JPS5995348A - Detecting system of superheating of refrigeration cycle - Google Patents

Detecting system of superheating of refrigeration cycle

Info

Publication number
JPS5995348A
JPS5995348A JP20497482A JP20497482A JPS5995348A JP S5995348 A JPS5995348 A JP S5995348A JP 20497482 A JP20497482 A JP 20497482A JP 20497482 A JP20497482 A JP 20497482A JP S5995348 A JPS5995348 A JP S5995348A
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerant
refrigeration cycle
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20497482A
Other languages
Japanese (ja)
Other versions
JPS6345030B2 (en
Inventor
文雄 松岡
等 飯島
山崎 起助
紘 笠置
康雄 中島
梅原 三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20497482A priority Critical patent/JPS5995348A/en
Priority to GB08324678A priority patent/GB2130747B/en
Priority to AU19128/83A priority patent/AU547326B2/en
Priority to DE19833340736 priority patent/DE3340736A1/en
Publication of JPS5995348A publication Critical patent/JPS5995348A/en
Priority to HK728/87A priority patent/HK72887A/en
Priority to MY635/87A priority patent/MY8700635A/en
Publication of JPS6345030B2 publication Critical patent/JPS6345030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、圧縮機入口側の開放端の冷媒温度とこの入
口冷媒配管内の冷媒温度との差で吸入冷媒のスーパヒー
ト量を演算して膨張弁の制御を行うようにした冷凍サイ
クルのスーパヒート検知システムに関する。
DETAILED DESCRIPTION OF THE INVENTION This invention controls an expansion valve by calculating the superheat amount of suction refrigerant based on the difference between the refrigerant temperature at the open end on the inlet side of the compressor and the refrigerant temperature in this inlet refrigerant pipe. This invention relates to a superheat detection system for a refrigeration cycle.

従来、冷凍サイクルの減圧装置として、温度式自動膨張
弁を使用しているが、スー・ゼヒート量を制御する部分
の配管に感温筒を接触させて温度変化を圧力変化に変換
しているため、応答が遅くなる。このため急激な負荷変
動に追従できなく液パツクを起こしたシ、ハンチングを
起こしやすい欠点を有していた。
Conventionally, a temperature-type automatic expansion valve has been used as a pressure reducing device in the refrigeration cycle, but because a temperature-sensitive cylinder is brought into contact with the piping that controls the amount of heat and heat, changes in temperature are converted into changes in pressure. , response becomes slow. For this reason, it has the drawback of not being able to follow sudden changes in load, causing liquid puddles, and being prone to hunting.

また、スーパヒートを直接に検知してないため、空調機
の運転状態に合った最適なスーパヒート量に任意に=ン
トロールすることが不可能であった。
Furthermore, since superheat is not directly detected, it is impossible to arbitrarily control the amount of superheat to be optimal for the operating state of the air conditioner.

さらに、従来電気式膨張弁の制御信号として、スーパヒ
ート量を検知するようにしているものは、蒸発器の入口
とか中間部の温度(Te)と圧縮機入口温度(Ts)と
を検知し、簡易的にスーパヒート量(Sl()をSH=
 Ts −Teとしているが、蒸発器入口とか中間部と
圧縮機入口とには圧力低下がある。この低下量が運転状
態によシ変化するため正確にスーパヒート量を検知する
ことが不可能であった。
Furthermore, conventional electric expansion valves that detect the amount of superheat as a control signal detect the temperature at the inlet or intermediate part of the evaporator (Te) and the temperature at the compressor inlet (Ts). In terms of super heat amount (Sl(), SH=
Although it is assumed to be Ts - Te, there is a pressure drop at the evaporator inlet, middle part, and compressor inlet. Since this amount of decrease varies depending on the operating conditions, it has been impossible to accurately detect the amount of superheat.

また、圧力センサと温度センサを圧縮機入口に設はスー
・ぐヒート量を検知するものがある。しかし、圧力セン
サが高価なため機器のコストアップとなる欠点を有して
いる。
In addition, there are systems that detect the amount of soot heat by installing a pressure sensor and a temperature sensor at the compressor inlet. However, since the pressure sensor is expensive, it has the disadvantage of increasing the cost of the equipment.

この発明は、上記従来の欠点を除去するためになされた
もので、圧縮機吸入冷媒のスーパヒート量の絶対値を正
確に検知し、きめ細い膨張弁の制御ができる冷凍サイク
ルのスーパヒート検知システムを提供することを目的と
する。
This invention was made to eliminate the above-mentioned conventional drawbacks, and provides a refrigeration cycle superheat detection system that can accurately detect the absolute value of the amount of superheat in the refrigerant sucked into a compressor and can precisely control the expansion valve. The purpose is to

以下、この発明の冷凍サイクルのスーパヒート検知シス
テムの実施例について図面に基づき説明する。第1図は
その一実施例の冷凍回路図で6J、第2図は第1図にお
けるバイパス路付近の拡大図である。この第1図および
第2図の両図において、lは圧縮機であシ、この圧縮機
lがら吐出された高温高圧の冷媒ガスは四方弁2を通シ
、暖房運転時には四方弁2がら室外側熱交換器3に送ら
れ、そこで凝縮液化され、キャピラリチューブ4a。
Embodiments of the superheat detection system for a refrigeration cycle according to the present invention will be described below with reference to the drawings. FIG. 1 is a refrigeration circuit diagram 6J of one embodiment, and FIG. 2 is an enlarged view of the vicinity of the bypass path in FIG. 1. In both Fig. 1 and Fig. 2, l is a compressor, and the high temperature and high pressure refrigerant gas discharged from this compressor l is passed through a four-way valve 2, and during heating operation, the four-way valve 2 is passed through the chamber. It is sent to the outer heat exchanger 3 where it is condensed and liquefied into the capillary tube 4a.

4bを経由して、電気式膨張弁5で減圧されて室内側熱
交換器6に送られ、そこで蒸発してガス化し、低温低圧
の冷媒ガスとなって四方弁2を経由してアキュームレー
タ7に送られ、さらに、アキュームレータ7から吸入配
管15を経て圧縮機1に吸入されるようになっている。
4b, the pressure is reduced by the electric expansion valve 5 and sent to the indoor heat exchanger 6, where it is evaporated and gasified to become a low-temperature, low-pressure refrigerant gas, which is then sent to the accumulator 7 via the four-way valve 2. The air is then sent from the accumulator 7 to the compressor 1 via the suction pipe 15.

上記電気式膨張弁5と室内側熱交換器6との間と吸入配
管15との間には第2図の拡大図よジ明らかなように、
パイノ4ス路9が設けられており、このバイノZス路9
の途中にはキャピラリチューブ10が設けられている。
As is clear from the enlarged view of FIG.
A pino 4th path 9 is provided, and this bino Z path 9
A capillary tube 10 is provided in the middle.

また、バイノ+ス路9の圧縮機lの吸入配管15側の開
方端忙冷媒の温度を検知する温度センサ11が設けられ
ているとともに、吸入配管15にもこの吸入配管15内
の冷媒の温度を検知する温度センサ8が取シ付けられて
いる。両温度七ンサ8と11の検出出力は制御器12に
送るようになっている。
Further, a temperature sensor 11 is provided to detect the temperature of the refrigerant at the open end of the bino+suction path 9 on the suction pipe 15 side of the compressor l. A temperature sensor 8 is attached to detect temperature. The detection outputs of both temperature sensors 8 and 11 are sent to a controller 12.

この制御器12は両温度センサ8,12の検出出力を受
けて、圧縮機lの吸入冷媒のスーパヒート量を演算して
、それによって、電気式膨張弁5の開度制御を行うよう
になっている。
This controller 12 receives the detection outputs of both temperature sensors 8 and 12, calculates the amount of superheat of the refrigerant sucked into the compressor 1, and controls the opening degree of the electric expansion valve 5 accordingly. There is.

また、第3図は上記パイ・ぐス路9の部分の別の実施例
の拡大図である。この第3図はパイ・ぞス路9を電気式
膨張弁5の出入口両端からキャピラリチューブ13.1
4を介してとった例であジ、電気式膨張弁5の出入口が
開放とならないようにキャピラリチューブ13と14が
追加されている。
Moreover, FIG. 3 is an enlarged view of another embodiment of the above-mentioned pi/gusu path 9 portion. This figure 3 shows the pipe-to-slot path 9 from both ends of the inlet and outlet of the electric expansion valve 5 to the capillary tube 13.1.
In this example, capillary tubes 13 and 14 are added to prevent the inlet and outlet of the electric expansion valve 5 from being open.

以上のように構成されたこの発明の冷凍サイクルのスー
パヒート検知システムにおいて、特に第3図で示す場合
には、冷房運転中も暖房運転中も高圧側から冷媒がバイ
パス路9に流入することになる。
In the refrigeration cycle superheat detection system of the present invention configured as described above, especially in the case shown in FIG. 3, refrigerant flows into the bypass path 9 from the high pressure side during both cooling and heating operations. .

また、第4図にモリニル描図上のこの発明のシステムの
概略を示す。第4図において、横軸Hにエンタルピーを
、縦軸PIi圧力を示す。第4図のうちTdは圧縮機吐
出冷媒温度を示し、Aid電気式膨張弁5a入口の高圧
冷媒液を示す。この液が第3図のキャピラリチューブ1
3または14を経由してさらにキャピラリチューブ1o
を経由シテ低圧側の吸入配管15に開口した開放端16
で吸入圧力に相当する温度’I’llを発生する。
Further, FIG. 4 shows an outline of the system of the present invention on a molinyl diagram. In FIG. 4, the horizontal axis H represents enthalpy, and the vertical axis represents PIi pressure. In FIG. 4, Td indicates the compressor discharge refrigerant temperature, and indicates the high-pressure refrigerant liquid at the inlet of the Aid electric expansion valve 5a. This liquid is the capillary tube 1 in Figure 3.
Further capillary tube 1o via 3 or 14
An open end 16 opened to the suction pipe 15 on the low pressure side
generates a temperature 'I'll corresponding to the suction pressure.

この飽和温度を温度センサ11によって検知し7、さら
に吸入冷媒の温度T、を温度センサ8で検知することに
よシ制御器12でスーパヒート量(Ts〜T3)を検出
できるようになっている。
By detecting this saturation temperature with a temperature sensor 11 7 and further detecting the temperature T of the suction refrigerant with a temperature sensor 8, the controller 12 can detect the amount of superheat (Ts to T3).

以上のように、この発明の冷凍サイクルのスーパヒート
検知システムによれば、電気式膨張弁と♀内側熱又換器
との連結部分と圧縮機の吸入側との間にバイパス路を設
け、このパイノ4ス路における開放端での冷媒ガスの吸
入圧力に相当する温度と室内側熱交換器からアキューム
レータに導入されて圧縮機に吸入される冷媒ガスの温度
とを検出して、制御器で両温度の差により圧縮機の吸入
冷媒ガスのスーパヒート量を演算して電気式膨張弁を制
御するようにしたので、スーパヒート量の絶対値が検知
でき、室内側熱交換器(蒸発器)入口から出口まで圧力
損失があっても電気式膨張弁の正確な制御が可能となシ
、圧縮機の保獲および制御性が向上し、省エネルギ運転
もきめ細かく笑行できることになる。
As described above, according to the superheat detection system for a refrigeration cycle of the present invention, a bypass path is provided between the connecting portion between the electric expansion valve and the inner heat exchanger and the suction side of the compressor, and this pin The controller detects the temperature corresponding to the suction pressure of the refrigerant gas at the open end of the 4-path and the temperature of the refrigerant gas introduced from the indoor heat exchanger into the accumulator and sucked into the compressor. Since the electric expansion valve is controlled by calculating the superheat amount of the refrigerant gas taken into the compressor by the difference between the Even if there is a pressure loss, it is possible to accurately control the electric expansion valve, improving the maintenance and controllability of the compressor, and enabling detailed energy-saving operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の冷凍サイクルのスーパヒート検知シ
ステムの一実施例を示す冷凍回路図、第2図は同上冷凍
サイクルのスーパヒート検知システムにおける/Sイパ
ス路付近の拡大図、第3図は同上冷凍サイクルのスーパ
ヒート検知システムにおけるバイパス路別の実施例の拡
大図、第4図は同上冷凍サイクルのスーツやヒート検知
システムの冷媒挙動を示すモリエル線図である。 l・・・圧縮機、2・・・四方弁、3・・・室外側熱交
換器、4a、4b、No・・・キャピラリチューブ、5
・・・電気式熱膨張弁、6・・・室内側熱又換器、7・
・・アキュムレータ、8.11・・・温度センサ、9・
・・バイパス路、12・・・制御器、15・・・吸入配
管、16・・・開放端。 なお、図中同一符号は同一または相当部分を示す。 代理人   葛  野  信  − コ 第2図 第3図 り 第4図 ↑ 子’+” i’l:IF長宜II<ジ 1 °IG r’+ (1)表示    士’+’1Q
f1昭57−204974号2、発明の名Iう。 冷凍サイクルのスーツやヒート検知システム、′3 ン
+Ii、+にをする占 iGr’l’ トノlk、J係   7.p3tl−出
II(: 人fi−所     東京都P代III区丸
の内−112番3シJ−名 イj、(GOl)   五
菱電機株式会社代表者片由仁八部 4、代理人 住 所     東京都千代田区丸の内−1112番3
シ」・三菱電機株式会社内 5、 補正の対象 明細1:の特許請求の範囲の欄 6、 補正の内容 (1)明a1中、特許請求の範囲を別紙の通り訂正する
。 7、 添付書類の目録 fi+  訂正特許請求の範囲     1通以上 2、特許請求の範囲 圧縮機、凝縮器、電気式膨張弁、蒸発器など全直列に接
続してなる冷凍アイクルにおいて、前記膨張弁入口また
け出口あるいは両方より、キャピラリチューブ全経由し
て圧縮機入口またはアキュ側の開放端の冷媒温度全検知
する第1の温度センサと、前記圧縮機入口に冷媒を吸入
する吸入配管内の冷媒温度を検知する第2の温度センサ
と、前記第1および第2の温度センサの検出出力の差を
もって前記圧縮機の吸入冷媒のスーパヒート量を演算し
て前記電気式膨張弁の開度制御を行う制御器とを具備し
たことを特徴とする冷凍サイクルのスーツRヒート検知
システム。
Fig. 1 is a refrigeration circuit diagram showing an embodiment of the superheat detection system for a refrigeration cycle according to the present invention, Fig. 2 is an enlarged view of the vicinity of the /S path in the superheat detection system for the above refrigeration cycle, and Fig. 3 is an enlarged view of the vicinity of the /S path in the superheat detection system for the above refrigeration cycle. FIG. 4 is an enlarged view of an embodiment of each bypass path in the cycle superheat detection system, and is a Mollier diagram showing refrigerant behavior in the suit and heat detection system of the refrigeration cycle. l... Compressor, 2... Four-way valve, 3... Outdoor heat exchanger, 4a, 4b, No... Capillary tube, 5
...Electric thermal expansion valve, 6.Indoor heat exchanger, 7.
...Accumulator, 8.11...Temperature sensor, 9.
...Bypass path, 12...Controller, 15...Suction piping, 16...Open end. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno − Figure 2 Figure 3 Figure 4 ↑ Child'+"i'l: IF Nagayoshi II < Ji1 °IG r'+ (1) Display Officer'+'1Q
f1 No. 57-204974 2, name of invention I. Refrigeration cycle suits and heat detection systems, '3 + Ii, + staff, Gr'l' Tonolk, J staff 7. p3tl-Out II (: Person fi- Address: 112-3 Marunouchi, P-3-ku, Tokyo J-Name: Ij, (GOl) Goryo Electric Co., Ltd. Representative: Katayuni Hachibu 4, Agent Address: Chiyoda, Tokyo Ward Marunouchi-1112-3
Mitsubishi Electric Corporation 5, Specification Subject to Amendment 1: Scope of Claims Column 6, Contents of Amendment (1) The scope of claims in section a1 is corrected as shown in the attached sheet. 7. List of attached documents fi+ Amended patent claims 1 or more copies 2. Claims In a refrigeration cycle consisting of a compressor, a condenser, an electric expansion valve, an evaporator, etc. all connected in series, the expansion valve inlet A first temperature sensor that detects the entire refrigerant temperature at the compressor inlet or the open end on the ACU side from the straddling outlet or both via the entire capillary tube, and the refrigerant temperature in the suction pipe that sucks the refrigerant into the compressor inlet. a second temperature sensor that detects the temperature, and a control that controls the opening degree of the electric expansion valve by calculating the amount of superheat of the refrigerant sucked into the compressor based on the difference between the detection outputs of the first and second temperature sensors. A Suit R heat detection system for a refrigeration cycle characterized by being equipped with a device.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、電気式膨張弁、蒸発器などを直列に接
続してなる冷凍サイクルにおいて、前記膨張弁入口また
は出口あるいは両方より、キャピラリチューブを経由し
て圧縮機入口に至るバイパス路と、前記バイパス路の圧
縮機入口側開放端の冷媒温度を検知する第1の温度セン
サと、前記圧縮機入口に冷媒を吸入する吸入配管内の冷
媒温度を検知する第2の温度センサと、前記第1および
第2の温度センサの検出出力の差をもって前記圧縮機の
吸入冷媒のスーパヒート量を演算して前記電気式膨張弁
の開度制御を行う制御器とを具備したことを特徴とする
冷凍サイクルのスーパヒート検知システム。
In a refrigeration cycle in which a compressor, a condenser, an electric expansion valve, an evaporator, etc. are connected in series, a bypass path leading from the expansion valve inlet and/or outlet to the compressor inlet via a capillary tube; a first temperature sensor that detects a refrigerant temperature at an open end on the compressor inlet side of the bypass passage; a second temperature sensor that detects a refrigerant temperature in a suction pipe that sucks refrigerant into the compressor inlet; A refrigeration cycle comprising: a controller that controls the opening degree of the electric expansion valve by calculating the amount of superheat of the refrigerant sucked into the compressor based on the difference between the detection outputs of the first and second temperature sensors. Super heat detection system.
JP20497482A 1982-11-22 1982-11-22 Detecting system of superheating of refrigeration cycle Granted JPS5995348A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20497482A JPS5995348A (en) 1982-11-22 1982-11-22 Detecting system of superheating of refrigeration cycle
GB08324678A GB2130747B (en) 1982-11-22 1983-09-14 Control device for refrigeration cycle
AU19128/83A AU547326B2 (en) 1982-11-22 1983-09-14 Control of super-heat quantity to compressor by control of expansion valve
DE19833340736 DE3340736A1 (en) 1982-11-22 1983-11-10 CONTROL DEVICE FOR A COOLING CIRCUIT
HK728/87A HK72887A (en) 1982-11-22 1987-10-07 Control device for refrigeration cycle
MY635/87A MY8700635A (en) 1982-11-22 1987-12-30 Control device for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20497482A JPS5995348A (en) 1982-11-22 1982-11-22 Detecting system of superheating of refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5995348A true JPS5995348A (en) 1984-06-01
JPS6345030B2 JPS6345030B2 (en) 1988-09-07

Family

ID=16499373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20497482A Granted JPS5995348A (en) 1982-11-22 1982-11-22 Detecting system of superheating of refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5995348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134545A (en) * 1984-12-01 1986-06-21 株式会社東芝 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577588U (en) * 1992-03-30 1993-10-22 豊田工機株式会社 Tandem pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147548A (en) * 1978-05-11 1979-11-17 Daikin Ind Ltd Heat pump type air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147548A (en) * 1978-05-11 1979-11-17 Daikin Ind Ltd Heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134545A (en) * 1984-12-01 1986-06-21 株式会社東芝 Refrigeration cycle device

Also Published As

Publication number Publication date
JPS6345030B2 (en) 1988-09-07

Similar Documents

Publication Publication Date Title
JPS5995350A (en) Controller for capacity control type refrigeration cycle
CN106482375B (en) Air conditioner
JP3819672B2 (en) Oil level detection device and air conditioner for high pressure vessel
JP2007139257A (en) Refrigeration device
JPS5995348A (en) Detecting system of superheating of refrigeration cycle
CN113720047A (en) Air conditioning system
JP3097468B2 (en) Control device for air conditioner
JP4278351B2 (en) Oil level detection method and apparatus for compressor
JP4004356B2 (en) Oil level detection method and apparatus for compressor
JPH04214153A (en) Refrigerating cycle device
JPH01160275U (en)
JPH035826Y2 (en)
JPS63290368A (en) Heat pump type air conditioner
JP2657077B2 (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JPS60133267A (en) Separate type air conditioner
JPH0113972Y2 (en)
JPH0327252Y2 (en)
JPH085184A (en) Multi-room type air conditioner
JPH02279966A (en) Air conditioner
JPH0571834A (en) Air-conditioning device
JPS62299660A (en) Air conditioner
JPH0566512B2 (en)
JP2542649B2 (en) Air conditioner
JP2007187377A (en) Air conditioner