JPS5999255A - High-sensitive analysis of saccharide - Google Patents

High-sensitive analysis of saccharide

Info

Publication number
JPS5999255A
JPS5999255A JP57207729A JP20772982A JPS5999255A JP S5999255 A JPS5999255 A JP S5999255A JP 57207729 A JP57207729 A JP 57207729A JP 20772982 A JP20772982 A JP 20772982A JP S5999255 A JPS5999255 A JP S5999255A
Authority
JP
Japan
Prior art keywords
reaction
copper
elute
saccharides
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57207729A
Other languages
Japanese (ja)
Other versions
JPH044546B2 (en
Inventor
Noriyuki Watanabe
渡邊 訓行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57207729A priority Critical patent/JPS5999255A/en
Publication of JPS5999255A publication Critical patent/JPS5999255A/en
Publication of JPH044546B2 publication Critical patent/JPH044546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed

Abstract

PURPOSE:To make a high-sensitive analysis of traces of saccharides with a simple apparatus by passing a soln. contg. saccharides through a liquid chromatographic column, reacting the separated saccharide soln. with a specific copper complex compd. and analyzing each saccharide with an electrochemical detector. CONSTITUTION:A mixed liquor of an elute from an elute tank 1 and a soln. contg. saccharides from a sample injecting valve 7 is sent into a gel permiation chromatographic column 8 using a filler for cation exchanges. A copper-bisphenanthroline complex or a copper-bipyridine complex (abbreviated as reaction reagent) is supplied froma storage tank 2 to the elute from the column 8, and mixed with the elute from the column 8 at a T-tube 9 to react in a reaction coil in a reaction tank 10 under a comparatively mild condition. The oxidation reduction potential from Cu<++11> <to> C<u+> is measured with a detector 12. The concn. of the reaction reagent ranging from 3.0-8.0mM is suitable for peak measurement.

Description

【発明の詳細な説明】 弱い反応性を利用した電気化学検出器を用いる糖類の高
感度分析法である。
[Detailed Description of the Invention] This is a highly sensitive analysis method for sugars using an electrochemical detector that takes advantage of weak reactivity.

液体クロマトグラフィーは、ガスクロマトグラフィーに
比較して適応部,囲が広く、特に揮発性の低い化付物の
分析手段として汎用されている。糖類は水に対する溶解
度が極めて冒<、かつ揮発性が低く、液体クロマトグラ
フィーに最も適した化合物の一つであり、多くの分析例
がある。しかしながら、糖類は紫外部における吸光係数
が極めて小さく、液体クロマトグラフィーの高感度検出
器として汎用されている紫外可視検出器の適用に限界が
あり、紫外可視検出器を用いた糖類の実用分析例は極め
て少ない。一般的には糖類の検出には、示差屈折計が用
いられているが、感庸の面で制限があり、数マイクログ
ラムが実用的な検出限界である。
Liquid chromatography has a wider range of applications than gas chromatography, and is widely used as a means of analyzing compounds with low volatility. Sugars have extremely low solubility in water and low volatility, making them one of the compounds most suitable for liquid chromatography, and there are many examples of analysis. However, the extinction coefficient of saccharides in the ultraviolet region is extremely small, and there are limits to the application of UV-visible detectors, which are commonly used as high-sensitivity detectors for liquid chromatography. Very few. Differential refractometers are generally used to detect sugars, but they are limited in sensitivity and the practical detection limit is several micrograms.

すなわち、微量の糖類、すなわち、ナノグラムの糖類、
特に分子量の低い糖類の直接検出は極めて困難であるの
が現状である。従って、微量の糖類の検出方法として、
糖類と吸光係数の大きな誘導体化試薬とをあらかじめ反
応せしめ得られる糖の誘導体を分離して分光的に検出す
るプレラベル反応型検出法あるいは分離カラムから分離
して溶出してくる糖類と反応試薬とを連続的に反応せし
め、生成する反応生成物を分光的に検出するポストラベ
ル反応型検出法が行なわれている。
That is, trace amounts of sugars, i.e. nanograms of sugars,
In particular, it is currently extremely difficult to directly detect sugars with low molecular weights. Therefore, as a method for detecting trace amounts of sugars,
A pre-label reaction detection method involves reacting a saccharide with a derivatization reagent with a large extinction coefficient in advance, separating the obtained sugar derivative, and detecting it spectroscopically, or a pre-label reaction detection method in which the saccharide and the reaction reagent are separated and eluted from a separation column. A post-label reaction detection method has been used in which a reaction is caused continuously and the reaction products produced are detected spectroscopically.

しかし、プレラベル反応型検出法においては、−m類の
糖類から得られる誘導体が二種以上におよぶ場合があり
、定量精度の面のみならず、8棹類の糖類の同時分析に
際して得られる誘導体が2×n種以−ヒにおよぶ場合が
あり、実用性の面でも問題がある。さらに、ボストラベ
ル反応型検出法においては、反応試薬として、オルシノ
ール硫酸。
However, in the pre-label reaction detection method, there are cases where two or more types of derivatives are obtained from the -m class of saccharides, and this not only improves quantitative accuracy, but also reduces the number of derivatives obtained during simultaneous analysis of eight saccharides. There may be more than 2×n types, which poses a problem in terms of practicality. Furthermore, in the Bostravel reaction-type detection method, orcinol sulfate is used as a reaction reagent.

エチレンジアミンそしてシアノアセトアミド等が検討さ
れているが、糖類との反応条件が苛酷である場合、反応
の選択性が低い場合、糖類の分離条件、特に、溶離液組
成に制限がある場合があり、汎用性の面で間頴があるだ
けでなく、検出器として蛍光検出器を用いる場合、感度
的には紫外可視検出器よりは改善されるが、いずれも高
価な種々の光源と高価な回折格子とを組み合せて用いろ
分光的検出法であり、感度の面のみならず、検出器がよ
り高価となる点、さらには検出器の小型軽惜化が困難で
ある点好ましい方法とは言い難い。
Ethylenediamine and cyanoacetamide are being considered, but if the reaction conditions with sugars are harsh, if the reaction selectivity is low, or if there are restrictions on the separation conditions for sugars, especially the eluent composition, they may not be suitable for general use. Not only are there differences in terms of performance, but when using a fluorescence detector as a detector, the sensitivity is improved compared to an ultraviolet-visible detector, but both require various expensive light sources and expensive diffraction gratings. This is a spectroscopic detection method that uses a combination of two methods, and is not a desirable method not only in terms of sensitivity but also in that the detector is more expensive and furthermore, it is difficult to make the detector smaller and lighter.

本発明者は、上記従来法の欠点の改良について成に制限
を加えることなく、分離カラムからの溶出液中の糖類と
銅−ビスフェナントロリン錯体あるいは銅−ビピリジン
錯体(以下、反応試薬と略す)とを比較的ン昌和な条件
にて連続的に反応せしめ、生成する価数の変化した銅−
錯体をより選択的に、かつ、より都感度に検出するボス
トラベル反応型液体クロマトグラフィーを見い出し本発
明を完成した。
In order to improve the drawbacks of the conventional method described above, the present inventors have proposed that the saccharide in the eluate from the separation column be combined with a copper-bisphenanthroline complex or a copper-bipyridine complex (hereinafter abbreviated as the reaction reagent). are reacted continuously under relatively moderate conditions, producing copper with a changed valence.
The present invention was accomplished by discovering a Bostravel reaction type liquid chromatography that detects complexes more selectively and with greater sensitivity.

すなわち、本発明は検出器として電気化学検出器を用い
た反応型液体クロマトグラフィーにて溶液中の糖類を分
析するにあたり、糖類と佃−ビスフェナントロリン錯体
または銅−ビピリジン錯体なボストラベル的に反応させ
る糖類の高感度分析法を提供するものである。
That is, in analyzing sugars in a solution by reactive liquid chromatography using an electrochemical detector as a detector, the present invention involves reacting sugars with a Tsukuda-bisphenanthroline complex or a copper-bipyridine complex in a boss label manner. This provides a highly sensitive analytical method for sugars.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の一申施態様を第1図のフローダイヤグラムに示
し、第1図に基づいて本発明を説明する。
An embodiment of the present invention is shown in the flow diagram of FIG. 1, and the present invention will be explained based on FIG.

第1図は、主たる部分として試料注入パルプ(7)と前
記試料注入パルプ(7)から注入された試料を分離する
分離カラム(8)と前記分離カラム(8)からの溶出成
分に反応試薬貯槽(2)からの反応試薬を丁字管(9)
により混付し、混合された試料と反応試薬とを連続的に
、反応槽a〔に浸漬されている反応コイルQl+で反応
させ、生成した反応生成物を電気化学締出器O3で締出
する方法である。なお、前記分離カラム(8)へ溶離液
貯槽(1)から溶#液および反応試薬貯槽(2)から反
応試薬を安定に送液する定流骨送液ポンプ+31. (
41、圧力変動低波のためのダンパー(5)。
Figure 1 shows, as the main parts, a sample injection pulp (7), a separation column (8) for separating the sample injected from the sample injection pulp (7), and a reaction reagent storage tank for the eluted components from the separation column (8). Pour the reaction reagent from (2) into the clove tube (9).
The mixed sample and reaction reagent are continuously reacted in the reaction coil Ql+ immersed in the reaction tank a, and the generated reaction products are excluded by the electrochemical exclusion device O3. It's a method. In addition, a constant flow bone liquid feeding pump +31. (
41. Damper (5) for pressure fluctuation low waves.

(6)および通常設置されている記録計03を由いるも
のである。
(6) and the normally installed recorder 03.

本発明における分啼カラム(8)に用いる分離用光てん
剤および溶離液は通常の分離モードに用いられる任童の
絹み台せを用いることができる。すなわち、糖類の分離
を行うための充てん剤と溶離液との相み会せは、分離機
構により(イ)主に糖類の溶液中での分子サイズにより
分離を行なうモードであるゲルろ憫クロマトグラフィー
において由いらtt、bゲルろ適用光てん剤あるいはカ
チオン交換用充てん剤および溶離液として純水または塩
類あるいは水溶性有機溶媒を含む水溶液、(ロ)主に糖
類と充てん剤との間に生じろ分配・吸着力の差により分
離を行うモードである分配・吸着クロマトグラフィーに
おいて用いられろアミノ基をもつ充てん剤および溶離液
として水溶性有機溶媒と水の混脅系、C→糖類がホウ階
緩衝液中でアニオン性化合物となることを利用する分離
モードであるイオン交換クロマトグラフィーに用いられ
るアニオン交換用充てん剤およびホウ酸緩衝液を挙げる
ことができるが、特に(イ)のゲルろ過クロマトグラフ
ィーにおいてカチオン交換用充てん剤と純水の組み合せ
が好ましい。
As the separation agent and eluent used in the separation column (8) of the present invention, Nendo's Kinumidaiba, which is used in a normal separation mode, can be used. In other words, the combination of packing material and eluent to separate saccharides is achieved by the separation mechanism (a) gel filtration chromatography, which is a mode in which saccharides are separated mainly by molecular size in solution; (b) Gel filtration applied photonic agent or cation exchange packing agent and an aqueous solution containing pure water or salts or a water-soluble organic solvent as an eluent; In partition/adsorption chromatography, which is a mode of separation based on the difference in distribution/adsorption power, it is used as a packing material with an amino group and a mixed system of water-soluble organic solvent and water as the eluent. Examples include anion exchange packing materials and boric acid buffers used in ion exchange chromatography, which is a separation mode that utilizes the fact that compounds form anionic compounds in a liquid. A combination of a cation exchange packing agent and pure water is preferred.

本発明に用いる反応試薬は、電気化学的に活性である必
要があるが、一般的には可逆的な酸化遣元性を示す万が
好ましく、さらに好ましくは、酸化遣元電位が低く、糖
類と比較的容易に反応する金属イオン、特に、二価の鋼
イオンが比較的容易に糖類と定量的に反応して一価の銅
イオンとなる状態と一価の銅イオンが電気化学検出器に
て容易に、しかも定量的に検出される可逆的な状態を作
り出″′r鋼−ビスフェナントロリン錯体あるいは銅−
ビピリジン錯体を挙げろことができる。その濃度は五〇
〜aomM、好ましくは五5〜5.5庵の濃度範囲で用
いるものである。濃度が8.0 mMを越えると得られ
るピークの高さは高くなるが、ノイズレベルも高くなり
、一方、3.0mM未満ではノイズレベルは低くなるが
ピーク高も低くなり好ましくない。
The reaction reagent used in the present invention needs to be electrochemically active, but it is generally preferable that it exhibits reversible oxidation site property, and more preferably, it has a low oxidation site potential and is highly reactive with sugars. Metal ions that react relatively easily, especially divalent steel ions, react quantitatively with sugars to form monovalent copper ions, and monovalent copper ions can be detected using an electrochemical detector. Creates a reversible state that is easily and quantitatively detected.
One can mention bipyridine complexes. The concentration used is in the range of 50 to 5.5 amM, preferably 55 to 5.5 am. If the concentration exceeds 8.0 mM, the peak height obtained will be high, but the noise level will also be high. On the other hand, if the concentration is less than 3.0 mM, the noise level will be low, but the peak height will also be low, which is not preferable.

本発明におけろ電気化学検出器のセルは、通常用いられ
る作J+]電極にグラッシーカーボン、参照IF極に費
−塩化@電極、そして補助電極としてステンレスより構
成されているセルを用いても伺らさしつかえないが、そ
の作用電極の印加電圧は5〜100 mV、好ましくは
30〜s o mVである。
In the present invention, the cell of the electrochemical detector can be constructed by using a cell constructed of glassy carbon for the commonly used electrode, a chloride@electrode for the reference IF electrode, and stainless steel as the auxiliary electrode. However, the applied voltage of the working electrode is between 5 and 100 mV, preferably between 30 and so mV.

印加電圧を変化させた場合、糖と反応した一価の銅−鎖
体のピーク高は変化する。従って、定量積度をあげるた
めには、このピーク高が一定となる、すなわち、限界電
流が得られる印加電圧を設定するが、100mVを越え
ると、また5mV未満では信号とノイズの比(S/N 
)から感明の面で不利となり好ましくない。
When the applied voltage is changed, the peak height of monovalent copper chains reacted with sugar changes. Therefore, in order to increase the quantitative integration, the applied voltage is set so that the peak height remains constant, that is, the limiting current is obtained, but if it exceeds 100 mV or less than 5 mV, the signal-to-noise ratio (S/ N
), which is disadvantageous in terms of sensitivity and is therefore undesirable.

本発明において糖類と反応試薬との反応率は、糖類濃度
を一定とした場合、銅−錯体の種類と反応試薬液σ)p
H9反応温度、そして反応時間に影響を受けるが、糖の
種類により信適な反応条件、特に反応時間が変化する場
合があるので、目的とする糖類により多少ではあるが、
反応条件が変わる場合がある。しかし、一般に糖類の分
離は、分離カラムと溶離液が固定された場合、溶離液の
流速に影響を受けるが、分析時間との関係で03〜2、
0 ml 7分の範囲が好ましい。反応試薬液のpHは
、pH10,5以上好ましくはpI(10,8〜11.
7の間で安定した最高のピーク高が得られろ。なお、反
応試薬液のpHの調整には緩衝作用を持ち、化学的に安
定な緩衝液を用いることかでλる。
In the present invention, the reaction rate between the saccharide and the reaction reagent is determined by the type of copper complex and the reaction reagent solution σ)p when the saccharide concentration is constant.
Although it is affected by the H9 reaction temperature and reaction time, the reliable reaction conditions, especially the reaction time, may change depending on the type of sugar, so depending on the target sugar,
Reaction conditions may vary. However, in general, separation of saccharides is affected by the flow rate of the eluent when the separation column and eluent are fixed.
A range of 0 ml 7 minutes is preferred. The pH of the reaction reagent solution is pH 10.5 or higher, preferably pI (10.8-11.
A stable maximum peak height can be obtained between 7 and 7. Note that the pH of the reaction reagent solution can be adjusted by using a chemically stable buffer solution that has a buffering effect.

溶離液の流速が一定の場合、反応試薬液の流速が溶離液
の流速の1.2倍以上、好ましくは1.5倍以上の時ピ
ーク高が最高となるが、10倍以上となると逆にピーク
高が低くなる。従って分離モードあるいは対象とする糖
のs類により好ましい流速は変化するが、溶離液に対し
1.5倍以上、10倍未満の反応試薬液を流すことが好
ましい。
When the flow rate of the eluent is constant, the peak height is highest when the flow rate of the reaction reagent solution is 1.2 times or more, preferably 1.5 times or more, the flow rate of the eluent, but the opposite occurs when the flow rate is 10 times or more. The peak height becomes lower. Therefore, although the preferred flow rate changes depending on the separation mode or the target saccharide class, it is preferable to flow the reaction reagent solution at least 1.5 times and less than 10 times the amount of the eluent.

反応槽の温度は反応液(溶離液と反応試薬液との混付液
)に気泡が発生しない範囲で高い方がpく、また温度の
変動がベースラインのドリフトになるため一9湛度に保
つ必要があるが、70℃以上、好ましくは85〜98℃
が望ましい。70℃未満では満足′t、【ピーク高が得
られ雉い。
The temperature of the reaction tank should be as high as possible without generating bubbles in the reaction solution (mixture of eluent and reaction reagent solution), and temperature fluctuations cause baseline drift, so the temperature should be set at 19°C. It is necessary to maintain the temperature at 70°C or higher, preferably 85-98°C.
is desirable. If it is below 70°C, it is satisfactory, and the peak height is obtained.

反応時間は反応液流速が一定の時、反応、コイルの内径
と長さに比例する。内径が大きい程、短くて也いが、内
径が[18朋以上のコイルを用いると分離カラムにて分
離した糖類の分離状態が反応中に悪くなり好ましくない
。一方、内径が0.211I+以下の場合、分離状態の
悪化はほとんど認められないが反応コイルの長さが必要
以上に長くなり、抵抗の増加による使いKくさ、ゴミ等
の詰りによる使いにくさが生じ実用的でなくなる。従っ
て、反応コイルの内径は03〜α7nが好ましい。
The reaction time is proportional to the inner diameter and length of the reaction coil when the flow rate of the reaction solution is constant. The larger the inner diameter, the shorter the length, but if a coil with an inner diameter of 18 mm or more is used, the state of separation of the saccharides separated in the separation column will deteriorate during the reaction, which is not preferable. On the other hand, when the inner diameter is 0.211I+ or less, there is almost no deterioration in the separation condition, but the length of the reaction coil becomes longer than necessary, making it difficult to use due to increased resistance and clogging due to dust etc. and become impractical. Therefore, the inner diameter of the reaction coil is preferably 03 to α7n.

反応コイルの長さが長くなる稗、ピーク高が高くなる傾
向を示すが、その長さが0.5 m以上、好ましくけ3
〜10mで安定した最高のピーク高が得られろ。
As the length of the reaction coil increases, the peak height tends to increase, but the length is preferably 0.5 m or more.
A stable maximum peak height can be obtained at ~10 m.

このように、糖類と反応試薬との反応率は諸条件の影響
を受けるが、最適t【測定φ件におけるグルコースの注
入量と得られろピーク高の関係は、グルコースの絶対量
が2μtまで原点を通る直線として測宇できる。
In this way, the reaction rate between saccharides and reaction reagents is affected by various conditions, but the relationship between the amount of glucose injected and the peak height obtained at the optimum t [measurement time] is as follows: It can be measured as a straight line passing through.

また、本発明におけろ検出限界は、溶離液及び反応液中
の溶存酸素を除去するとともに、圧力変動のt「い定流
量送液ポンプを用いて、さらに検出部におげろ外淵の影
響を押えることで改善され得るが、S/N=3以上でグ
ルコースの”A ft 0.1 n を以上が検出可能
である。
In addition, in the present invention, the detection limit is determined by removing dissolved oxygen in the eluent and reaction solution, by using a constant flow pump with a constant flow rate of 100% of pressure fluctuation, and by using a constant flow pump that is free from pressure fluctuations. Although it can be improved by suppressing the S/N=3 or more, it is possible to detect more than "A ft 0.1 n " of glucose.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1 反応型液体クロマトグラフ(東洋曹達工業■製部品名 
高速液体クロマトグラフHLO−803)に電気化学検
出器(東洋曹達工業■製 商品名電気化学検出器EC−
8)を装着し、カチオン交換用充てん剤を用いたゲルろ
過クロマトグラフィーにてラクトース(20nf)、グ
ル:y−ス(20nf)、ガラクトース(20nr)、
アラビノース(20nF)の?1111宇を行なった。
Example 1 Reactive liquid chromatograph (manufactured by Toyo Soda Kogyo) Part name
High performance liquid chromatograph HLO-803) and an electrochemical detector (manufactured by Toyo Soda Kogyo, trade name: Electrochemical detector EC-)
8) and gel filtration chromatography using a cation exchange packing material to extract lactose (20nf), glucose (20nf), galactose (20nr),
Arabinose (20nF)? He performed 1111 u.

その結果、第2図のクロマトグラムが得られたが、その
時の沖1宇条件は以下の通りである。
As a result, the chromatogram shown in FIG. 2 was obtained, and the Oki 1U conditions at that time were as follows.

分離カラムr車洋曹達工業■瑯 商品名 イオン交換ク
ロマトグラフィー用充填剤TI3に−GEL  I E
 X −210S 0 、7.5 w i、 d、X 
60 (MX2〕、溶離液〔水〕1反応試薬液[5mM
桐−ビービスフェナントロリン102ン#緩衝液(pH
11,2)]。
Separation Column r Kuruma Soda Kogyo ■Ero Product name Packing agent for ion exchange chromatography TI3-GEL I E
X-210S 0, 7.5 w i, d, X
60 (MX2), eluent [water] 1 reaction reagent solution [5mM
Paulownia-Bee bisphenanthroline 102 # buffer (pH
11, 2)].

溶離液流速[0,5m//分]9反応試草液流速r1r
nt/分〕9反応コイA/[a5IIImi、d、X5
m〕。
Eluent flow rate [0.5 m//min] 9 reaction sample liquid flow rate r1r
nt/min]9 reaction carp A/[a5IIImi, d, X5
m].

反応槽湯度〔97℃〕、印加電圧[70mV ] 。Reaction tank temperature [97°C], applied voltage [70mV].

サンプル注入号〔20μ!〕 但し、溶離液及び反応試薬液がそれぞれの貯槽内で直接
空気と接触しないように窒素ガスにてパージを行ないつ
つ送液を行ない、さらに恒温室内で分析を行なった。銅
−ビスフェナントロリン錯体を除く試薬は市販品特級を
用いた。
Sample injection number [20μ! ] However, in order to prevent the eluent and reaction reagent solution from coming into direct contact with air in their respective storage tanks, the liquids were fed while being purged with nitrogen gas, and furthermore, the analysis was conducted in a thermostatic chamber. Commercially available special grade reagents were used except for the copper-bisphenanthroline complex.

銅−ビスフェナントロリン錯体の調和は以下の辿りであ
る。
The harmonization of the copper-bisphenanthroline complex is as follows.

あらかじめ加泥されている0、 3 Mの硝酸銅水溶液
に0.6Mのオルト−7エナントロリン湖エタノール溶
液を攪拌しながら徐々に加えて得られる溶液を一晩冷蔵
庫に静置した。冷却により得られる結晶をろ別後、エタ
ノールにて洗浄を行なった後、さらに純水にて再結晶を
行ない、再度ろ別後乾燥した。
A 0.6 M ortho-7 enanthroline lake ethanol solution was gradually added to a previously added 0.3 M aqueous solution of copper nitrate with stirring, and the resulting solution was left standing in a refrigerator overnight. The crystals obtained by cooling were separated by filtration, washed with ethanol, recrystallized with pure water, filtered again, and dried.

実施例2 実施例1と同じシステムを用いてラクトース(20nf
 ) 、 ”Q’ンノース(20nr)、アラビノース
(20nr)、キシロース(10nf)の測定を行なっ
た。アニオン交換用充てん剤を用いるアニオン交換クロ
マトグラフィーでの測定である。
Example 2 Lactose (20 nf
), "Q'nose (20nr), arabinose (20nr), and xylose (10nf) were measured. Measurement was performed by anion exchange chromatography using an anion exchange packing material.

その結果、第5図のクロマトグラムが得られるが、その
時の測定φ件は以下の辿りである。
As a result, the chromatogram shown in FIG. 5 is obtained, and the measured φ values at that time are as follows.

分離カラム〔東洋曹達工業■jl!!曲品名 イオン交
換クロマトグラフィー用充填剤T S K、 −G F
i’L  IEX−220SA、61111.d、X 
15cWrL]。
Separation column [Toyo Soda Kogyo ■jl! ! Song name Packing agent for ion exchange chromatography T S K, -G F
i'L IEX-220SA, 61111. d,X
15cWrL].

溶離液[0,05Mホウ酸十G、01Mホウ砂+0.0
1M +7ン酸水素−ナトリウム地]9反応試薬液〔4
mM 銅−ビスフェナントロリン錯体10.2 M リ
ン酸緩衝液(pH11,4)]、反応コイルし5朋i、
 d、 x 5 m ] 、反応槽淵温度97℃〕、印
加電圧「70 mV ] 、サンプル注入恰〔20μ!
〕但し、溶離液及び反応試薬液中に連続的に直接ヘリウ
ムガスを吹き込みなから送液を行ない、さらに恒温室内
で分析を行なった。
Eluent [0.05M boric acid 10G, 01M borax +0.0
1M + hydrogen-sodium 7-phosphate base] 9 reaction reagent solution [4
mM copper-bisphenanthroline complex 10.2 M phosphate buffer (pH 11,4)], reaction coil 5 i,
d, x 5 m], reaction tank bottom temperature 97°C], applied voltage “70 mV], sample injection rate [20 μ!
] However, helium gas was continuously and directly blown into the eluent and reaction reagent solution before the liquid was fed, and the analysis was further conducted in a thermostatic chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の70−ダイヤグラムであ
る。第2図および第3図は本発明による四種の糖類の分
離を示すクロマトグラムである。 (1)溶離液貯槽 (21反応試薬液貯槽 +31. +41  定流量送液ポンプ+51.(61
ダンパー (7)試薬注入パルプ (81分離カラム    04  ラクトース(91丁
字管      09  グルコースa1  反応槽 
     吐 ガラクトース01)反応コイル    
a?I  アラビノースa′lJt気化学検出器  帳
 マンノース0(記録計      09  キシロー
ス特許出願人 東洋曹達工業株式会社 第2図 第6図 0  12  24分
FIG. 1 is a 70-diagram of one embodiment of the present invention. Figures 2 and 3 are chromatograms showing the separation of four types of saccharides according to the present invention. (1) Eluent storage tank (21 reaction reagent solution storage tank + 31. + 41 constant flow liquid sending pump + 51. (61
Damper (7) Reagent injection pulp (81 separation column 04 Lactose (91 T-shaped tube 09 Glucose a1 reaction tank
Galactose 01) Reaction coil
a? I Arabinose a'lJt Vapor Chemical Detector Book Mannose 0 (Recorder 09 Xylose Patent Applicant Toyo Soda Kogyo Co., Ltd. Figure 2 Figure 6 0 12 24 minutes

Claims (1)

【特許請求の範囲】[Claims] 検出器として電気化学検出器を用いた反応型液体クロマ
トグラフィーにて溶液中の糖類を分析するKあたり、糖
類と銅−ビスフェナントロリン錯体または銅−ビピリジ
ン錯体をボストラベル的に反応させることを特徴とする
糖類の高感度分析法。
A method for analyzing sugars in a solution using reactive liquid chromatography using an electrochemical detector as a detector, which is characterized by reacting sugars with copper-bisphenanthroline complex or copper-bipyridine complex in a boss label manner A highly sensitive analysis method for sugars.
JP57207729A 1982-11-29 1982-11-29 High-sensitive analysis of saccharide Granted JPS5999255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207729A JPS5999255A (en) 1982-11-29 1982-11-29 High-sensitive analysis of saccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207729A JPS5999255A (en) 1982-11-29 1982-11-29 High-sensitive analysis of saccharide

Publications (2)

Publication Number Publication Date
JPS5999255A true JPS5999255A (en) 1984-06-07
JPH044546B2 JPH044546B2 (en) 1992-01-28

Family

ID=16544569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207729A Granted JPS5999255A (en) 1982-11-29 1982-11-29 High-sensitive analysis of saccharide

Country Status (1)

Country Link
JP (1) JPS5999255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114910526A (en) * 2022-05-24 2022-08-16 四川大学 High-sensitivity glucose sensor and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114910526A (en) * 2022-05-24 2022-08-16 四川大学 High-sensitivity glucose sensor and preparation method and application thereof
CN114910526B (en) * 2022-05-24 2024-02-02 江苏跃凯生物技术有限公司 High-sensitivity glucose sensor and preparation method and application thereof

Also Published As

Publication number Publication date
JPH044546B2 (en) 1992-01-28

Similar Documents

Publication Publication Date Title
Tanzer et al. Determination of dissolved selenium species in environmental water samples using isotope dilution mass spectrometry
Haddad et al. Determination of inorganic anions by high-performance liquid chromatography
Ishii et al. Analysis of thiamine and its phosphate esters by high-performamze liquid chromatography
Ortega-Barrales et al. Solid-phase spectrophotometric determination of trace amounts of hydrazine at sub-ng ml− 1 level
Mays et al. High-performance liquid chromatographic determination of kanamycin
US4672042A (en) Method of and apparatus for chromatographic analysis
Smolenkov Chromatographic methods of determining hydrazine and its polar derivatives
Folley et al. Separation of nucleotides by ion-pair, reversed-phase high-performance liquid chromatography: use of Mg (II) and triethylamine as competing hetaerons in the separation of adenine and guanine nucleotides
Manzoori∗ et al. Preconcentration and spectrophotometric determination of chromium (VI) and total chromium in drinking water by the sorption of chromium diphenylcarbazone with surfactant coated alumina
Himeno et al. Simultaneous determination of chromium (VI) and chromium (III) by capillary electrophoresis
Cox et al. Separation of mixtures of cations by Donnan dialysis
Dilli et al. Further studies of diethyldithiocarbamate complexes by high-performance liquid chromatography
Sherwood et al. A chromatographic determination of nitrate with amperometric detection at a copperized cadmium electrode
Snider et al. A photo-electroanalyzer for determination of volatile nitrosamines
Isildak Potentiometric detection of monovalent anions separated by ion chromatography using all solid-state contact PVC matrix membrane electrode
Padarauskas et al. Ion-pair chromatographic determination of chromium (VI)
JPS5999255A (en) High-sensitive analysis of saccharide
Parsons et al. Determination of cis-diamminedichloroplatinum (II) in human plasma using ion-pair chromatography with electrochemical detection
Dieker et al. Study of a glassy carbon electrode in amperometric detection using dc, normal and differential pulse techniques
Zenki Determination of alkaline earth metals by ion-exchange chromatography with spectrophotometric detection
Saitoh et al. On‐line redox derivatization liquid chromatography using double separation columns and one derivatization unit
Shmukler Rapid Liquid Chromatography of Nucleotides. The Separation of Picomole Amounts of 32Pi, AMP, ADP, and ATP
Jenke et al. Behavior of cations in nonsuppressed anion chromatography
Plzák et al. Reversed-phase ion-pair liquid chromatographic separations of some heteroborane anions
Shih et al. A post-column photochemical detector for use in the determination of trace metals with n-butyl-2-naphthylmethyldithiocarbamate by high-performance liquid chromatography