JPS60100097A - Manufacture of neutron protective material - Google Patents

Manufacture of neutron protective material

Info

Publication number
JPS60100097A
JPS60100097A JP18776084A JP18776084A JPS60100097A JP S60100097 A JPS60100097 A JP S60100097A JP 18776084 A JP18776084 A JP 18776084A JP 18776084 A JP18776084 A JP 18776084A JP S60100097 A JPS60100097 A JP S60100097A
Authority
JP
Japan
Prior art keywords
fibers
fiber
protective material
neutron
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18776084A
Other languages
Japanese (ja)
Inventor
垣花 秀武
岡本 真実
靖彦 藤井
小口 登
武捨 衛人
徳久 宮松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP18776084A priority Critical patent/JPS60100097A/en
Publication of JPS60100097A publication Critical patent/JPS60100097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Glass Compositions (AREA)
  • Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は可撓性に富んだ中性予防護材の製法に関する。[Detailed description of the invention] The present invention relates to a method for producing a highly flexible neutral protective material.

従来より原子炉或いは加速器等で発生する中性子を悪性
腫瘍等の患部に照射する中性子線による治療における患
部以外の中性子被曝を防止するための成形加工が容易で
かつ柔軟なる防護材、また原子力産業の発達に伴い特に
緊急事態発生時等における作業員の中性子被曝を最小限
にするための軽量で作業性容易なる保護材の開発が望ま
れている。
Conventionally, neutron beams generated in nuclear reactors or accelerators are used to irradiate affected areas such as malignant tumors to protect materials that are easy to mold and flexible to prevent exposure to neutrons other than the affected areas, and are also used in the nuclear industry. As technology advances, it is desired to develop protective materials that are lightweight and easy to work with, in order to minimize the exposure of workers to neutrons, especially in the event of an emergency.

本発明者等はかかる現状に鑑み特に可撓性に富み、かつ
成形加工の容易な中性予防護材の開発について鋭意検討
を重ねた結果、遂に本発明に到達した。
In view of the current situation, the inventors of the present invention have conducted intensive studies on the development of a neutral protective material that is particularly flexible and easy to mold, and as a result, they have finally arrived at the present invention.

即ち本発明はイオン交換性を有する繊維に少くとも一種
の中性子吸収能を有し、かつ100バーン(barn 
) 以上の反応性を有する原子又は該原子を含んでなる
イオン或いは化合物を吸着せしめることからなる中性予
防護材の製法にある。
That is, the present invention provides fibers with ion-exchange properties that have at least one type of neutron absorption ability and a 100-barn fiber.
) A method for producing a neutral protective material comprising adsorbing an atom having the above reactivity or an ion or a compound containing the atom.

本発明によって得られる中性予防護材は繊維状であり、
従来のタイル、重コンクリート等の可撓性に乏しい板状
のものに比べ軽量かつ極めて可撓性に富む柔軟なシート
状物、糸状物、綿状物等を任意かつ最適の形態で得るこ
とができ、更にこれらの成形品から或いは直接通常の繊
維におけると同様な毛布、衣服等の成形品として得るこ
とも出来る。
The neutral preventive material obtained by the present invention is fibrous,
It is possible to obtain flexible sheet-like materials, thread-like materials, floc-like materials, etc., which are lighter and extremely flexible than conventional plate-like materials such as tiles and heavy concrete that lack flexibility, in any desired and optimal form. Moreover, it can also be obtained from these molded products or directly as molded products such as blankets, clothing, etc. similar to those obtained from ordinary fibers.

中性子はそれ自身の持つ運動エネルギーによって他の原
子との反応性が異なり、一般的にはそのエネルギーの低
いもの程反応性が犬である。
Neutrons differ in their reactivity with other atoms depending on their own kinetic energy, and generally speaking, the lower the energy, the more reactive the neutron is.

そのエネルギーが約0,025 eV (エレクトロン
ボルト)程度(これは常温の粒子の熱運動程度)のもの
を通常熱中性子と呼び実用型原子炉のウラン核***や医
療用に用いられているものである。
Those whose energy is about 0,025 eV (electron volt) (this is about the thermal motion of particles at room temperature) are usually called thermal neutrons and are used in uranium fission in practical nuclear reactors and in medical applications. .

また前述の反応性は、中性子と反応原子との反応(吸収
、散乱等)断面積の大きさで示され単位はバーン(ba
rn )またはミリバーン(n+1111barn )
 で表わされるものである。(1バーンは10crrL
!である) 本発明における中性子吸収能を有する原子としては、1
00バーン以上の反応性を有するものなら用いることが
可能であるが、例えば Ll。
Furthermore, the above-mentioned reactivity is indicated by the size of the reaction cross section (absorption, scattering, etc.) between neutrons and reactant atoms, and the unit is burn (baan).
rn) or millibarn (n+1111barn)
It is expressed as (1 burn is 10crrL
! ) In the present invention, atoms having neutron absorption ability include 1
Any material having a reactivity of 00 burn or higher can be used; for example, Ll.

10B、 +13cd、 !4゜Sm 、 ″”Eu 
、 ”1IGd 、 ”Gd 、 ”’Yb 。
10B, +13cd, ! 4゜Sm, ″”Eu
, ``1IGd, ``Gd, ``'Yb.

+76Lu なる同位体が好ましく用いられる。中でも
 Llは、天然リチウム中に7.4%しか存在していな
いが、中性子を吸収する反応の際γ線を放出しないので
非常に優れたものであり、また10Bも大きな吸収断面
積を持ちかつ天然硼素中に約20%存在しているので非
常に優れたものである。従って、本発明では Ll又は
 Bなる同位体を含む天然リチウム又は天然硼素を繊維
に固定させることは極めて好ましいことである。
The isotope +76Lu is preferably used. Among them, Ll exists in only 7.4% of natural lithium, but it is very excellent because it does not emit gamma rays during the reaction of absorbing neutrons, and 10B also has a large absorption cross section and It is extremely excellent because it exists in natural boron at about 20%. Therefore, in the present invention, it is extremely preferable to fix natural lithium or natural boron containing the isotope Ll or B to the fiber.

勿論これらの夫々の天然元素から分離濃縮した濃縮同位
体を用いるならば、更にすぐれた中性子吸収能力を示し
、有効な中性予防護材となしうるし、又防護材の厚さを
小さくすることによりより柔軟性に富んだものとなしう
る。
Of course, if concentrated isotopes separated and concentrated from each of these natural elements are used, they will exhibit even better neutron absorption ability and can be used as an effective neutral protective material, and by reducing the thickness of the protective material. It can be made more flexible.

繊維に固定せしめる中性子吸収能を有する原子の量とし
ては繊維重量に対して1%以上にするのがよい。
The amount of atoms having neutron absorption ability fixed on the fibers is preferably 1% or more based on the weight of the fibers.

以下、本発明による中性子吸収能を有する原子を含むイ
オン或いは化合物をイオン交換性を有する繊維又はその
集合体に繊維の吸着能を用いて吸着固定する方法につい
て述べる。
Hereinafter, a method according to the present invention for adsorbing and fixing ions or compounds containing atoms having neutron absorption ability onto fibers having ion exchange properties or aggregates thereof using the adsorption ability of the fibers will be described.

’Liを繊維に吸着させる場合で説明すると、’Liを
Li イオンとしてカチオン交換繊維に吸着せしめるこ
とにより行うことが出来る。
To explain the case where Li is adsorbed onto fibers, this can be done by adsorbing Li in the form of Li 2 ions onto cation exchange fibers.

用いられるカチオン交換繊維としてはスルフォン酸基、
カルボキシル基、フォスホン基等の酸性基を好ましくは
3. Omeq/p以上有するものがよく、例えばアク
リル繊維を架橋した後含有するニトリル基を加水分解し
てカルボキシル基を導入して得られる弱酸性カチオン交
換繊維は7、 Omeq//以上の高い交換容量の有す
るものを得ることも容易であって好ましく用いられる。
The cation exchange fibers used include sulfonic acid groups,
3. Acidic groups such as carboxyl groups and phosphonic groups are preferably used. For example, weakly acidic cation exchange fibers obtained by crosslinking acrylic fibers and then hydrolyzing the nitrile groups to introduce carboxyl groups have a high exchange capacity of 7, Omeq/p or more. It is also easy to obtain one that has one, so it is preferably used.

Liイオンのカチオン交換繊維への吸着はLiを含むL
iイオンとして水酸化リチウム(Li OH)の水溶液
を用い、遊離型のカチオン交換繊維と接触させれば殆ん
ど全交換基がLiイオンで満たされる。又塩化リチウム
(LI C1) 等塩の状態からの吸着も可能である。
The adsorption of Li ions onto cation exchange fibers is
If an aqueous solution of lithium hydroxide (Li 2 OH) is used as the i ion and brought into contact with a free cation exchange fiber, almost all exchange groups will be filled with Li ions. It is also possible to adsorb from the salt state of lithium chloride (LI C1).

更に必要に応じて、’LlをLiイオンとしてのみなら
ず中性塩の形で繊維に吸着させ、単位体積あたりの’L
i量を増大させることもできる。そのためには、交換容
(5) 量よりも過剰なLiイオンを含む水酸化リチウム(Li
OH)、炭酸リチウム(Ll、 Co3)水溶液とイオ
ン交換性繊維を接触させて後、水分を蒸発させればよい
Furthermore, if necessary, 'Ll can be adsorbed onto the fibers not only as Li ions but also in the form of a neutral salt to reduce 'Ll per unit volume.
It is also possible to increase the amount of i. For this purpose, lithium hydroxide (Li) containing Li ions in excess of the exchange volume (5)
OH), lithium carbonate (Ll, Co3) aqueous solution and the ion-exchangeable fibers may be brought into contact with each other, and then water may be evaporated.

又 Bの場合、 Bを含む硼酸(B(OH)1 ) s
硼砂(NIL、 B、07−10 H,O)等を用いて
、アニオン交換繊維と吸着させる。この場合用いるアニ
オン交換繊維としては1級、2級、3級のアミノ基およ
び第4級アンモニウム基等の塩基性基を好ましくは3.
 Omeq/P以上有するものがよく、例えばニトリル
基および又はハロゲン基を含有する繊維をポリエチレン
ポリアミン類でアミン化する、ポリスチレン繊維を架橋
後クロルメチル化しトリメチルアミン等積々のアミノ類
を反応せしめる等により得られる繊維等が用いられる。
In the case of B, boric acid containing B (B(OH)1) s
Adsorb it with the anion exchange fiber using borax (NIL, B, 07-10 H, O) or the like. The anion exchange fiber used in this case preferably contains basic groups such as primary, secondary, and tertiary amino groups and quaternary ammonium groups.
Those having Omeq/P or more are preferred, and can be obtained, for example, by aminating fibers containing nitrile groups and/or halogen groups with polyethylene polyamines, or by crosslinking polystyrene fibers, then chloromethylating them, and reacting with a number of aminos such as trimethylamine. Fibers etc. are used.

又 Bを用いる場合の吸着は硼酸の水溶液と遊離型(O
)I型)のアニオン交換繊維と接触さすことにより容易
に行うことができる。
In addition, when using B, adsorption is performed between an aqueous solution of boric acid and the free form (O
) This can be easily carried out by contacting the anion exchange fiber of type I).

さらに両性イオン交換繊維を用いてLi、B(6) を同時に吸着させることもできる。Furthermore, using amphoteric ion exchange fiber, Li, B(6) can also be adsorbed at the same time.

以下実施例にて本発明を説明するが、本発明はこの実施
例のみに限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 アクリロニトリル93重量%、臭化ビニル7重量%から
なる共重合体繊維(繊維直径21μ)の綿をカーディン
グマシーンにかけてウェブシートにし、ニードルパンチ
ングを行って厚さ3、5 mm、単位重量780〜(乾
燥重量)のフェルト状物を得た。このフェルト状繊維に
ペンタエチレンへキサミンを反応せしめ交換容量6、2
 meq、7 (乾燥繊維)のフェルト状弱塩基性アニ
オン交換繊維を得た。
Example 1 Cotton copolymer fiber (fiber diameter 21μ) consisting of 93% by weight of acrylonitrile and 7% by weight of vinyl bromide was made into a web sheet by carding machine and needle punched to a thickness of 3.5 mm and unit weight. A felt-like product weighing 780~(dry weight) was obtained. This felt fiber was reacted with pentaethylenehexamine and the exchange capacity was 6.2.
A felt-like weakly basic anion exchange fiber with a meq of 7 (dry fiber) was obtained.

次にこのフェルト状弱塩基性アニオン交換繊維をまず0
.5N−苛性ソーダ水溶液でOH型にコンディショニン
グし、これを飽和硼酸水溶液に浸漬し、更に脱水乾燥す
ることによって厚さ6.8mm、目付1300 P/r
?の硼酸型アニオン交換繊維のフェルト状物を得た。
Next, this felt-like weakly basic anion exchange fiber was first
.. Conditioned to OH type with a 5N caustic soda aqueous solution, immersed in a saturated boric acid aqueous solution, and further dehydrated and dried to a thickness of 6.8 mm and a basis weight of 1300 P/r.
? A felt-like product of boric acid type anion exchange fiber was obtained.

中性子を吸収する能力を有するのは硼素の同位体 Bで
あり天然硼素中に約20%存在しており、本実施例にお
いては天然硼素の硼酸および濃縮InBの硼酸を用いた
。これらのフェルト状物に原子炉から得られる熱中性子
線(o、25eV程度の低エネルギー中性子線)を照射
して中性子透過率を測定することにより中性子吸収能力
を試験した結果は第1表の通りである。
Boron isotope B has the ability to absorb neutrons and is present in about 20% of natural boron. In this example, boric acid of natural boron and boric acid of concentrated InB were used. The neutron absorption ability was tested by irradiating these felt-like materials with thermal neutron beams (low-energy neutron beams of about 25 eV) obtained from nuclear reactors and measuring the neutron transmittance. The results are shown in Table 1. It is.

第1表 これらの結果から硼素を含有しない弱塩基性アニオン交
換繊維によるフェルト状物では水素等による僅かの吸収
散乱等を示すが中性予防護材としては不充分であるが硼
素を含有する硼酸型アニオン交換繊維によるフェルト状
物は顕著な中性子吸収能を有することが明らかである。
Table 1 These results show that felt-like materials made of weakly basic anion exchange fibers that do not contain boron exhibit slight absorption and scattering due to hydrogen, etc., but are insufficient as neutral preventive materials. It is clear that felts made of type anion exchange fibers have significant neutron absorption capacity.

実施例2 塩化ビニル52重量%、アクリロニトリル48重量%か
らなる共重合体繊維(繊維直径20μ)の綿をカーディ
ングマシーンにかけウェブシートとし、更にニードルパ
ンチングを行って厚さ4.2龍、単位重量800υ−(
乾燥重量)のフェルト状物を得た。このフェルト状およ
び綿状の繊維を苛性ソーダ水溶液中で加水分解し、交換
容量6.8 meq//(乾燥繊維)のフェルト状およ
び綿状の弱酸性カチオン交換繊維を得た。
Example 2 Cotton copolymer fibers (fiber diameter 20μ) consisting of 52% by weight of vinyl chloride and 48% by weight of acrylonitrile were processed into a web sheet using a carding machine, and then needle punched to a thickness of 4.2 mm and unit weight. 800υ-(
A felt-like material of dry weight) was obtained. The felt-like and cotton-like fibers were hydrolyzed in a caustic soda aqueous solution to obtain felt-like and cotton-like weakly acidic cation exchange fibers having an exchange capacity of 6.8 meq// (dry fiber).

次にこのフェルト状および綿状の弱酸性カチオン交換繊
維を2N−塩酸にてH型にコンディショニングし、これ
をIM−水酸化リチウム水溶液に浸漬し’Liを吸着さ
せ脱水乾燥する。
Next, the felt-like and cotton-like weakly acidic cation exchange fibers are conditioned into H-type with 2N hydrochloric acid, and then immersed in an IM-lithium hydroxide aqueous solution to adsorb 'Li and dehydrate and dry.

2枚の上記リチウム型カチオン交換繊維のフ(9) エルト状物の間にリチウム型カチオン交換繊維綿と弗化
リチウムを混合したものをサンドインチ状にはさみ、こ
れを糸で縫い合せ柔軟性のある中性予防護材を得た。又
同様にして硼素型アニオン交換繊維綿と硼酸を混合した
ものをサンドイッチ状にはさんだ防護材を得た。
A mixture of lithium-type cation-exchange fiber cotton and lithium fluoride is sandwiched between two sheets of the above-mentioned lithium-type cation-exchange fiber cloth (9) in the form of a sandwich, and the fabric is sewn together with thread to make it flexible. Obtained some neutral protective material. Similarly, a protective material was obtained in which a mixture of boron type anion exchange fiber cotton and boric acid was sandwiched.

これらに実施例1と同様に原子炉から得られた熱中性子
線を照射し、中性子透過率を測定し第2表の結果を得た
These were irradiated with thermal neutron beams obtained from a nuclear reactor in the same manner as in Example 1, and the neutron transmittance was measured to obtain the results shown in Table 2.

第2表 (10) 以上のよ5に本発明による防護材は、軽くて柔軟性のあ
る中性子吸収能を有するものであり、毛布或いは衣服等
に成形加工出来るものであり、特に中性子照射治療法に
て非患部の中性子からの被曝防護用として軽量で、かつ
人体に対する接触状態も良好なるものであり、本発明は
工業的に極めて意義が太きいものである。
Table 2 (10) As shown in 5 above, the protective material according to the present invention is light, flexible, and has neutron absorption ability, and can be molded into blankets, clothing, etc., and is particularly suitable for neutron irradiation therapy. The present invention is of great industrial significance as it is lightweight and provides good contact with the human body for protecting non-affected areas from neutron radiation.

(11)(11)

Claims (1)

【特許請求の範囲】 1、 イオン交換性を有する繊維に少くとも一種の中性
子吸収能を有し、且つ100パーン(barn ) 以
上の反応性を有する原子を含むイオン或いは化合物を吸
着せしめることを特徴とする中性予防護材の製法。 2、 イオン或いは化合物として L1イオン或いはI
oB (OH)、を用いる特許請求の範囲第1項記載の
中性予防護材の製法。
[Scope of Claims] 1. A fiber having ion-exchange properties is characterized by adsorbing ions or compounds containing atoms having at least one kind of neutron absorption ability and having a reactivity of 100 barns or more. A method for manufacturing neutral preventive materials. 2. As an ion or compound L1 ion or I
A method for producing a neutral protective material according to claim 1, using oB (OH).
JP18776084A 1984-09-07 1984-09-07 Manufacture of neutron protective material Pending JPS60100097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18776084A JPS60100097A (en) 1984-09-07 1984-09-07 Manufacture of neutron protective material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18776084A JPS60100097A (en) 1984-09-07 1984-09-07 Manufacture of neutron protective material

Publications (1)

Publication Number Publication Date
JPS60100097A true JPS60100097A (en) 1985-06-03

Family

ID=16211720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18776084A Pending JPS60100097A (en) 1984-09-07 1984-09-07 Manufacture of neutron protective material

Country Status (1)

Country Link
JP (1) JPS60100097A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989098A (en) * 1972-12-29 1974-08-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989098A (en) * 1972-12-29 1974-08-26

Similar Documents

Publication Publication Date Title
US6310355B1 (en) Lightweight radiation shield system
US2796411A (en) Radiation shield
US2796529A (en) Radiation shield
JP2017519205A (en) Radiation shielding composition and method for producing the same
Shichalin et al. Hydrothermal synthesis and spark plasma sintering of NaY zeolite as solid-state matrices for cesium-137 immobilization
Burns et al. The structures of becquerelite and Sr-exchanged becquerelite
CN100595846C (en) Radiation protection material
Abdel-Galil et al. Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions
Luo et al. Crystal chemistry of Th in fluorapatite
JPS60100097A (en) Manufacture of neutron protective material
Jubin Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents
Zeng et al. Development of polymer composites in radiation shielding applications: a review
JPS6048718B2 (en) Neutron protection material
Mostafa et al. Sorption of Mo (VI) on zirconium molybdosilicate gel and potential application as a 99 Mo/99 m Tc generator
Harkin et al. The exchange of caesium and hydrogen ions on zirconium phosphate
Sakr et al. Comparison studies between cement and cement-kaolinite properties for incorporation of low-level radioactive wastes
Chmielewská-Horváthová et al. Iodide adsorption on the surface of chemically pretreated clinoptilolite
Slabaugh The synthesis of organo-bentonite anhydrides
Szirtes et al. Investigations on some inorganic ion-exchangers after irradiation
JPS6264998A (en) Radiation shielding material
Yamazaki et al. Effect of heat treatment of hydrous metal oxides on their cation-exchange selectivity.
Someda et al. Application of a carbonized apricot stone for the treatment of some radioactive nuclei
RU2801938C1 (en) Silver-containing sorbent for anionic forms of radioactive iodine
Zouad et al. Fixation of strontium on polyantimonic acid
Szirtes Inorganic Ion Exchangers in Radiochemical Analysis