JPS5994010A - Detector - Google Patents

Detector

Info

Publication number
JPS5994010A
JPS5994010A JP20418582A JP20418582A JPS5994010A JP S5994010 A JPS5994010 A JP S5994010A JP 20418582 A JP20418582 A JP 20418582A JP 20418582 A JP20418582 A JP 20418582A JP S5994010 A JPS5994010 A JP S5994010A
Authority
JP
Japan
Prior art keywords
magnetic
output
waveform
detector
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20418582A
Other languages
Japanese (ja)
Inventor
Kenzaburo Miura
三浦 健三郎
Yoshiichi Kenmori
芳一 権守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaguchiko Seimitsu KK
Original Assignee
Kawaguchiko Seimitsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaguchiko Seimitsu KK filed Critical Kawaguchiko Seimitsu KK
Priority to JP20418582A priority Critical patent/JPS5994010A/en
Publication of JPS5994010A publication Critical patent/JPS5994010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/247Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using time shifts of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To improve detection accuracy by providing a magnetic sensor in which first and second magnetic detection members are arranged between magnetic bodies to be measured facing each other parallel without crossing each other deviated in the phase on the same plane. CONSTITUTION:A first magnetic detection member 11 in which magnetic resistance elements 11a and 11b mainly composed of InSb, GaAs or the like are connected differentially deviated by 1/2lambda with the interval lambda of a magnetic body 1a to be measured and a second magnetic detection member 12 comprising magnetic resistance elements 12a and 12b likewise are provided. These detection members 11 and 12 are arranged as deviated by 1/4lambda from each other on the same plane while parallel separated by a gap G so as not to cross each other. When arranged on a straight line like a comb with the width (l) of elements 11a, 11b, 12a and 12b made equal, these elements are formed without gap therebetween. Thus, an output signal is obtained completely eliminating flat parts on the waveform thereby improving the accuracy.

Description

【発明の詳細な説明】 この発明は、磁気センサと被測定体とにより主に長さを
検出する検出器に関するもので、とくに磁気センサの改
団に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detector that mainly detects length using a magnetic sensor and an object to be measured, and particularly relates to a modification of the magnetic sensor.

従来のこの種の検出器を第1図以下の図面を用いて説明
する。
A conventional detector of this type will be explained with reference to FIG. 1 and the following drawings.

第1図は検出器の概略説明図であり、第2図は従来の検
出器における磁気検出体を説明するための要部説明図で
あろう 第1図、第2図にお(・て、1は被測定体で、幅りより
なる磁性体1aが等間隔χで配列されている。
Fig. 1 is a schematic explanatory diagram of the detector, and Fig. 2 is an explanatory diagram of the main part for explaining the magnetic detecting body in a conventional detector. Reference numeral 1 denotes an object to be measured, in which magnetic bodies 1a having different widths are arranged at equal intervals χ.

そして、この被測定体1の製作にあたっては、非磁性体
よりなる基板上に磁性体1aを固着するか、あるいは、
第1図に図示したように、磁性体よりなる基板をプレス
加工などによりパンチングしであるいはエツチング加工
などにより貫通穴ibを加工することによって残余の部
分を磁性体1aとして形成してやって尤よい。2は磁気
センサで、磁気検出体ろと、この磁気検出体乙の上側に
位置したバイアス用永久磁石4とを有している。
In manufacturing the object to be measured 1, the magnetic material 1a is fixed on a substrate made of a non-magnetic material, or
As shown in FIG. 1, the remaining portion may be formed as the magnetic material 1a by punching or etching a substrate made of a magnetic material by punching or etching. Reference numeral 2 denotes a magnetic sensor, which has a magnetic detection body B and a bias permanent magnet 4 located above the magnetic detection body B.

磁気検出体ろは第2図に拡大図示したように、InSb
、 QaAs  などの化学式で表わされる物質を主成
分とする半導体の磁気抵抗効果を利用した2つの磁気抵
抗素子5a、5bを、上述した被測定体1の磁気体1a
の間隔χに対して17々χずらして差動接続した第1の
磁気検出体5と、同じく2つの磁気抵抗素子6a、6b
を1/2χずらして差動接続した第2の磁気検出体6と
からなり、第1の磁気検出体5と第2の磁気検出体6と
を互いに1/4χずらして一直線上にくし目状に、すな
わち、5a、6a、5b、61)の順に交互に位置する
ように形成されている。
As shown in the enlarged view in Figure 2, the magnetic detector is InSb.
, two magnetoresistive elements 5a and 5b that utilize the magnetoresistive effect of a semiconductor whose main component is a substance represented by a chemical formula such as QaAs are attached to the magnetic body 1a of the object to be measured 1 described above.
A first magnetic detection body 5 differentially connected with a difference of 17 χ from the interval χ, and two magnetoresistive elements 6a and 6b
The first magnetic detecting body 5 and the second magnetic detecting body 6 are shifted by 1/4χ from each other and connected differentially in a comb shape. 5a, 6a, 5b, 61) are arranged alternately in this order.

7は第1及び第2の磁気検出体5.6の入力端子、8は
アース端子、9.10はそれぞれ第1及び第2の磁気検
出体5、乙の出力端子である。そして、いま入力端子7
に直流電圧を印加して、磁気センサ2を被測定体1に対
して移動させると、出力端子9.10から互いに1/4
χ(90°)位相のずルたほぼ正弦波状の信号が得られ
ることになる。つぎに、磁気センサ2と被測定体1とを
相対的に移動させたときに第1の磁気検出体5より生ず
る正弦波状の信号について第3図に図示した概略図を参
照しながら説明する。
7 is an input terminal of the first and second magnetic detectors 5.6, 8 is a ground terminal, and 9.10 is an output terminal of the first and second magnetic detectors 5 and B, respectively. And now input terminal 7
When a DC voltage is applied to the magnetic sensor 2 and the magnetic sensor 2 is moved relative to the measured object 1, the output terminals 9 and 10 are 1/4
A substantially sinusoidal signal with a phase shift of χ (90°) is obtained. Next, a sinusoidal signal generated by the first magnetic detection body 5 when the magnetic sensor 2 and the object to be measured 1 are moved relative to each other will be explained with reference to the schematic diagram shown in FIG. 3.

第6図(イ)の状態から同図(ニ)の状態まで、磁気セ
ンサ2と被測定体1の磁性体のうちあるひとつの磁性体
1aが相対的に移動するものとし、磁性体1aノ幅トハ
各磁気抵抗素子5a、6a、51)、6bの幅(/−1
)とこれら磁気抵抗素子同志のすき間tの2倍を加えた
長さ、すなわちI、= l +1とする。
From the state shown in FIG. 6(a) to the state shown in FIG. The width of each magnetoresistive element 5a, 6a, 51), 6b (/-1
) and twice the gap t between these magnetoresistive elements, that is, I, = l +1.

また、第6図(イ)〜同図(ニ)における相対的な移動
過程によって生ずる信号の波形状態を第4図の波形図に
示す。尚、第4図中縦軸は印加電圧レベルを、横軸に移
動距離をとり、第6図の(イ)に示すように磁気抵抗素
子5aの左端面と磁性体1aの右端面とが一致した状態
では、2つの磁気抵抗素子5a、51〕を差動接続した
ため出力端子9の出力電圧は印加電圧■の1//2の中
点レベル(1/2 V )に安定している。この状態か
ら第3図(ロ)に示す状態まで磁性体1aを図の矢印方
向(右方向)に徐々に移動する過程では、磁気抵抗素子
5aにバイアス磁石4(第1図に図示)からの磁束が多
くなり、抵抗値が増加するため、印加電圧Vレベルすな
わちピーク値Vまで電圧が増加していく。
Further, the waveform state of the signal generated by the relative movement process in FIGS. 6(A) to 6(D) is shown in the waveform diagram of FIG. 4. In addition, in FIG. 4, the vertical axis represents the applied voltage level, and the horizontal axis represents the moving distance, and as shown in FIG. In this state, since the two magnetoresistive elements 5a, 51] are differentially connected, the output voltage of the output terminal 9 is stabilized at the midpoint level (1/2 V) of 1/2 of the applied voltage (2). In the process of gradually moving the magnetic body 1a in the direction of the arrow (rightward) in the figure from this state to the state shown in FIG. 3(B), the magnetoresistive element 5a is Since the magnetic flux increases and the resistance value increases, the voltage increases to the applied voltage level V, that is, the peak value V.

第3図(ロ)の状態から第6図(ハ)の状態まで磁性体
1aが距離2tだけ移動する過程においては、磁気抵抗
素子5aへの磁束は一定のため、すなわち抵抗値は変化
しないためピーク値Vはそのまま保持される。第3図(
ハ)の状態から第ろ図(ニ)の状態まで磁性体1aが移
動する過程においては、磁気抵抗素子5aへ作用する磁
石よりの磁束が低下されるため徐々に出力電圧が低下し
て行き、第6図(ニ)の状態では第6図(イ)の状態の
時と同じ位加電圧Vの1/2の中点レベル1/2Vに達
する。また、図示はしな(・が、以下同様に磁性体1a
を第6図(ニ)の状態からさらに矢印方向(右方向)に
移動していくと、今度は、磁気抵抗素子5aと差動接続
さ八たアース側の磁気抵抗素子51)ンよって、第4図
に図示したように電圧のゼロレベル側で波形が変化して
いくことになる。尚、と八までは第1の磁気検出体5に
ついてのみ説明してきたが、第1の磁気検出体5と1/
4χ(90°)位相をずらして2つの磁気抵抗素子6a
、6bを差動接続した第2の磁気検出体6の出力端子1
0からも同様に正弦波状の出力信号が得られる。この第
2の磁気検出体6の出力信号波形を第4図中破線で図示
する。そこで、つぎに第4図に示したピーク値■での波
形の平坦部分を解消すべ(、第5図に図示したように磁
性体1aの幅りを各磁気抵抗素子5a、6a、51)、
6+)の幅(l−1)と等しく、すなわち■ノー1−1
として第6図及び第4図で説明したと同様に磁性体1a
を第1の磁気検出体5の差動接続された磁気抵抗素子5
a、51)に対して第5図(イ)から(ニ)まで移動さ
せたとき、第6図の実線で示したような出力波形が得ら
れた。第6図に示した出力波形をみると、ピーク値■に
おける波形の平坦部分はなくなったが、今度は中点レベ
ルである1/2■において波形の平坦部分が現わnでし
まった。(尚、第6図中破線で示した波形は第2の磁気
検出体乙による出力波形を示す。)このことは、第5図
(ハ)の状態から同図(ニ)の状態までの移動距離であ
るすき間tの2倍の距離間において、入力端子7側に接
続された磁気抵抗素子5aとアース端子8側に接続され
た磁気抵抗素子51〕との不感帯域すなわち安定位置に
磁性体1aが位置しているためであることが分った。こ
のように、第2図に図示した従来の磁気検出体の配置構
造のように、第1と第2の磁気検出体5.6を同一直線
」二に交互に配着する構造では、それぞへの磁気抵抗素
子間にすき間tを設けてやらなければならず、どうして
も出力波形に平坦部分が生じてしまい、この平坦部分を
有した出力信号をゼロクロス点でコンパレータを通して
矩形波に波形整形してパルスを作り、これを計測信号と
して分割したとき、分割精度の悪化を起たし検出器と1
−ての粘度が低下するといった不都合を生じていた。
During the process in which the magnetic body 1a moves by a distance of 2t from the state shown in FIG. 3(B) to the state shown in FIG. 6(C), the magnetic flux to the magnetoresistive element 5a is constant, that is, the resistance value does not change. The peak value V is maintained as it is. Figure 3 (
In the process in which the magnetic body 1a moves from the state of (c) to the state of (d), the output voltage gradually decreases because the magnetic flux from the magnet acting on the magnetoresistive element 5a is reduced. In the state shown in FIG. 6(d), the voltage reaches the midpoint level 1/2V of 1/2 of the applied voltage V, which is the same as in the state shown in FIG. 6(a). Also, although not shown in the figure, the magnetic material 1a is
6(d) further in the direction of the arrow (to the right), the magnetoresistive element 51) on the ground side, which is differentially connected to the magnetoresistive element 5a, becomes As shown in Figure 4, the waveform changes on the zero level side of the voltage. Incidentally, up to 8, only the first magnetic detecting body 5 has been explained, but the first magnetic detecting body 5 and 1/
Two magnetoresistive elements 6a with a 4χ (90°) phase shift
, 6b are differentially connected to the output terminal 1 of the second magnetic detection body 6.
Similarly, a sinusoidal output signal can be obtained from 0. The output signal waveform of this second magnetic detector 6 is illustrated by a broken line in FIG. Therefore, it is necessary to eliminate the flat part of the waveform at the peak value ■ shown in FIG. 4 (as shown in FIG.
6+) is equal to the width (l-1), i.e. ■No 1-1
As explained in FIGS. 6 and 4, the magnetic body 1a
The differentially connected magnetoresistive element 5 of the first magnetic detection body 5
When moving from (a) to (d) in FIG. 5 with respect to a, 51), an output waveform as shown by the solid line in FIG. 6 was obtained. Looking at the output waveform shown in FIG. 6, the flat part of the waveform at the peak value ■ has disappeared, but now a flat part of the waveform has appeared at the midpoint level 1/2 ■, which is n. (The waveform indicated by the broken line in Figure 6 shows the output waveform from the second magnetic detector B.) This means that the movement from the state in Figure 5 (C) to the state in Figure 5 (D) The magnetic body 1a is placed in a dead zone, that is, at a stable position, between the magnetoresistive element 5a connected to the input terminal 7 side and the magnetoresistive element 51 connected to the ground terminal 8 side, between a distance twice the gap t, which is the distance. It was found that this was due to the location of In this way, in a structure in which the first and second magnetic detectors 5 and 6 are arranged alternately in the same straight line, as in the conventional arrangement structure of magnetic detectors shown in FIG. It is necessary to provide a gap t between the magnetoresistive elements, which inevitably causes a flat part in the output waveform, so the output signal with this flat part is passed through a comparator at the zero cross point and shaped into a rectangular wave. When creating a pulse and dividing it as a measurement signal, the division accuracy deteriorates and the detector and 1
- The problem was that the viscosity of the liquid decreased.

この発明は係る上記の欠点に鑑みなされたもので、出力
波形上の平坦部分を引きおこす要因である磁気抵抗素子
間のすき間tに着目して実験を重ね、このすき間tを無
(すことによって、波形上の平坦部分の全く生じない出
力信号が得ら九る精度の向上した検出器の補供をその目
的としたものである。
This invention was made in view of the above-mentioned drawbacks, and after repeated experiments focused on the gap t between the magnetoresistive elements, which is a factor that causes flat parts on the output waveform, by eliminating this gap t, The purpose of this is to provide a detector with improved accuracy by which an output signal without any flat portions on the waveform can be obtained.

上記の目的を達成するための、この発明の要旨とすると
ころは、前掲の特許請求の範囲に掲記した通りである。
The gist of the present invention to achieve the above object is as stated in the claims above.

つぎに、この発明の好適な実施例につい・で、第7図以
下の図面を参照して詳細に説明する。尚、以下に説明す
る磁気検出体の配置構造以外は第1図に示した構造と同
一である、 第7図はこの発明の磁気検出体の配置構造を示した説明
図で、符号11はInch、GaA、s  などの物質
を主成分とする半導体の磁気抵抗効果を利用した2つの
磁気抵抗素子t1a、111)を被測定体1の磁性体1
aの間隔χに対して1//2χずらして差動接続した第
1の磁気検出体であり、符号12は同じく半′導体の磁
気抵抗効果を利用した2つの磁気抵抗素子12a、12
bを磁性体1aの間隔χに対して1/2χずらして差動
接続した第2の磁気検出体である。
Next, a preferred embodiment of the present invention will be described in detail with reference to FIG. 7 and the following drawings. Note that the structure other than the arrangement structure of the magnetic detection body explained below is the same as that shown in FIG. 1. FIG. Two magnetoresistive elements t1a, 111) that utilize the magnetoresistive effect of semiconductors whose main components are materials such as , GaA, and S are connected to the magnetic body 1 of the object to be measured 1.
The first magnetic detection body is differentially connected by being shifted by 1/2χ with respect to the interval χ of a, and the reference numeral 12 denotes two magnetoresistive elements 12a, 12 which also utilize the magnetoresistive effect of semiconductors.
This is a second magnetic detection body which is differentially connected with b shifted by 1/2χ with respect to the interval χ between the magnetic bodies 1a.

これら第1及び第2の磁気検出体11及び12は、同一
平面上で、互いに1/4χ位相をずらして、しかも互い
に交わることがないように適宜なギャップGを隔てて平
行線上に平行配置さrている。そして、各磁気抵抗素子
11a、111)、12a、 12+) ノ幅lは等し
く、−シかも第2図に図示した従来例のように一直線上
にくし目状に配列したとき、各磁気抵抗素子間にはすき
間(第2図中符号tで示された部分)が生じることがな
いように形成されてぃる。16及び14は第1の磁気検
出体11の入力端子及び出力端子、15及び16は第2
の磁気検出体12の入力端子及び出力端子、17はアー
ス端子である。尚、第1及び第2の磁気検出体11及び
12にそれぞれ入力端子13.14を設けたのは、異な
る入力波形、たとえば交流のようにSIN波形とCO8
波形をそれぞれに入力できるようにしたものであり、直
流電圧を印加する場合には、第2図の従来例のように共
通入力端子としてやっても勿論よい。
These first and second magnetic detection bodies 11 and 12 are arranged in parallel on parallel lines on the same plane, with a 1/4χ phase shifted from each other, and separated by an appropriate gap G so that they do not intersect with each other. I'm here. The width l of each magnetoresistive element 11a, 111), 12a, 12+) is the same, and when the width l of each magnetoresistive element 11a, 111), 12a, 12+) is the same, and the width l of the magnetoresistive element 11a, 111), 12a, and They are formed so that no gap (the part indicated by the symbol t in FIG. 2) is created between them. 16 and 14 are the input terminal and output terminal of the first magnetic detection body 11, and 15 and 16 are the second
The input terminal and output terminal of the magnetic detection body 12, 17 is a ground terminal. The reason why the input terminals 13 and 14 are provided for the first and second magnetic detectors 11 and 12 is that the input terminals 13 and 14 are provided for different input waveforms, for example, a SIN waveform and a CO8 waveform such as an alternating current.
It is designed so that waveforms can be input to each terminal, and when applying a DC voltage, it is of course possible to use a common input terminal as in the conventional example shown in FIG.

このような構成において、入力端子13及び15に直流
電圧を印加し、磁気センサ2を被゛測定体1に対して移
動さぜたときの、第1の磁気検出体11の出力端子14
に得られる出力信号波形について、第8図及び第9図を
参照して説明する。尚、磁性体1aの幅[Jは各磁気抵
抗素子11a、111]、12a 、121)の幅eと
同一であるものとして説明する。
In such a configuration, when a DC voltage is applied to the input terminals 13 and 15 and the magnetic sensor 2 is moved relative to the object to be measured 1, the output terminal 14 of the first magnetic detection body 11
The output signal waveform obtained will be explained with reference to FIGS. 8 and 9. The description will be made assuming that the width of the magnetic body 1a [J is the same as the width e of each magnetoresistive element 11a, 111], 12a, 121).

第8図(イ)に示すように磁気抵抗素子11aの左端面
と磁性体1aの右端面とが一致した状態では、2つの磁
気抵抗素子11a、111〕を差動接続したため出力端
子14の出力電圧は印加電圧Vの1//2の中点レベル
< 1/2 V )で安定している。この状態から第8
図(ロ)に示す状態まで磁性体1aを図の矢印方向(右
方向)に徐々に移動する過程では、磁気抵抗素子11a
にバイアス磁石4からの磁束が多くなり、磁気抵抗素子
11aの抵抗値が増加するため、印加電圧Vレベルすな
わちピーク値■まで電圧が増加して行く。第8図(ロ)
の状態から第8図()・)の状態まで磁性体1aが移動
する過程においては、磁気抵抗素子11aへ作用する磁
束が徐々に低下するため、出力電圧も徐々に低下し、第
8図(・・)の状態では第8図(イ)の出力電圧と同様
中点レベルの電圧1/2Vとなる。第8図(・・)の状
態から第8図(ニ)の状態 まで移動する過程において
は、今度は磁気抵抗素子11aと差動接続さ九たアース
側の磁気抵抗素子111〕と磁性体1aとの関係になる
ため、出力端子14よりの出力電圧はアース、すなわち
ゼロレベル側に振られることになるため、出力波形は、
1//2vレベルからゼロレベルに向って徐々に低下し
ていき、第8図(ニ)の時点では、ゼロレベル点に達す
る。第8図(ニ)の状態から、さらに磁性体1aを移動
して第8図(ホ)、すなわち第8図(イ)の状態まで移
動する過程では、アース側の磁気抵抗素子111)の磁
束が低下するため、出力波形は1/2Vレベルに向って
徐々に増加していき、第8図(ホ)(第8図(イ))の
時点では1/2Vレベル点に達して、出力波形の1周期
すなわち磁性体1aの間隔χの1サイクルが終り、第8
図(ホ)の状態からさらに磁性体1aを移動すると第9
図に示した出力波形が周期的に出力されることになる。
As shown in FIG. 8(A), when the left end surface of the magnetoresistive element 11a and the right end surface of the magnetic body 1a match, the output terminal 14 outputs the two magnetoresistive elements 11a and 111] because they are differentially connected. The voltage is stable at the midpoint level of 1/2 of the applied voltage V (<1/2 V). From this state, the 8th
In the process of gradually moving the magnetic body 1a in the direction of the arrow (rightward) in the figure until it reaches the state shown in figure (b), the magnetoresistive element 11a
Since the magnetic flux from the bias magnet 4 increases and the resistance value of the magnetoresistive element 11a increases, the voltage increases to the applied voltage V level, that is, the peak value ■. Figure 8 (b)
In the process of the magnetic body 1a moving from the state shown in FIG. 8() to the state shown in FIG. ...), the voltage becomes 1/2V at the midpoint level, similar to the output voltage in FIG. 8(a). In the process of moving from the state shown in Fig. 8 (...) to the state shown in Fig. 8 (D), this time, the magnetoresistive element 111 on the earth side, which is differentially connected to the magnetoresistive element 11a, and the magnetic body 1a. Because of this relationship, the output voltage from the output terminal 14 will be swung toward the ground, that is, the zero level side, so the output waveform will be:
The voltage gradually decreases from the 1//2v level toward the zero level, and reaches the zero level point at the time of FIG. 8(d). In the process of further moving the magnetic body 1a from the state shown in Fig. 8 (d) to the state shown in Fig. 8 (e), that is, Fig. 8 (a), the magnetic flux of the magnetoresistive element 111) on the ground side As the voltage decreases, the output waveform gradually increases toward the 1/2V level, and at the time of Figure 8 (E) (Figure 8 (A)), it reaches the 1/2V level point, and the output waveform One period of , that is, one cycle of the interval χ of the magnetic body 1a is completed, and the eighth
When the magnetic body 1a is further moved from the state shown in Figure (E), the ninth
The output waveform shown in the figure will be output periodically.

尚、この第1の磁気検出体11と1/4χ(90°)位
相をずらして配置された第2の磁気検出体12の差動接
続された2つの磁気抵抗素子12a、12bと磁性体1
aとの移動によって出力端子16より得ら汎る出力波形
については第9図中破線で図示さ扛るように第1の磁気
検出体11の出力端子14より得らする出力波形と90
°位相がずれた同一波形となることは容易に理解できよ
う。このように、この発明よりなる第7図図示の磁気検
出体配置構造をとることにより、その出力端子からの出
力波形は、従来の出力波形と比べ、ピーク値Vレベル、
ゼロレベルあるいは1/2Vレベル点を含む全ての時点
において平坦部分を生ずることがない連続した一様な出
力波形が得られ、後段の分割精度の向上が得られること
になろう また、上記実施例では、磁気検出体(11,12)は出
力端子の左右にひとつづつの磁気抵抗素子を直列接続し
て、一方に入力端子を、他方にアース端子を設けた差動
接続の場合について説明してきたが、磁気抵抗素子間の
配列ピッチの製作誤差、磁気抵抗素子における抵抗変化
特性のバラツキ、あるいは磁性体間隔のバラツキなど実
際の製作工程上で生ずる種々のバラツキを平均化して安
定した出力波形を得るため、および磁気抵抗素子による
消費電流の低減化な計るために、出力端子を中心にして
入力端子側とアース端子側に複数の等しい数の磁気抵抗
素子な差動接続した場合の磁気検出体について以下の図
面を参照しながら説明する。
Note that the two differentially connected magnetoresistive elements 12a and 12b of the second magnetic detector 12, which is arranged with a phase shift of 1/4χ (90°) from the first magnetic detector 11, and the magnetic body 1
The output waveform obtained from the output terminal 16 due to the movement with a is shown by the broken line in FIG.
It is easy to understand that the waveforms are the same with a phase shift. As described above, by adopting the magnetic detector arrangement structure shown in FIG. 7 according to the present invention, the output waveform from the output terminal has a peak value V level,
A continuous and uniform output waveform without flat portions can be obtained at all points including the zero level or 1/2V level point, and the division accuracy in the subsequent stage can be improved. So far, we have explained the case where the magnetic detector (11, 12) is a differential connection in which one magnetic resistance element is connected in series on each side of the output terminal, and one has an input terminal and the other has a ground terminal. However, it is possible to obtain a stable output waveform by averaging various variations that occur during the actual manufacturing process, such as manufacturing errors in the arrangement pitch between magnetoresistive elements, variations in the resistance change characteristics of the magnetoresistive elements, and variations in the spacing between magnetic bodies. In order to reduce current consumption due to magnetoresistive elements, we will introduce a magnetic detector in the case where an equal number of magnetoresistive elements are differentially connected to the input terminal side and the ground terminal side with the output terminal at the center. This will be explained with reference to the drawings below.

第10図はこの発明に係る検出器の磁気−検出体の他の
実施例を示した説明図である。
FIG. 10 is an explanatory diagram showing another embodiment of the magnetic detection body of the detector according to the present invention.

この実施例においては、先に第7図乃至第9図にお(°
て説明した第1実施例の第1及び第2の磁気検出体の場
合に比べ、出力端子を中心にして入力端子側とアース端
子側にそtぞれ2つ・づつの磁気抵抗素子を接続し、1
つの磁気検出体とし′でヲマ2n (n = 1.2.
4.6、・・・)における11−2、すなわち合芭14
つの磁気抵抗素子をイ史用して、差動接続した場合の例
が示され・て(・る、第10図において、符号20は第
1の磁気検出体で、4つの磁気抵抗素子20a 、 2
0b 、 20c、20dを有している。これら4つの
磁気抵抗素子20a・・・20dは出力端子2ろを中心
にして、入力端子224fA+1に2つの磁気抵抗素子
20a、20Cカ1前述の被氾11定体1の磁性体1a
の間隔χと等し噂間隔入で重々11接続されており、ま
たアース端子24側に2つの磁気抵抗素子201〕、2
0dが間隔χで直列接続されて℃・る。
In this embodiment, firstly refer to FIGS. 7 to 9 (°
Compared to the first and second magnetic detectors of the first embodiment described above, two magnetic resistance elements are connected to the input terminal side and the ground terminal side with the output terminal as the center. 1
Assuming two magnetic detectors, there are 2n (n = 1.2.
11-2 in 4.6,...), that is, combination 14
An example is shown in which two magnetoresistive elements are used and differentially connected. 2
0b, 20c, and 20d. These four magnetoresistive elements 20a...20d are centered around the output terminal 2, and two magnetoresistive elements 20a and 20C are connected to the input terminal 224fA+1.
11 are connected at intervals equal to the interval χ, and two magnetoresistive elements 201] and 2 are connected on the ground terminal 24 side.
0d are connected in series with an interval χ.

そして、これら4つの磁気抵抗素子間家、幅l=1/4
χで、全体として20a、20b、20C520dの1
1@にそれぞれ1/2λ間隔で一直線上に配列され゛て
(・る。
Then, between these four magnetoresistive elements, width l=1/4
χ, overall 1 of 20a, 20b, 20C520d
They are arranged in a straight line at intervals of 1/2λ at 1@.

符号21は第2の磁気検出体で、第1の磁気検出体20
と同様4つの磁気抵抗素子21a、21b、21C12
1dを有している。こrも4つのイa気抵抗素子21a
、・・・21dは出力端子26を11+ 41”にし゛
て、入力端子25側に2つの磁気抵抗素子21a、21
C力1間隔χで直列接続されており、アース端子244
111に2つの磁気抵抗211)、21dが間隔χで重
々11接続されている。これら4つの磁気抵抗素子&−
1Iff、 l = 1/4χで、全体として21a 
、 21b、21C121(1の1順に、それぞれ1/
2λ間隔で一直線上に自己グ1jさn′で(・る。
Reference numeral 21 denotes a second magnetic detection body, which is similar to the first magnetic detection body 20.
Similarly, four magnetoresistive elements 21a, 21b, 21C12
1d. There are also four electric resistance elements 21a.
,...21d has the output terminal 26 set to 11+41'' and two magnetic resistance elements 21a, 21 on the input terminal 25 side.
C force is connected in series with 1 interval χ, and the ground terminal 244
Two magnetic resistors 211) and 21d are connected to 111 with an interval χ. These four magnetoresistive elements &-
1Iff, l = 1/4χ, overall 21a
, 21b, 21C121 (1/1 each in order of 1)
Self-grained on a straight line at intervals of 2λ with n' (·ru).

そして、第1及び第2の磁気検出体20及び21(ま同
一平面上で、互いに1/4λ(1)Q相をすらし゛てじ
かも互いに交わることがな(・、Lうに適宜なギャップ
Gを隔てて平行線りに平行配置され・て(・る、このよ
うな構成におい゛て、入力す;動子22及び25にif
流雷電圧印加し、磁気センサ2を被泪11定体1に対し
て移動させたときの、第1の磁気検出体20の出力端子
26に得られる出力信号波形につ(・“て、第11図お
よび第12図を参照し゛て貢見明する。尚、磁性体1a
の幅りは各磁気抵抗素子20a、・・−2nd、21a
、・・・21dの幅lと1司−であるものとし′で説明
する。
The first and second magnetic detecting bodies 20 and 21 (are on the same plane, have a 1/4λ(1)Q phase with each other, and do not even intersect with each other). In such a configuration, if input to movers 22 and 25,
Regarding the output signal waveform obtained at the output terminal 26 of the first magnetic detection body 20 when a lightning voltage is applied and the magnetic sensor 2 is moved relative to the fixed body 1 of the first magnetic detection body 20, The details will be explained with reference to Figures 11 and 12.The magnetic material 1a
The width of each magnetoresistive element 20a,...-2nd, 21a
, . . 21d, and the width 1 and the width 1 are assumed to be 1 and 21d, respectively.

第11図(イ)に示すように磁気抵抗素子20aの左端
面とひとつの磁性体1aの右端面とが一致した状態では
磁気抵抗素子20Cは磁気抵抗素子20aと間隔χで配
置されているため、他の磁性体1aの右端面とこの磁気
抵抗素子20Cの左端面とが一致する。
As shown in FIG. 11(a), when the left end surface of the magnetoresistive element 20a and the right end surface of one magnetic body 1a are aligned, the magnetoresistive element 20C is arranged with a distance χ from the magnetoresistive element 20a. , the right end surface of the other magnetic body 1a and the left end surface of this magnetoresistive element 20C coincide.

この状態では第1の磁気検出体20は出力端子26を中
心にして差動接続されているため、入力端子22側とア
ース端子24側の抵抗値が等しくなり、出力端子23は
入力端子22の印加電圧Vの1/2の中点レベルの電圧
、すなわち1/2Vが出力される。この状態から第11
図(ロ)に示す状態まで磁性体1aを図の矢印方向(右
Jj向)に徐々に移動する過程では磁気抵抗素子20a
と20cにバイアス磁石4からの磁束が多くなり、磁気
抵抗素子20aと20Cの抵抗値が増加するため、印加
電圧vレベルすなわちピーク値■まで電圧が増加して行
く。第11図(ロ)の状態から第11図(ハ)の状態ま
で磁性体1aが移動する過程においては、2つの磁気抵
抗素子20aと20cへ作用する磁束が徐々に低下する
ため出力電圧が徐々に低下し、第11図(ハ)の状態で
は第11図(イ)の出力電圧と同様中点レベルの電圧1
/2’Vとなる。第11図(ハ)の状態から第11図(
ニ)の状態まで移動する過程においては、今度は磁気抵
抗素子20a、20cと差動接続さtたアース側の磁気
抵抗素子20b、20dと磁性体1aとの関係になるた
め、出力端子23よりの出力電圧はアース、すなわち七
ロレベル側に振られることになり、出力電圧は1/2v
レベルからゼロレベルに向って徐々c低下していき、第
11図(ニ)の時点ではゼロレベルに達する。第11図
(ニ)の状態からさらに磁性体1aを移動して第11図
(ホ)、すなわち第11図(イ)の状態まで移動する過
程では、アース側の磁気抵抗素子201)、20dの磁
束が低下するため、出力電圧は1/2Vレベルに向って
徐々に増加して行き、第11図(ホ)(第11図(イ)
)の時点では1/2 Vレベル点に戻り、出力波形の1
周期、すなわち磁性体1aの間隔χの1サイクルが終り
、第11図(ホ)の状態からさらに磁性体1a(被測定
体1)を移動すると第12図に示した出力波形が周期的
に出力されることになる。
In this state, the first magnetic detector 20 is differentially connected around the output terminal 26, so the resistance values on the input terminal 22 side and the ground terminal 24 side are equal, and the output terminal 23 is the same as the input terminal 22. A voltage at a midpoint level of 1/2 of the applied voltage V, that is, 1/2V is output. From this state, the 11th
In the process of gradually moving the magnetic body 1a in the direction of the arrow in the figure (right Jj direction) until the state shown in figure (b), the magnetoresistive element 20a
20c, the magnetic flux from the bias magnet 4 increases, and the resistance values of the magnetoresistive elements 20a and 20C increase, so that the voltage increases to the applied voltage level v, that is, the peak value ■. In the process of the magnetic body 1a moving from the state shown in FIG. 11(b) to the state shown in FIG. 11(c), the magnetic flux acting on the two magnetoresistive elements 20a and 20c gradually decreases, so the output voltage gradually decreases. In the state shown in Fig. 11 (c), the voltage 1 is at the midpoint level, similar to the output voltage in Fig. 11 (a).
/2'V. From the state shown in Fig. 11(C) to Fig. 11(C)
In the process of moving to the state d), the relationship between the magnetic body 1a and the ground-side magnetoresistive elements 20b and 20d, which are differentially connected to the magnetoresistive elements 20a and 20c, is such that the output terminal 23 The output voltage will be swung to the ground, that is, the 7th level, and the output voltage will be 1/2v.
C gradually decreases from the level to the zero level, and reaches the zero level at the time of FIG. 11(d). In the process of further moving the magnetic body 1a from the state shown in FIG. 11(d) to the state shown in FIG. 11(e), that is, FIG. As the magnetic flux decreases, the output voltage gradually increases toward the 1/2V level, as shown in Figure 11 (E) (Figure 11 (A)).
), it returns to the 1/2 V level point and the output waveform becomes 1
When one cycle of the period, that is, the interval χ of the magnetic body 1a, is completed and the magnetic body 1a (measured object 1) is further moved from the state shown in FIG. 11 (e), the output waveform shown in FIG. 12 is periodically output. will be done.

また、この第1の磁気検出体20と1/4χ(90°)
位相をずらして差動接続された4つの磁気抵抗素子21
a、・・・21(1を有する第2の磁気検出体21の出
力端子26より得られる出力波形については第12図中
破線で図示されるように、第1の磁気検出体20の出力
端子2ろより得られる出力波形と90°位相がずれた同
一波形となることはこれまでの説明から容易に理解でき
よう。
Also, this first magnetic detection body 20 and 1/4χ (90°)
Four magnetoresistive elements 21 differentially connected with a phase shift
a,...21 (1) As shown by the broken line in FIG. 12, the output waveform obtained from the output terminal 26 of the second magnetic detector 21 having It can be easily understood from the previous explanation that the output waveform obtained from the second filter is the same waveform with a phase shift of 90 degrees.

・このように、第10図乃至第12図で説明した第2実
施例のように出力端子を中心に入力端子側及びアース端
子側に複数の同数よりなる磁気抵抗素子を配列して全体
として差動接続した磁気検出体を互いに1/4χずらし
て平行配置した構成をとることによって、平坦部分のな
い連続した一様な出力波形が得られ、後段の分割精度の
向上が得られることになる。
・In this way, as in the second embodiment explained in FIGS. 10 to 12, a plurality of magnetoresistive elements of the same number are arranged on the input terminal side and the ground terminal side with the output terminal as the center, and the overall difference is achieved. By adopting a configuration in which the dynamically connected magnetic detection bodies are arranged in parallel and shifted by 1/4χ from each other, a continuous and uniform output waveform without flat portions can be obtained, and the division accuracy in the subsequent stage can be improved.

尚、これまでの説明においては、磁性体1aの幅りを磁
気抵抗素子の幅eと等しい場合について説明してきたが
、磁性体の幅りは、間隔χから磁気抵抗素子の幅lを差
し引いたL−(χ−l)であっても、第9図及び第12
図に示した連続した一様な出力波形を周期的に得ること
ができる。また、第1の磁気検出体の入力端子に交流の
Sin波、第2の検出体の入力端子に交流のCO8波を
入力し、磁気センサと被測定体とを相対的に移動させ第
1、第2の磁気検出体の出力端子より出力を得る場合、
従来例の素子パターンでは、第1、第2の磁気検出体が
同一平面上でかつ、同−右線一ヒに並んで、近接してい
る為、第1、第2の磁気検出体に入力したSin波、C
os波が、互いに影響し合い、出力端子より得られる出
力波形がひずんでしまうという現象が起き、分割精度を
低下させてしまうという不都合もあったが、この発明よ
りなる素子パターンでは、第1、第2の磁気検出体は互
いに交わることなく平行配置されているので入力するS
in波、Cos波相方での影響が少なくなり、出力波形
のひずみを押えることができ、精度を向上することもで
きる。
In addition, in the explanation so far, we have explained the case where the width of the magnetic body 1a is equal to the width e of the magnetoresistive element, but the width of the magnetic body is calculated by subtracting the width l of the magnetoresistive element from the interval χ. Even if L-(χ-l), Figures 9 and 12
The continuous and uniform output waveform shown in the figure can be obtained periodically. In addition, an AC sine wave is input to the input terminal of the first magnetic detection body, and an AC CO8 wave is input to the input terminal of the second magnetic detection body, and the magnetic sensor and the measured body are relatively moved. When obtaining output from the output terminal of the second magnetic detector,
In the conventional element pattern, the first and second magnetic detectors are on the same plane, lined up along the same line, and are close to each other, so that the input to the first and second magnetic detectors is sine wave, C
There was a problem that the OS waves influenced each other and the output waveform obtained from the output terminal was distorted, resulting in a decrease in division accuracy. However, in the element pattern according to the present invention, the first, Since the second magnetic detection bodies are arranged in parallel without intersecting each other, input S
The influence of the in wave and cos wave on the other hand is reduced, distortion of the output waveform can be suppressed, and accuracy can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は検出器の概略説明図、第2図は従来の検出器に
おける磁気検出体の配列構造説明図、第6図は第2図に
示した磁気検出体と被測定体とを相対的に移動した状態
を示した説明図、第4図は第ろ図に示した各状態におけ
る出力端子よりの出力波形図、第5図は第2図に示した
従来の磁気検出体の配列構造において被測定体の磁性体
の幅りを変化した場合における磁気検出体と被測定体と
を相対的に移動した状態を示した説明図、第6図は第5
図に示t〜だ各状態における出力端子よりの出力波形図
、第7図はこの発明よりなる検出器の磁気検出体の配列
構造説明図、第8図は第7図に示した磁気検出体と被側
定体とを相対的に移動した状態を示す説明図、第9図は
第8図に示した各状態における出力端子よりの出力波形
図、第10図はこの発明よりなる検出器の他の磁気検出
体の配列構造説明図、第11図は10図に示した磁気検
出体と被測定体とを相対的に移動した状態を示す説明図
、第12図は第11図に示した各状態における出力端子
よりの出力波形図である。 1・被測定体、1a・磁性体、L・・磁性体の幅、χ・
・磁性体の間隔、2 磁気センサ、3・・磁気検出体、
4 ・バイアス用永久磁石、5.11.2o・第1の磁
気検出体、6.12.21 ・第2の磁気検出体、5a
、5b、6a、61)、11a、  11b、12a、
  12b、20a、20b、20C120d 、 2
1a 、 21b、2IC121d ・=磁気抵抗素子
、7.13.15.22.25  人力端子、8.17
.24・アース端子、9.10.14.16.23.2
6・・・出力端子。 手  続  補  正  書 (自 発−)特許庁長官
 若杉 和夫 殿 〕事件の表示 昭和57年特許願第 204185  号2、発明の名
称 検  出  器 3、補正をする者 電話0555−3−1231 自       発 6、補正の対象 (1)   願      書 (2)   明  細  書 7補正の内容 (1)  別紙の通シ (2)  明細書の浄書(内容に変更なし)手  続 
 補  正  書 昭和  年  月  日 特許庁長官若杉和夫殿 ]事件の表示 昭和57年特許願第 204185  号2、発明の名
称 検  出  器 3、補正をする者 電話0555−3−123 :L 6、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1)明細書2頁19行目「磁気体1aの」とあるを「
磁性体1aの」と訂正する。 (2)明細書4頁5行目「印加電圧しべ」とあ石を「出
力電圧レベ」と訂正する。 (3)明細書14頁5行目「磁気抵抗21b121(l
が」とあるを「磁頷抵抗素子21b121dが」と訂正
する。
Fig. 1 is a schematic explanatory diagram of the detector, Fig. 2 is an explanatory diagram of the arrangement structure of magnetic detecting bodies in a conventional detector, and Fig. 6 is a relative diagram of the magnetic detecting body shown in Fig. 2 and the object to be measured. 4 is an explanatory diagram showing the state in which the magnetic detector has moved to the position shown in FIG. 4. FIG. 4 is an output waveform diagram from the output terminal in each state shown in FIG. An explanatory diagram showing the relative movement of the magnetic detection body and the measured object when the width of the magnetic material of the measured object is changed, and FIG.
The output waveforms from the output terminals in the various states shown in the figure, FIG. 7 is an explanatory diagram of the arrangement structure of the magnetic detector of the detector according to the present invention, and FIG. 8 is the magnetic detector shown in FIG. 7. FIG. 9 is an explanatory diagram showing a state in which the fixed body and the target body are moved relative to each other. FIG. 9 is a diagram of the output waveform from the output terminal in each state shown in FIG. 8. FIG. An explanatory diagram of the arrangement structure of other magnetic detecting bodies, Fig. 11 is an explanatory diagram showing a state in which the magnetic detecting body shown in Fig. 10 and the measured object are relatively moved, and Fig. 12 is the same as shown in Fig. FIG. 4 is an output waveform diagram from an output terminal in each state. 1. Object to be measured, 1a. Magnetic material, L.. Width of magnetic material, χ.
- Spacing between magnetic bodies, 2. Magnetic sensor, 3. Magnetic detection body,
4 ・Permanent magnet for bias, 5.11.2o ・First magnetic detection body, 6.12.21 ・Second magnetic detection body, 5a
, 5b, 6a, 61), 11a, 11b, 12a,
12b, 20a, 20b, 20C120d, 2
1a, 21b, 2IC121d ・= Magnetoresistive element, 7.13.15.22.25 Human power terminal, 8.17
.. 24・Ground terminal, 9.10.14.16.23.2
6...Output terminal. Procedural amendment written by Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office] Indication of the case Patent Application No. 204185 of 1982 2, Invention title detector 3, Person making the amendment Telephone: 0555-3-1231 Voluntary submission 6. Subjects to be amended (1) Application (2) Description Contents of amendment to the description 7 (1) Announcement of appendix (2) Procedures for engraving the description (no change in content)
[Amendment] Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office] Display of the case Patent Application No. 204185 of 1982 2, Name of invention detector 3, Person making the amendment Telephone: 0555-3-123: L 6, Amendment Column 7 of "Detailed Description of the Invention" of the subject specification, content of amendment (1) On page 2, line 19 of the specification, the phrase "of the magnetic body 1a" has been changed to "
"of the magnetic material 1a" is corrected. (2) On page 4, line 5 of the specification, "applied voltage level" is corrected to "output voltage level." (3) Specification page 14 line 5 “Magnetic resistance 21b121(l
The phrase "is" is corrected to "the magnetic nodal resistance element 21b121d is."

Claims (1)

【特許請求の範囲】[Claims] 複数の磁性体を等間隔χで配列した被測定体とこの被測
定体に対向配置で少なくとも2n(但し、11−1.2
.3.4.5、・・・)の磁気抵抗素子を1/2χ間隔
で差動接続した第1及び第2の磁気検出体と、この第1
及び第2の磁気検出体の上に近接配置されたバイアス用
永久磁石とを有した磁気センサとを備え、前記第1の磁
気検出体と第2の磁気検出体とは同一平面」二で互いに
1/4χ位相をずらして、しかも互いに交わることなく
平行配置してなる検出器。
At least 2n (however, 11-1.2
.. 3.4.5,...) magnetoresistive elements are differentially connected at 1/2χ intervals, and this first
and a bias permanent magnet disposed close to a second magnetic detector, the first magnetic detector and the second magnetic detector being on the same plane and mutually arranged. Detectors are arranged in parallel with a 1/4χ phase shift and do not intersect with each other.
JP20418582A 1982-11-20 1982-11-20 Detector Pending JPS5994010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20418582A JPS5994010A (en) 1982-11-20 1982-11-20 Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20418582A JPS5994010A (en) 1982-11-20 1982-11-20 Detector

Publications (1)

Publication Number Publication Date
JPS5994010A true JPS5994010A (en) 1984-05-30

Family

ID=16486238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20418582A Pending JPS5994010A (en) 1982-11-20 1982-11-20 Detector

Country Status (1)

Country Link
JP (1) JPS5994010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212313A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121356A (en) * 1976-04-05 1977-10-12 Ibm Converter for displacement detection
JPS53120547A (en) * 1977-03-30 1978-10-21 Denki Onkyo Co Ltd Mechanicallelectrical transducer applying magnetic resistance element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121356A (en) * 1976-04-05 1977-10-12 Ibm Converter for displacement detection
JPS53120547A (en) * 1977-03-30 1978-10-21 Denki Onkyo Co Ltd Mechanicallelectrical transducer applying magnetic resistance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212313A (en) * 1988-02-19 1989-08-25 Sankyo Seiki Mfg Co Ltd Magnetism detecting device

Similar Documents

Publication Publication Date Title
EP0151002B1 (en) Magnetic detector
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
US4818939A (en) Apparatus for magnetically detecting position or speed or moving body utilizing bridge circuit with series connected MR elements
KR101078078B1 (en) Magnetic rotational-angle detector
JPH0882634A (en) Magnetism detector
JPS5994010A (en) Detector
US5198762A (en) Magnetic sensor having spaced magneto-resistance elements
JPH0443915A (en) Position detector
JPS60155917A (en) Detection apparatus
JPS63212803A (en) Measuring device for displacement
JPS63202979A (en) Magnetic sensor for encoder
JP2653011B2 (en) Inductosin substrate
JPH0546483B2 (en)
JPS6394102A (en) Position detector
JPH0658769A (en) Signal processing method and displacement detector using method thereof
JPS6266117A (en) Rotary sensor
JPS61120902A (en) Magnetic detecting apparatus
JP2767281B2 (en) Magnetic sensor
JPS63311117A (en) Magnetic sensor for detecting position
KR960000909B1 (en) Magnetic resistance element
JPH10122808A (en) Magnetic sensor
JPH0197882A (en) Magnetic azimuth sensor
JPS6266115A (en) Rotary sensor
JPS59142417A (en) Magnetism detecting device
JPH0473087B2 (en)