ビーム到達軌跡(300B)および光電子ビーム到達
軌跡(30OR)とほぼ一致させることができる。
In addition, near the exit hole of the electron gun (3) of the cathode ray tube, as shown in Figure 5, a magnetic field is installed to strengthen the effect of the magnetic field on the central electron beam relative to that on the electron beams on both sides. By appropriately arranging the magnetic enhancer (8) that weakens the magnetic field and the magnetic shunt (9) that weakens the magnetic field on the electron beam located on both sides, the trajectory of the green electron beam (300G) located at the center can be improved. It is possible to substantially match the electron beam arrival trajectory (300B) and the photoelectron beam arrival trajectory (30OR).

なお、第5図において、(IOV)は重直偏向磁W、(
t o H)は水中偏向磁界を示す。ここで用いられる
マグネチックエンハンサ(8)およびマグネチツクンヤ
ント(9)を総称してフィールドコンI・ローラ(以下
、F/Cと略記する。)と称呼している。第6図にこの
ようにして得られる3木の11を了ビー1\到達軌跡を
図示する。
In addition, in FIG. 5, (IOV) is the vertical deflection magnet W, (
t o H) indicates the underwater deflection magnetic field. The magnetic enhancer (8) and magnetic enhancer (9) used here are collectively called a field controller I roller (hereinafter abbreviated as F/C). FIG. 6 shows the trajectory of the three trees 11 obtained in this way.

以−1一連へたように、偏向ヨークの磁界分布と陰極線
管の゛屯r 31を端部に工夫をすることにより、画面
中央部以外の偏向点でもミスコンバーゼンスが小さくな
るように、没31されたカラー陰極線管システムがセル
フコンバーゼンスであり、ここで用いられる偏向ヨーク
がセルフコンバーゼンス型偏向ヨークである。この4す
の偏向ヨークは現在多ぐのテレヒジョン受像機に使用さ
れており、近年コンピュータの端末ディスプレイ川受像
管の偏向ヨークとしても使用されるようになってきた。
As described in the series below, by making improvements to the magnetic field distribution of the deflection yoke and the end portion of the tube r31 of the cathode ray tube, the misconvergence can be reduced even at deflection points other than the center of the screen. The color cathode ray tube system used here is a self-convergence type, and the deflection yoke used here is a self-convergence type deflection yoke. This four-piece deflection yoke is currently used in many television receivers, and in recent years has also come to be used as a deflection yoke in computer terminal displays and picture tubes.

しかしながら、この型の偏向ヨークによるミスコンバー
センスが全くないわけではなく、厳密には第7図に示f
ようなミスコ〉・バーセンスが存在する。
However, this type of deflection yoke does not cause misconvergence at all, and strictly speaking, as shown in Figure 7,
There are misco〉・verses like this.

すなわち、第7図に示すように、画面の四隅の周辺に偏
向されるのにともない、緑電子ビーム到達軌跡(300
G)の垂直方向の偏向感度が青電子ビーム到達軌跡(3
00B)および赤電子ビーム到達軌跡(30OR)のそ
れよりも低くなり、結果的に画面の端で青電子ビーム到
達軌跡(300B)および赤電子ビーム到達軌跡(30
OR)の合致線とずれ(11)を生じる。このミスコン
バーゼンスな一般にグリーンたれと称し、高解像度ディ
スプレイなどのようなミスコンバーゼンス規格の厳しい
用途では無視できない設計的なミスコンバーゼンスとさ
れている。たとえば、14型の陰極線管では、この大き
さが0.2〜0.3mm程度あり、最近のミスコンバー
ゼンス規格0゜3mmに対し同程度であり、セルフコン
バーゼンス型偏向ヨークの大きな欠点の1つとなってい
る。
That is, as shown in FIG. 7, as the green electron beam is deflected around the four corners of the screen,
The vertical deflection sensitivity of G) is the blue electron beam arrival trajectory (3
00B) and red electron beam trajectory (30OR), and as a result, the blue electron beam trajectory (300B) and red electron beam trajectory (30OR) are lower than those of the red electron beam trajectory (30OR).
A deviation (11) occurs from the matching line of OR). This misconvergence is generally called green sauce, and is considered to be a design misconvergence that cannot be ignored in applications such as high-resolution displays that have strict misconvergence standards. For example, in a 14-inch cathode ray tube, this size is about 0.2 to 0.3 mm, which is about the same as the recent misconvergence standard of 0°3 mm, which is one of the major drawbacks of the self-convergence type deflection yoke. ing.

[発明の概要] この発明はj二記従来の欠点を解消するためになされた
もので、従来の偏向ヨークに大幅な設計変更を加えるこ
となく、偏向ヨークに設けた6極コイルに取直偏向電流
の一部を分流させることにより、グリーンだれを除去す
ることができる陰極線管用偏向装置Iviを提供するこ
とを目的とする。
[Summary of the Invention] This invention was made in order to eliminate the drawbacks of the conventional deflection yoke. It is an object of the present invention to provide a deflection device Ivi for a cathode ray tube that can remove green sag by dividing a part of the current.

本来、グリーンだれは3木の電子ビームのうち、中央に
位置する緑電子ビーム(IOQG)の垂直方向感度が、
両側に位置する青電子ビーム(100B)および赤電子
ビーム(100R)のそれよりも、水・11偏向を受け
るのにともなって減少することに起因している。そのた
め、この現象を軒減する手段として、両側の電子ビーム
の垂直方向感度を木il’偏向にともない、中央の電子
ビームのそれと同程度に減少させるか、あるいは両側の
電子ビームの氷原偏向を受けない画面中央部での垂直方
向感度゛を水47.偏向を受ける画面端の@直方向感度
よりも相対的に高めるといった方法か考えられる。この
発明はこのような観点からなされたものである。
Originally, among the three electron beams, the vertical sensitivity of the green electron beam (IOQG) located in the center is
This is due to the fact that it decreases more than that of the blue electron beam (100B) and red electron beam (100R) located on both sides as it receives water-11 deflection. Therefore, as a means to reduce this phenomenon, the vertical sensitivities of the electron beams on both sides should be reduced to the same degree as that of the central electron beam due to the ice field deflection, or the vertical sensitivities of the electron beams on both sides should be reduced to the same extent as that of the central electron beam. The vertical sensitivity at the center of the screen is 47. One possible method would be to relatively increase the sensitivity in the normal direction at the edge of the screen, which is subject to deflection. This invention has been made from this point of view.

[発明の実施例] 以下、この発明の実施例を図面にしたがって説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第8図はこの発明の実施例による6極コイルを示す。6
極コイル(12)はアクリル樹脂の成形品であるリング
状のコア(13)をその円周方向に6等分してその周囲
に6個のコイル(14)を巻き1図示のように結線して
構成されている。アクリル樹脂製のコア(13)は、コ
イル(14)を構造的に支持するためのものであり、材
質的に非磁性のものであるため、この6極コイル(12
)は空心の6極コイルとほぼ等価なものと考えられる。
FIG. 8 shows a six-pole coil according to an embodiment of the invention. 6
The pole coil (12) is made by dividing a ring-shaped core (13), which is a molded product of acrylic resin, into six equal parts in the circumferential direction, and winding six coils (14) around the ring-shaped core (13) and connecting them as shown in the figure. It is composed of The core (13) made of acrylic resin is for structurally supporting the coil (14) and is made of non-magnetic material, so this 6-pole coil (12)
) is considered to be almost equivalent to an air-core six-pole coil.

このため、コア材料としては、カラスやエポキシ樹脂な
どの非磁性の材料であれば如何なる材料であってもよい
Therefore, the core material may be any non-magnetic material such as glass or epoxy resin.

さて、この6極コイル(12)に端子A(15)から端
子B(16)へ向って電流を流すと、6極コイル(12
)のコア(13)の内側には第9図に示すような磁界が
発生する。そのため、コア(13)を含む平面にほぼ鉛
直で、その平面との交点をインライン状にもつ紙面の表
から裏へ通過する3木の電子ビーム(100B)、(1
00G)および(100R)のうち、その両側に位置す
る電子ヒー1、(100B)および(100R)に対し
てのみ力FbおよびFrが作用する。このことは、中心
に位置する緑電子ヒーム(100G)にはほとんど力を
り−えることなく、両側に位置する青電rヒーム(10
0B)および赤電子ヒーム(100R)のみ、その軌道
を同時に同方向へ回稈tml !、j移動させることが
できることを意味する。
Now, when current is passed through this 6-pole coil (12) from terminal A (15) to terminal B (16), the 6-pole coil (12)
) A magnetic field as shown in FIG. 9 is generated inside the core (13). Therefore, three electron beams (100B), (1
Forces Fb and Fr act only on electronic heaters 1, (100B) and (100R) located on both sides of (00G) and (100R). This means that almost no force is transferred to the green electron beam (100G) located at the center, and the blue electric r-heam (100G) located on both sides
0B) and the red electron beam (100R) simultaneously rotate their orbits in the same direction! , j means that it can be moved.

また、作用する力Fb、Frは理想的にはほぼ同じ大き
さの力であり、その力の大きさはコア(13)内に発ノ
1する磁界の強さに比例するから、結’)’: 的り、
Z端一1’A (15) カラ端子B(16)へ流れる
?1i流の大きさに比例するともいえる。
In addition, the acting forces Fb and Fr are ideally forces of approximately the same magnitude, and the magnitude of the force is proportional to the strength of the magnetic field generated within the core (13), so it is concluded that ': Target,
Z end 1'A (15) Flows to empty terminal B (16)? It can also be said that it is proportional to the magnitude of the 1i flow.

つぎに、この6極コイル(12)による両側型r−ビー
ム(100B)、(100R) の画面−にテの垂直方
向偏向感度について述べる。第10図は、偏向ヨークの
端部に設けた6極コイル(12)に・定電流を施した場
合の14型陰極線管における画面各部の6極コイル(1
2)による垂直方向の偏向感度を1画面中央を基準に第
1象限にまとめて示したものである。
Next, the vertical deflection sensitivity of the two-sided R-beams (100B) and (100R) using this six-pole coil (12) will be described. Figure 10 shows the six-pole coil (12) at each part of the screen in a 14-inch cathode ray tube when a constant current is applied to the six-pole coil (12) provided at the end of the deflection yoke.
The vertical deflection sensitivity according to 2) is shown in the first quadrant with the center of one screen as a reference.

この図から理解されるように、6極コイル(12)によ
る両側電子ビーム(100B)および(100R)の垂
直方向偏向感度は、画面全体について均一でなく、中央
に対しいずれの部位も低手している。これは3木の電子
ヒームの偏向磁界への入射軌道と偏向ヨークの水平およ
び垂直の偏向磁界分布との関係で生じるもので、セルフ
コンバーゼンス型偏向ヨークについての共通の傾向と思
われる。
As can be understood from this figure, the vertical deflection sensitivity of the two-sided electron beams (100B) and (100R) by the six-pole coil (12) is not uniform over the entire screen, and is low in any part relative to the center. ing. This occurs due to the relationship between the incident trajectory of the three-dimensional electron beam into the deflection magnetic field and the horizontal and vertical deflection magnetic field distribution of the deflection yoke, and is considered to be a common tendency for self-convergence type deflection yokes.

さて、ここで第1O図に示した画面上部Tの垂直方向感
度と、画面間TRの部位の垂直方向感度とを比較すると
、画面」二部Tの感度が画面間TRの感度よりも約50
%程度高いことかわかる。つまり、6極コイル(12)
による垂直方向感度は、画面の上部T(もしくは下部)
の方が画面四隅TRに比較して高く、同一電流による補
正を行なった場合、画面四隅に偏向されるのにともない
補正量が減少し、両側電子ビーム(100B)および(
,100R)に、中央電子ビーム(100G)のグリー
ンノ:れと同様な現象を生しさせることか11丁能とな
る。
Now, if we compare the vertical sensitivity of the upper part of the screen T shown in Figure 1O with the vertical sensitivity of the area of the TR between screens, we find that the sensitivity of the second part of the screen T is about 50% higher than the sensitivity of the TR between screens.
I understand that it is about % higher. In other words, 6-pole coil (12)
The vertical sensitivity is based on the top T (or bottom) of the screen.
is higher than the TR at the four corners of the screen, and when correction is performed using the same current, the amount of correction decreases as it is deflected to the four corners of the screen, and the electron beams on both sides (100B) and (
, 100R), a phenomenon similar to that of the central electron beam (100G) can be caused to occur.

この6極コ・イル(12)に、偏向ヨーク(4)の1■
直偏向コイルにガLれる電流を第11図に示すような回
路構成で一部分流させれば、3木の電子ビーム到1tI
l’h yya let第12図(7)J: 34.−
ナル、 第11図において、(1B)は重置偏向コイル
、VRは可変抵抗で、■(変抵抗V Rは6極コイル(
12)に流れ込む11′rll′I偏向゛It流を制御
する働きをなし、この抵抗イIC]を変化さぜることに
より、+11″および赤電子と’ −Llill iH
軌W/f (300B)、(30OR)を垂直方向に移
動さ(することがit)能となり、第12図に示した市
直方向ミスコン/″Y−センス(20)を変化させるこ
とができる。
This 6-pole coil (12) is connected to one side of the deflection yoke (4).
If a portion of the current flowing through the direct deflection coil is caused to flow through the circuit configuration shown in Figure 11, three electron beams can reach 1 tI.
l'h yya letFigure 12 (7) J: 34. −
In Fig. 11, (1B) is a superimposed deflection coil, VR is a variable resistor, ■(variable resistor VR is a six-pole coil (
12) serves to control the 11'rll'I deflection 'It flow flowing into the 11'rll'
It becomes possible to move the track W/f (300B), (30OR) in the vertical direction, and change the vertical direction miscon/''Y-sense (20) shown in FIG.

ここで、F/Cによる磁界制御効果を弾め、通常の状!
ハ:で緑゛屯f゛ヒーム到達軌跡かptおよび赤のそれ
よりも+p直力方向大きく偏向を受けるように設定した
のち、6極コイル(12)に適メ41ψの垂直偏向庫1
流を分流させれば、第13図に示すように3木の゛、1
シf−ビーL、i’ll達軌跡(300B)、(300
G)、(300R)を一致させることが11丁能となる
。検t・1シた結果では、F/Cによる初期設定すべき
緑電子ヒーム到達軌跡(300G)の古および加電イビ
ーム到達軌跡(300B)、(30OR)に対する偏向
の拡大は約0.8mm程度であり、これはF/Cの制御
効果を高めることにより十分可能な範囲である。
Here, the magnetic field control effect by F/C is suppressed and the normal state is restored!
C: After setting the trajectory of the green tun f heel to receive a larger deflection in the +p direct force direction than that of pt and red, apply it to the 6-pole coil (12).
If the flow is divided, three trees ゛, 1 are created as shown in Figure 13.
Cif-bee L, i'll's trajectory (300B), (300
Matching G) and (300R) results in 11 functions. According to the results of the t-1 test, the expansion of the deflection of the green electron beam arrival trajectory (300G), which should be initially set by F/C, with respect to the old and applied electron beam arrival trajectory (300B), (30OR) is about 0.8 mm. This is within a range that is fully possible by increasing the control effect of F/C.

なお、−1−1記実施例では、垂直偏向コイル(18)
から6極コイル(12)に流れ込む電流をI+(変抵抗
VRを用いて制御可能としているため、個々の偏向ヨー
クおよび陰極!lit管の製造ばらつきしこよって生じ
る画面Y輛」−の両端での緑電−f−ビ′−ム111達
軌跡(300G)と、古および赤電−fビーム到’i%
軌跡(300B)、(30OR)との市直方向ミスコン
へ−センスを、偏向ヨークと陰極線管の組み合わせ上程
において最適に調整できる利点かある。
In addition, in the embodiment described in -1-1, the vertical deflection coil (18)
Since the current flowing from I+ to the six-pole coil (12) can be controlled using a variable resistor VR, it is possible to control the current flowing from I+ to the six-pole coil (12). Green light F-beam 111 trajectory (300G) and old and red light F-beam reached 'i%
There is an advantage in that the vertical direction misconception between the loci (300B) and (30OR) can be optimally adjusted in the process of combining the deflection yoke and the cathode ray tube.

「発明の効果コ 以」−のように、この発明による陰極線管用偏向装置に
したがえば、6極コイルに手直偏向コイルに流れる偏向
電流の−FARを分流させることにより、設旧的なミス
コンバーゼンスとして生していたグリーンだれを解消す
ることかできる。
According to the deflection device for a cathode ray tube according to the present invention, as described in "Effects of the Invention", by diverting -FAR of the deflection current flowing through the manual deflection coil to the six-pole coil, it is possible to It is possible to eliminate the green sagging caused by convergence.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陰極線管の動作を説明するための概略的な断面
図、第2図は偏向磁界が均一な場合の3本の電子ビー1
1到達軌跡を示す図、第3図はセルフコンパ−センス型
の偏向ヨークの磁界分布図、ff14図はセルフコンバ
ーゼンス型の偏向ヨークによる3本の電r・ビームの到
達軌跡を示す図、第5図はF/Cの働きを示した電子銃
の電子ビーム出躬孔伺近の磁界分布図、第6図はセルフ
コンバーセンスの偏向ヨークおよび陰極線管の組み合わ
せにより得られる3木の電子ビームの到達軌跡を示す図
、第7図はセルフコンバーゼンス型の偏向ヨークおよび
陰極線?iがもつグリーンだれの状態を示した図、第8
図はこの発明の一実施例における6極コイルを示した図
、第9図は6極コイルに通電し゛た場合に生じる磁界分
布と6極コイル中を通過する電子ビームが受ける力との
関係を示した図、”J’s 10図は6極コイルによる
青および光電了ヒームの画面」−での垂直方向感度を画
面中心に対して数値で示した図、第11図はこの発明の
一実施例における回路構成図、第12図は6極コイルに
垂直コイルに流れる電流の一部を分流させた場合に生し
る3木の電子ビームの到達軌跡を示す図、第13図はF
/Cを強めに設定したのち6極コイルに垂直偏向コイル
に流れる電流の一部を分流させたときの3木の電子ビー
ムの到達軌跡を示す図である。 (3)・・パ電子銃、(4)・・・偏向ヨーク、(12
)・・・6極コイル、(13)・・・コア、(14)・
・・コイル、(18)・・・垂直偏向コイル。 なお、図中同一符号は同一または相当部分を示す。 代理人 大岩増雄
Figure 1 is a schematic cross-sectional view to explain the operation of a cathode ray tube, and Figure 2 shows three electron beams 1 when the deflection magnetic field is uniform.
Figure 3 is a magnetic field distribution diagram of the self-comparison type deflection yoke, Figure ff14 is a diagram showing the arrival locus of three electric r beams by the self-convergence type deflection yoke, Figure 5 The figure shows the magnetic field distribution near the electron beam exit hole of the electron gun, showing the function of F/C. Figure 6 shows the arrival of three electron beams obtained by the combination of self-converging deflection yoke and cathode ray tube. Figure 7 shows the trajectory of a self-convergence type deflection yoke and cathode ray? Diagram showing the green droop state of i, No. 8
The figure shows a six-pole coil in an embodiment of the present invention, and Figure 9 shows the relationship between the magnetic field distribution generated when the six-pole coil is energized and the force exerted on the electron beam passing through the six-pole coil. The figure shown, ``J's Figure 10 is a blue and photoelectric beam screen using a six-pole coil'' - is a figure numerically showing the vertical sensitivity with respect to the center of the screen, and Figure 11 is one embodiment of the present invention. The circuit configuration diagram in the example, Fig. 12 is a diagram showing the trajectory of three electron beams generated when a part of the current flowing in the vertical coil is shunted to the six-pole coil, and Fig. 13 is the F
FIG. 6 is a diagram showing the trajectory of three electron beams when part of the current flowing through the vertical deflection coil is shunted to the six-pole coil after setting /C to be strong. (3)...P electron gun, (4)...Deflection yoke, (12
)...6-pole coil, (13)...core, (14)...
... Coil, (18) ... Vertical deflection coil. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (3)

【特許請求の範囲】[Claims] (1)電子銃をインライン状に配列した陰極線管に用い
る水・1′偏向コイルおよび垂直偏向コイルを有する偏
向装置r−1において、リング状のコアの周囲に6絹の
コイルを巻回して6極磁界を」;記コア内に発生させる
6極コイルを設け、上記垂直偏向コイルに流れる114
:流の一部を6極フイルに分流させるように構成したこ
とを特徴とする陰極線管用偏向装置。
(1) In the deflection device r-1, which has a water-1' deflection coil and a vertical deflection coil, used in a cathode ray tube in which electron guns are arranged in-line, 6 silk coils are wound around a ring-shaped core. A six-pole coil is provided in which a polar magnetic field is generated in the core, and a 114-pole coil is provided that generates a polar magnetic field in the vertical deflection coil.
: A deflection device for a cathode ray tube, characterized in that it is configured to divert a part of the flow to a hexode film.
(2)6極コイルと並列にnf変抵抗を接続し、6極コ
イルにl/lF、れるili流を制御可能にしてなる特
許請求の範囲第1ダ1記載の陰極線管用偏向装置。
(2) The deflection device for a cathode ray tube according to claim 1, wherein an NF variable resistor is connected in parallel with the 6-pole coil so that the ili current flowing to the 6-pole coil can be controlled by 1/1F.
(3)リング状のコアとして、透磁4zが低く磁気的に
ほぼ空心とrt(価であるとみなし得る材料を用いてな
る#1「詐請求の範囲第1項記載の陰極線管用偏向装置
(3) The deflection device for a cathode ray tube according to claim 1, wherein the ring-shaped core is made of a material that has a low magnetic permeability 4z and can be considered to be magnetically almost air-core.
JP20774083A 1983-11-04 1983-11-04 Deflection device for cathode-ray tube Pending JPS60100341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20774083A JPS60100341A (en) 1983-11-04 1983-11-04 Deflection device for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20774083A JPS60100341A (en) 1983-11-04 1983-11-04 Deflection device for cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS60100341A true JPS60100341A (en) 1985-06-04

Family

ID=16544747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20774083A Pending JPS60100341A (en) 1983-11-04 1983-11-04 Deflection device for cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS60100341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154441A (en) * 1985-12-25 1987-07-09 Mitsubishi Electric Corp Deflecting yoke device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154441A (en) * 1985-12-25 1987-07-09 Mitsubishi Electric Corp Deflecting yoke device

Similar Documents

Publication Publication Date Title
US4357586A (en) Color TV display system
US3930185A (en) Display system with simplified convergence
JPS5811070B2 (en) color color
JPS63225462A (en) Color picture tube
EP0232948B1 (en) Device for displaying television pictures and deflection unit therefor
JPS60100341A (en) Deflection device for cathode-ray tube
US6326742B1 (en) Color CRT with cross-misconvergence correction device
JPS63261659A (en) Display device having combination of display tube and deflection unit
US6072547A (en) Color display device
EP0270153B1 (en) Picture display device
EP0787353B1 (en) Colour cathode ray tube having a centring cup
EP0310242B1 (en) Colour display system including a self-converging deflection yoke providing raster distortion correction
GB2179493A (en) Deflection distortion correction device
US6686708B2 (en) Display device comprising a deflection unit
JPS60100342A (en) Deflection device for cathode-ray tube
US3857057A (en) Colour television display apparatus provided with a picture display tube with electron beams generated in one plane
KR20000057411A (en) Ferrite ring and holder for beam correction in a CRT
KR100238511B1 (en) Deflection apparatus for cathode ray tube
US4117379A (en) Method of adjusting a magnetic deflection unit of a cathode ray tube, cathode ray tube having a deflection unit or reference points adjusted according to said method, and a deflection unit provided with reference points adjusted according to said method
US3588566A (en) Electromagnetic deflection yoke having bypassed winding turns
JPS5815384A (en) Color picture tube
KR100319091B1 (en) How to adjust the purity and convergence of cathode ray tube
JP3436002B2 (en) Color picture tube equipment
JPH0391392A (en) Color deflection yoke device
JPH1021845A (en) Convergence correcting apparatus