JPS5993802A - Compaction device for molding ferromagnetic material and production of die thereof - Google Patents

Compaction device for molding ferromagnetic material and production of die thereof

Info

Publication number
JPS5993802A
JPS5993802A JP20026982A JP20026982A JPS5993802A JP S5993802 A JPS5993802 A JP S5993802A JP 20026982 A JP20026982 A JP 20026982A JP 20026982 A JP20026982 A JP 20026982A JP S5993802 A JPS5993802 A JP S5993802A
Authority
JP
Japan
Prior art keywords
mold
powder
cemented carbide
magnetic
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20026982A
Other languages
Japanese (ja)
Inventor
Akira Ikeda
晃 池田
Toshimichi Yoshida
吉田 敏道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP20026982A priority Critical patent/JPS5993802A/en
Publication of JPS5993802A publication Critical patent/JPS5993802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To magnetize magnetic powder with good efficiency and to produce a product having a high compaction density with ease by forming the 2nd die part of a ferromagnetic sintered hard alloy material to be combined with the 1st die part into a pair of tapered shape. CONSTITUTION:A die 20 of a compaction device is formed into one body with the 1st die part 28 made of nonmagnetic sintered hard alloy and the 2nd die part 29 made of a ferromagnetic sintered hard alloy. The part 29 is formed of a pair of tapered bodies 29a, 29b converging from both electromagnets 21, 22 toward a cavity part 25. Both top ends on the cavity 25 side are faced to a press area 27. Desired magnetic powder 26 of a sintered hard alloy is packed in the cavity 25, and is press molded by punches 23, 24. When a high voltage is impressed on the electromagnets 21, 22, most of the magnetic flux concentrates at the part 29. The magnetic field in the press area 27 is thus increased and the efficient magnetization of the powder 26 is made possible.

Description

【発明の詳細な説明】 この発明は強磁性体成形用の圧粉装置及びその金型の製
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a powder compacting apparatus for molding a ferromagnetic material and a method for manufacturing a mold thereof.

従来の強磁性体成形用の圧粉装置としては、例えば第】
図〜第5図に示すようなものが知られている。この種の
装置は主に磁性粉末充填用のキャピテイ部1を内部に有
する金型2と、この金型1の両側に対向配置される磁場
形成用の一対の電磁石3.3と、そしてキャビティ部1
内のプレス区域4で磁性粉末5をプレスする上下両パン
チ6.7とから構成されていて、キャビティ部1内の磁
性粉末5に磁場をかげて磁化するよ5t/Cしでいる。
As a conventional powder compacting device for molding ferromagnetic materials, for example,
The devices shown in Figs. 5 to 5 are known. This type of device mainly includes a mold 2 having a cavity part 1 for filling magnetic powder therein, a pair of electromagnets 3 and 3 for forming a magnetic field, which are arranged oppositely on both sides of the mold 1, and a cavity part. 1
It consists of upper and lower punches 6 and 7 that press the magnetic powder 5 in the press area 4 inside the cavity 1, and the magnetic powder 5 inside the cavity 1 is exposed to a magnetic field and magnetized at 5t/C.

しかしながら第1図〜第3図で示した従来例では、金型
1の「全体」が非磁性超硬合金で形成されているため、
もし電磁石3,30間隔dが増加する場合〔例えば金型
1のサイズを大型化する場合〕配向磁場の強さが低下し
てキャビティ部1内の磁性粉末5を十分磁化できないこ
とになるという不具合がある。そこで第4図及び第5図
で示す従来例が提案されたが、この従来例では金型2の
電磁石3,3で挾まれた部位に孔を穿ちこの孔内へ磁性
材製の円柱体高8゜8を嵌合したのでこの円柱体高8,
8が電磁石3.3とキャビティ部1の間に各々「磁路」
を形成することになり仮令間隔dを太さく採っても上記
の不具合を解消できろものの、長期の使用に於いて金型
2の使用中の熱の影響−バンチ6.7の移動に因るショ
ック等によって円柱体高8,8が非磁性部9より抜は落
ちる可能性b”−あリー「磁場」としての機能も十分な
ものとは云えないという不μ合があった。
However, in the conventional example shown in FIGS. 1 to 3, the "whole" of the mold 1 is made of non-magnetic cemented carbide.
If the distance d between the electromagnets 3 and 30 increases (for example, when the size of the mold 1 is increased), the strength of the orientation magnetic field will decrease and the magnetic powder 5 in the cavity part 1 will not be sufficiently magnetized. There is. Therefore, a conventional example shown in FIGS. 4 and 5 was proposed, but in this conventional example, a hole is drilled in the part of the mold 2 held between the electromagnets 3, 3, and a cylindrical body made of magnetic material is inserted into the hole. Since the cylindrical body height is 8,
8 is a "magnetic path" between the electromagnet 3.3 and the cavity part 1, respectively.
Although the above-mentioned problems can be solved even if the temporary spacing d is made thicker, in long-term use, the influence of heat during use of the mold 2 - due to the movement of the bunch 6.7. There is a possibility that the height of the cylindrical bodies 8, 8 may fall below the non-magnetic portion 9 due to a shock or the like, and the function as a "magnetic field" may not be sufficient.

この発明は叙上の点に着目して開発されたもので、第1
発明に係る強磁性体成形用の圧粉装置は非磁性超硬合金
製の第1金型部内に強磁性超硬合金製の第2金型部を組
合わせて金型とし。
This invention was developed focusing on the above points, and the first
A powder compaction apparatus for molding a ferromagnetic material according to the invention combines a first mold part made of a non-magnetic cemented carbide with a second mold part made of a ferromagnetic cemented carbide to form a mold.

しかも第2金型部を外側より内部のキャピテイ部へ向っ
て集中するテーバ形状体のものとし。
In addition, the second mold part is made into a tapered shape body that concentrates from the outside toward the inner cavity part.

加えてそのキャピテイ部側の両先端をキャビティ部内の
プレス区域に各々対向して臨捷せた構成とすることによ
って、磁束の方向性と集中性を向上せしめ強力な磁場を
形成可能とし、又爪2発明に係る金型の製法は上記第1
.第2両金型部の組合わせに際してWC系の超硬合金粉
末と強磁性超硬合金粉末とを各々別途圧粉焼結して非磁
性超硬合金製の第1及び強磁性超硬合金製の第2両金型
部を形成し、更に組合わ、ぜて再焼結せしめ金属的に強
固に第1及び第2両金型部を一体化した1強磁性体成形
用の圧粉金型を・形成するものである。
In addition, by arranging both tips on the cavity side to face the press area in the cavity, it is possible to improve the directionality and concentration of magnetic flux and form a strong magnetic field. 2. The method for manufacturing the mold according to the invention is the method for manufacturing the mold according to the above-mentioned No. 1.
.. When combining the second two mold parts, WC-based cemented carbide powder and ferromagnetic cemented carbide powder are separately compacted and sintered to make the first part made of non-magnetic cemented carbide and the first part made of ferromagnetic cemented carbide. A powder mold for molding a ferromagnetic material, in which both the second mold parts are formed, and the first and second mold parts are combined and re-sintered to make the first and second mold parts metallically strong. It is something that forms.

以下、この発明の詳細を第6図〜第14図を参照して説
明する。尚、以下では第1発明に係る「強磁性体成形用
の圧粉装置」を中心にして説明し、第2発明に係る「金
型の製法」は必要に応じてその都度説明するものとして
重複する説明を省略するものである。
The details of this invention will be explained below with reference to FIGS. 6 to 14. In addition, the explanation below will focus on the "powder compacting device for molding ferromagnetic material" according to the first invention, and the "method for manufacturing a mold" according to the second invention will be explained each time as necessary. The explanation will be omitted.

第6図〜第9図は第1発明の圧粉装置の内。Figures 6 to 9 show the powder compacting apparatus of the first invention.

要部である金型の第1実施例を斥す図である。It is a figure which rejects 1st Example of the metal mold|die which is an important part.

図中、20は金バし21.22は一対の電磁石、23゜
24は上下両パンチを示す。金型20は中央にキャビテ
ィ部(空洞部)25を有し、その内側へ磁性粉末26を
充填自在としていて、プレス区域27で上下両パンチ2
3.24によってプレス自在とするものである。そして
、この金型20は非磁性超硬合金製の第1金型部28と
磁性超硬合金製力第2金型部29とで一体的に形成され
ており−この発明〔第1発明]では、後者の第2金型部
29が「強磁性」超硬合金材製であり、加えて両軍磁石
21.22より内部のキャビティ部25側へ向って各々
集中する一対のテーバ形状体29a、29bとして形成
され、そのキャビティ部25側の両先端がキャビティ部
25内のプレス区域27に各々対向して臨ませられた状
態で、前者の非磁性超硬合金製の第1金型部28と一体
的にされているところに特色がある。
In the figure, 20 indicates a metal bar, 21 and 22 indicate a pair of electromagnets, and 23 and 24 indicate both upper and lower punches. The mold 20 has a cavity 25 in the center, into which magnetic powder 26 can be freely filled.
3.24, it can be pressed freely. The mold 20 is integrally formed with a first mold part 28 made of non-magnetic cemented carbide and a second mold part 29 made of magnetic cemented carbide - this invention [first invention] In this case, the latter second mold part 29 is made of a "ferromagnetic" cemented carbide material, and in addition, a pair of tapered bodies 29a are concentrated toward the inner cavity part 25 side from both magnets 21 and 22. , 29b, with both tips on the side of the cavity 25 facing the press area 27 inside the cavity 25, the former first mold part 28 made of non-magnetic cemented carbide It is distinctive in that it is integrated with the

この第1実施例で5強磁性超硬合金製の第2金型部29
は第9図より明らかな如く截頭の四角錐形状の一対のテ
ーバ形状体29a、29bとさn・截頭部分30a、3
01)がキャビティ部25内のプレス区域27に対向し
て臨むよ5[されている。従って、非磁性超硬合金製の
第1金型部28は上記形状の第2金型部29が丁度切除
された形状のものとして当初形成されることになる。
In this first embodiment, the second mold part 29 made of 5 ferromagnetic cemented carbide
As is clear from FIG. 9, there are a pair of truncated quadrangular pyramid-shaped tapered bodies 29a, 29b and truncated portions 30a, 3.
01) faces the press area 27 within the cavity portion 25. Therefore, the first mold part 28 made of non-magnetic cemented carbide is initially formed in a shape in which the second mold part 29 having the above-mentioned shape is just cut off.

第1金型部28は非磁性の超硬合金材で形成されるが、
この非磁性σ)超硬合金材を得るには種りの既知の技術
を採用することがn1北であり、例えばW C−4−N
i −4−Co +’i’a (7)如<Niを結合材
トシて1〜30チ含有せしめた超硬合金粉末を所望形状
、即ち中央にキャビティ部25を有する全体角柱形状で
且つ一対のテーパ形状体29a、29bである第2金型
部29を切除したよ5な形状、に圧粉し、1440℃近
辺で焼結するようにしてもよい。このように磁性金属で
あるNiを結合材として用いながら焼結することに依り
、非磁性超硬合金を得る技術としては1例えば特公昭4
5−]、 32 ]、 2号公報に開示の「非出性にし
て強靭な超硬合金」が知られている。又、上記N1に代
えて適量のMo 、Mn 、Cu−Ni 、等を結合材
とじ】400°C1或いは不活性雰囲気中で1500〜
2000″Cで焼結すれは非磁性超硬合金相が得られる
ことも知られており、この発明(第2発明)は特に非磁
性化させる技術そのものを限定して採用する本のではな
い。
The first mold part 28 is made of a non-magnetic cemented carbide material,
In order to obtain this non-magnetic σ) cemented carbide material, it is best to employ known techniques such as WC-4-N.
i -4-Co +'i'a (7) As shown below: Cemented carbide powder containing 1 to 30 pieces of Ni as a binder is formed into a desired shape, that is, an overall prismatic shape with a cavity 25 in the center, and a pair of The second mold part 29, which is the tapered bodies 29a and 29b, may be cut into a shape of 5, and the powder may be sintered at around 1440°C. As described above, there is a technique for obtaining non-magnetic cemented carbide by sintering using Ni, which is a magnetic metal, as a binder.
5-], 32], ``Tough Cemented Carbide Alloy'' disclosed in Publication No. 2 is known. In addition, instead of the above N1, an appropriate amount of Mo, Mn, Cu-Ni, etc. is used as a binder.
It is also known that a non-magnetic cemented carbide phase can be obtained by sintering at 2000''C, and this invention (second invention) is not a book that specifically adopts the technique of making it non-magnetic.

第2金型部29は前述の如く一対のテーパ形状体29a
、29bとして圧粉、焼結した強磁性超硬合金製のもの
と形成されるが、具体的には、例えば結合材どしてのC
oを14係含有せしめ籾米粒径な3 tt VC調整し
たWC系の超硬合金粉末にて所望の截頭テーパ形状に圧
粉し1次いで1360℃近辺で焼結すれば好ましい強磁
性の超硬合金製の第2金型部29を形成できるものであ
る。
The second mold part 29 has a pair of tapered bodies 29a as described above.
, 29b is made of compacted and sintered ferromagnetic cemented carbide. Specifically, for example, C as a binder is used.
A desirable ferromagnetic cemented carbide can be obtained by compacting the powder into a desired truncated taper shape using WC-based cemented carbide powder containing 14% o and adjusting the grain size of unhulled rice to 3 tt VC, and then sintering it at around 1360°C. The second mold part 29 made of alloy can be formed.

このよ5vこl−で、それぞれ第1金型部28及び第2
金型部29を圧粉、焼結(−て形Dシ1−5各71一体
化のために合わせ面やキャビディ部25近辺な?i7F
削加工しいわば鏡面加工して後1両第1.第2金型部2
8.29を組合わぜ−カーボ7ヶー7内で加圧しなが【
〕密九九を維持しつつJ440’C近辺で+11焼結す
ることに依り1組合わゼ面を金属[i41結合させた一
体物とし1次いでキャビティ部ン5内並びに外面を仕1
−げ加工〔先と同様に鏡面加工〕を施し最終的に、中央
に磁性粉末26充填用のキャビティ部25を有する一強
磁性体成形用の圧粉金型20を得2)ものである。
With this 5V voltage, the first mold part 28 and the second mold part 28, respectively.
The mold part 29 is powder-pressed and sintered (the mating surface and the vicinity of the cavity part 25 for the integration of each 71 of the D-shape 1-5).
After machining, so to speak, a mirror finish, the 1st car. Second mold part 2
8. Combine 29 - pressurize in 7 carbs 7 [
] By sintering at +11 in the vicinity of J440'C while maintaining the density, the combined surfaces are made into a single piece of metal [i41].Then, the inside and outside surfaces of the cavity part 5 are finished.
Finally, a powder mold 20 for molding a ferromagnetic material having a cavity 25 for filling magnetic powder 26 in the center was obtained (2).

次にこの圧粉装置の作用をその要部であるこの金型20
の作用に基づき説明する。
Next, we will explain the function of this powder compaction device using this mold 20, which is the main part.
The explanation will be based on the effect of

磁性粉末26をプレス区域27で4二丁両バンチ23゜
24vcよってプレス成形すべくキャビティ部25内に
その適量を充填した状態で、金型20の両側に配置1t
シた電磁石21.22に高′市圧を印加すると金型20
に磁場が付与され、この時その磁束の殆どが非磁性超硬
合金製の第1金型28を通過せず強磁性超硬合金製の第
2金型部29に集中し、しが%このm 2金型部29が
一対のテーパ形状体29a、291)として形成されて
いるために、磁束は外側よりキャビティ部25側にかげ
て横断面に於いても縦断面に於いても(第6図の金型の
状態で)あらゆる方向から集中(−で磁束密度が向上し
、キャビティ部25に〔具体的には第2金型部29の截
頭部分30a、30b、よりブI/ス区域27内に〕流
入し、其処に於ける磁場が極めて強大なものとな’) 
磁性粉末26を効率よく磁化することになる。
1 t of magnetic powder 26 is placed on both sides of the mold 20 with an appropriate amount filled in the cavity 25 in order to be press-molded in the press area 27 with 4 double bunches 23° 24vc.
When high pressure is applied to the electromagnets 21 and 22, the mold 20
At this time, most of the magnetic flux does not pass through the first mold part 28 made of non-magnetic cemented carbide but concentrates on the second mold part 29 made of ferromagnetic cemented carbide. Since the mold part 29 is formed as a pair of tapered bodies 29a, 291), the magnetic flux is deflected from the outside toward the cavity part 25, both in the transverse section and in the longitudinal section (6th In the state of the mold shown in the figure), the magnetic flux density is concentrated from all directions (-), and the magnetic flux density is increased in the cavity part 25 [specifically, in the truncated parts 30a and 30b of the second mold part 29, and in the bus area. 27], and the magnetic field there becomes extremely strong.')
The magnetic powder 26 is efficiently magnetized.

第10図〜第12図はこの発明(第1発明)に係る圧粉
装置の内の要部である金型の第2実施例を示す。この第
2実施例では、金型20が補強ケース31内に収められ
ておジー補強ケース31自体も金型20の非磁性超硬合
金製の第1金型部28及び強磁性超硬合金製の第2金型
部29,29;1゜29bに相応させて第1金型28に
対応する部位は非破性部32そして第2金型部29に対
応する部位は強磁性部33として形成さrtている。こ
のため補強ケース31はオーステナイト組織の非磁性合
金材で非破性部32を形成し、又Fe系合金材にて強磁
性部33を形成している。そして、一対のテーバ形状体
29a 、 29bとしての強磁性超硬合金製の第2金
型部29を介して磁性粉末26へ強力に磁束を集中させ
て磁化するため、この補強ケース31の強磁性部33も
第2金型部29のテーバ形状体29a、29bに相応す
るテーバ形状体33a、33t〕として形成される〔第
12図参照〕。
FIGS. 10 to 12 show a second embodiment of a mold which is a main part of a powder compacting apparatus according to the present invention (first invention). In this second embodiment, the mold 20 is housed in a reinforcing case 31, and the reinforcing case 31 itself is also made of a first mold part 28 of the mold 20 made of non-magnetic cemented carbide and a ferromagnetic cemented carbide. The second mold parts 29, 29; 1° 29b, the part corresponding to the first mold 28 is formed as an unbreakable part 32, and the part corresponding to the second mold part 29 is formed as a ferromagnetic part 33. It's rt. For this reason, the reinforcing case 31 has a non-fractured part 32 made of a non-magnetic alloy material having an austenitic structure, and a ferromagnetic part 33 made of a Fe-based alloy material. In order to strongly concentrate magnetic flux to the magnetic powder 26 and magnetize it through the second mold part 29 made of ferromagnetic cemented carbide as the pair of tapered bodies 29a and 29b, the ferromagnetism of the reinforcing case 31 increases. The part 33 is also formed as a tapered body 33a, 33t corresponding to the tapered body 29a, 29b of the second mold part 29 [see FIG. 12].

この第2実施例によればL下両パンチ23・24に依る
プ1/ス圧力を高めて磁性粉末26に対する圧粉簡度を
高めることが容易にでき−その際に金型20Vc強い圧
力が掛かつても補強ケース31が金型20の強度を補う
ことができる・尚、補強ケース31内には金型20を焼
バメするものとじ一両者の一体化を強固なものとする。
According to this second embodiment, it is possible to easily improve the ease of compacting the magnetic powder 26 by increasing the push pressure exerted by both L lower punches 23 and 24. The reinforcing case 31 can supplement the strength of the mold 20 even when the mold 20 is hung.The reinforcing case 31 has a shrunk fit for the mold 20 to make the integration of the two strong.

又、溶接手段の採用に依り補強ケース31をネ≠易に所
望形状のものびこ形成できる。その他の本“Y成及び作
用については第1実施例と略同様につき図中で共通部分
を同一符号で示し重複説明は省略するものとする。
Further, by employing welding means, the reinforcing case 31 can be easily formed into a desired shape. The structure and operation of the other parts of the present invention are substantially the same as those of the first embodiment, so common parts are denoted by the same reference numerals in the drawings and redundant explanation will be omitted.

第13図及び第14図はこの発明(第1発明)に係る圧
粉装置の内の要部である金型の第3実施例を示す図であ
る。この実施例で示す金型34は、先の第1.第2両実
施例の金型20が略角柱形状の外形とキャビティ部25
区画形成用の円形とを有していたのに対し、略円柱形状
の外形とキャビティ部35区画形成用の内形を有し、非
磁性超硬合金製の第1金型部36及び強磁性超硬合金製
の第2金型部31もそ11ぞれ一体化された状態で全体
が略円柱形状を呈するような外形及び内形を備えている
。そして第2金型部37を構成する一対のデーパ形状体
37a 、37bも同様である。
FIGS. 13 and 14 are diagrams showing a third embodiment of a mold which is a main part of a powder compacting apparatus according to the present invention (first invention). The mold 34 shown in this embodiment is the same as the mold 34 described above. The mold 20 of both second embodiments has a substantially prismatic outer shape and a cavity portion 25.
The cavity part 35 has a circular shape for forming partitions, whereas the cavity part 35 has a substantially cylindrical outer shape and an inner shape for forming partitions, and has a first mold part 36 made of non-magnetic cemented carbide and a ferromagnetic mold part 35. The second mold part 31 made of cemented carbide also has an outer shape and an inner shape such that the whole has a substantially cylindrical shape in an integrated state. The same applies to the pair of tapered bodies 37a and 37b constituting the second mold part 37.

この実施例で示すように、第1発明に於ける「金型」は
製品、即ちキャビティ部35内で形成される強磁性体、
の用途に応じ角柱、円柱状等任意の形状を製品に付与す
るよう色々な外形、内形に金型20,34を構成できる
ものである。
As shown in this embodiment, the "mold" in the first invention is a product, that is, a ferromagnetic material formed in the cavity part 35,
The molds 20 and 34 can be configured to have various external and internal shapes to give the product an arbitrary shape such as a prismatic or cylindrical shape depending on the purpose of use.

尚、その他の構成1作用については先の実施例と略同様
につき説明を省略する。
Note that the other functions of the configuration 1 are substantially the same as those of the previous embodiment, and therefore the explanation thereof will be omitted.

この発明は以上説明してきたよ5な内存のものなので、
非常に秀れた多くの効果が期待できるものであり、その
内の主な効果を列挙すれば以下の通りである。
This invention is an inherent thing that has been explained above, so
Many excellent effects can be expected, and the main effects are listed below.

(イ)第1発明によれば1強磁性超硬合金材にて。(a) According to the first invention, a ferromagnetic cemented carbide material is used.

両電磁石側より内部のキャビティ部側へ向っ℃各々集中
する一対のテーバ形状体として第2金型部を形成し、こ
の第2金型部のキャビディ部側の両先端がキャピテイ部
内のプレス区域に各々対向して臨む状態で、第2金型部
を非磁性超硬合金製の第1金型部に組合わせ一体化する
ことに依り強磁性体成形用の圧粉装置のうちの「金型」
を形成するので、・tヤビテイ部内に充填しそのプレス
区域に位置する磁性粉末に対して施す磁束の方向性及び
集中性を従来の金型に比べて格段と向上できてその結果
磁束密度が上がり効率よく粉末を磁化でき、しかも製品
の形状に相応さばて種々の形状の金型な形成できるもの
であり。
The second mold part is formed as a pair of tapered bodies whose temperature is concentrated from both electromagnet sides toward the internal cavity part, and both tips of the second mold part on the cavity part side are in the press area in the cavity part. By combining and integrating the second mold part with the first mold part made of non-magnetic cemented carbide in a state where they face each other, the "mold ”
・The directionality and concentration of the magnetic flux applied to the magnetic powder filled in the cavity and located in the press area can be significantly improved compared to conventional molds, and as a result, the magnetic flux density increases. It can efficiently magnetize powder, and can also be molded into various shapes depending on the shape of the product.

(ロ)第2発明によれば、非磁性超硬合金製の第1金型
部と強磁性超硬合金製の第2金型部とを各々圧粉、焼結
して形成・す、次いでそれぞれ組合わ・を易いように研
削加工を施し、第1.7A2両金型部同志を組合わせ加
熱しながら再焼結して一体化し、最終的に仕−にげ加工
を施すことに依って第1発明に係る圧粉装置の金型を機
械的強度及び耐久性に秀れたものとして製造することが
でき。
(b) According to the second invention, the first mold part made of a non-magnetic cemented carbide and the second mold part made of a ferromagnetic cemented carbide are each formed by compacting and sintering, and then Each part is ground to make it easier to assemble, and the mold parts of No. 1.7A2 are combined and heated to be re-sintered and integrated, and finally finished. The mold for the powder compacting device according to the first invention can be manufactured with excellent mechanical strength and durability.

ヒ] 上記効果に加えて、第10図〜第12図で示すよ
うな実施例の如く金型の外周を補強ケースで補強すれば
、上下パンチに依るプレス圧力を大きくできてキャピテ
イ部内で圧粉密度を高めた製品を、金型な破損させるこ
となく容易に形成できるという効果もある。
In addition to the above effects, if the outer periphery of the mold is reinforced with a reinforcing case as shown in the embodiments shown in Figs. Another effect is that products with increased density can be easily formed without damaging the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧粉装置の平面図、 第2図は7A1図の装置の要部である金型を破断(−で
示す側面図。 第3図は第1図の装置の金型の斜視図。 第4図は他の従来例を示す金型の斜視図。 第5図は第4図中の矢示V−V線に沼5金型の断面図、 第6図はこの発明(it i発明)の圧粉装置を示す斜
視図。 第7図は第6図中の矢示■−■線に沿う断面図、 第8図は第6図中の矢示■−■線に溢う断面図。 第9図は第6図中の第2金型部の拡大斜視図。 第10図は、この発明(第1発明)の第2実施例を示す
金型σ)斜視図。 第11図は第1oス中の矢示IX−IX線に沼5断面図
。 第12図は第10図中の第2金型部及びこの第2金型部
に対応する補強ケースの強磁性部の拡大斜視図。 P、13aはこの発明(第1発明)の第3実施例を示す
金型の斜視図、ぞして 第14図は第13図中の第2金型部の拡大斜視図である
。 1.25.35・・・・・・・・・・・・・・キャビテ
ィ部2.20.34・・・・・・・・・・・・・・金型
3.21.22・・・・・・・・・・・・・・・電磁石
4.21・・・・・・・・・・・・・・・・・・・・・
プレス区域5.26・・・・・・・・・・・・・・・・
・・・・磁性粉末28.36・・・・・・・・・・・・
・・・・・・・非磁性超硬合金製の第1金型部29.3
7・・・・・・・・・・−・・・・・・・・・・強磁性
超硬合金製の第2金型部31・・・・・・・・・・・・
・・・・・・・・・・・・・・・・補強ケース32・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・補強ケースの非磁性部33 、33a 、 33b・
・・・・・補強ケースの強磁性部第4図 第5図 第6図 第7図   第8図 り4     ( 4
Figure 1 is a plan view of a conventional powder compaction machine. Figure 2 is a side view of the mold, which is the main part of the machine shown in Figure 7A1, cut away (indicated by -). Figure 3 is a side view of the mold of the equipment shown in Figure 1. Perspective view. Fig. 4 is a perspective view of a mold showing another conventional example. Fig. 5 is a sectional view of the Numa 5 mold taken along the arrow V-V line in Fig. 4. Fig. 7 is a cross-sectional view taken along the line indicated by the arrow ■-■ in Fig. 6, and Fig. 8 is a cross-sectional view taken along the line indicated by the arrow Fig. 9 is an enlarged perspective view of the second mold part in Fig. 6. Fig. 10 is a perspective view of the mold σ) showing a second embodiment of the present invention (first invention). FIG. 11 is a sectional view of Swamp 5 taken along the arrow IX-IX line in the first direction. FIG. 12 is an enlarged perspective view of the second mold part in FIG. 10 and the ferromagnetic part of the reinforcing case corresponding to the second mold part. P, 13a is a perspective view of a mold showing a third embodiment of the present invention (first invention), and FIG. 14 is an enlarged perspective view of the second mold part in FIG. 13. 1.25.35...Cavity part 2.20.34...Mold 3.21.22...・・・・・・・・・・・・Electromagnet 4.21・・・・・・・・・・・・・・・・・・
Press area 5.26・・・・・・・・・・・・・・・
・・・Magnetic powder 28.36・・・・・・・・・・・・
......First mold part 29.3 made of non-magnetic cemented carbide
7・・・・・・・・・・・・・・・・・・・・・・・Second mold part 31 made of ferromagnetic cemented carbide...
・・・・・・・・・・・・・・・Reinforcement case 32...
・・・・・・・・・・・・・・・・・・・・・・・・
・Non-magnetic parts 33, 33a, 33b of the reinforcing case・
...Ferromagnetic part of reinforcing case Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 4 ( 4

Claims (1)

【特許請求の範囲】 】)磁性粉末充填用のキャビティ部を有し且つ非磁性超
硬合金製の第1金型部と磁性超硬合金製の第2金型部と
を一体化した金型と、この金型の両側に対向配置される
磁場形成用の一対の電磁石と、そしてキャビティ部内の
プレス区域で磁性粉末をブレ・スする上下両パンチとか
ら取る強磁性体成形用の圧粉装置に於いて、 上記金型は、第1金型部に組合わされる第2金型部が1
強磁性超硬合金材にて1両電磁石側より内部のキャビテ
ィ部側へ向って各々集中する一対のテーバ形状体として
形成され、且つこの第2金型部のキャビティ部側の画先
端がキャピテイ部内のプレス区域に各々対向し°C臨捷
せられていることを特徴とする強磁性体成形用の圧粉装
置。 2)WC系の超硬合金粉末を圧粉し1400℃近辺で焼
結して非磁性超硬合金製の第1金型部を形成し又強磁性
超硬合金粉末を圧粉し1360℃近辺で焼結して強磁性
超硬合金製の第2金型部を別途形成し、各々研削加工後
箱1及び第2両金型部を組合わ−シ備圧しながら140
0℃近辺で再焼結して一体化し、次いで仕上げ加工を施
し一中夫に磁性粉末充填用のキャビティ部を有する5強
磁性体成形用の圧粉金型を形成する金型の製法。
[Claims] ]) A mold having a cavity portion for filling magnetic powder and integrating a first mold portion made of a non-magnetic cemented carbide and a second mold portion made of a magnetic cemented carbide. A powder compacting device for molding ferromagnetic material, which consists of a pair of electromagnets for forming a magnetic field placed oppositely on both sides of the mold, and upper and lower punches that press the magnetic powder in the press area inside the cavity. In the above mold, the second mold part combined with the first mold part is one
They are formed of a ferromagnetic cemented carbide material as a pair of tapered bodies converging from the electromagnet side toward the internal cavity side, and the tip of the image on the cavity side of this second mold section is located inside the cavity section. 1. A powder compacting device for forming ferromagnetic material, characterized in that the powder compacting apparatus is characterized in that the pressing areas of the ferromagnetic material are compressed at a temperature of 0.degree. 2) WC-based cemented carbide powder is compacted and sintered at around 1400°C to form a first mold part made of non-magnetic cemented carbide, and ferromagnetic cemented carbide powder is compacted and sintered at around 1360°C. A second mold part made of ferromagnetic cemented carbide is separately formed by sintering with a ferromagnetic cemented carbide, and after each grinding process, the box 1 and the second mold part are assembled and pressed at 140°C.
A mold manufacturing method for forming a powder mold for molding a 5-ferromagnetic material by resintering and integrating at around 0°C, and then performing finishing processing to form a powder mold for molding a 5-ferromagnetic material, which has a cavity portion for filling magnetic powder in the first half.
JP20026982A 1982-11-17 1982-11-17 Compaction device for molding ferromagnetic material and production of die thereof Pending JPS5993802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20026982A JPS5993802A (en) 1982-11-17 1982-11-17 Compaction device for molding ferromagnetic material and production of die thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20026982A JPS5993802A (en) 1982-11-17 1982-11-17 Compaction device for molding ferromagnetic material and production of die thereof

Publications (1)

Publication Number Publication Date
JPS5993802A true JPS5993802A (en) 1984-05-30

Family

ID=16421514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20026982A Pending JPS5993802A (en) 1982-11-17 1982-11-17 Compaction device for molding ferromagnetic material and production of die thereof

Country Status (1)

Country Link
JP (1) JPS5993802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352598B1 (en) 1999-05-11 2002-03-05 Sumitomo Special Metals Co., Ltd. Rare-earth alloy powder pressing apparatus and rare-earth alloy powder pressing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167701A (en) * 1982-03-30 1983-10-04 Fujitsu Ltd Metal die for press-forming magnetic powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167701A (en) * 1982-03-30 1983-10-04 Fujitsu Ltd Metal die for press-forming magnetic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352598B1 (en) 1999-05-11 2002-03-05 Sumitomo Special Metals Co., Ltd. Rare-earth alloy powder pressing apparatus and rare-earth alloy powder pressing method

Similar Documents

Publication Publication Date Title
CN109314412B (en) Powder pressing core, stator core and stator
KR0166058B1 (en) Utting member and method of manufacturing such member of compacted powder
JP2006342430A (en) Process for manufacturing compound sintered article, and structure
ATE58075T1 (en) POWDER METALLURGICAL CONSOLIDATION OF MULTI-PIECE PREFORMS.
US2652520A (en) Composite sintered metal powder article
RU99100334A (en) METHOD OF PRODUCTION OF PARTS BY POWDER METALLURGY AND ITEM PRODUCED BY THIS METHOD
US3694115A (en) Molding apparatus for making anisotropic ring-shaped magnets with zones having a preferred radial direction
JPS5993802A (en) Compaction device for molding ferromagnetic material and production of die thereof
CN108568526A (en) A kind of preparation method of large scale material
CN116436185A (en) Tri-pole magnet array
JP2005089777A (en) Method of producing composite sintered member
JPS6211041B2 (en)
JP3851281B2 (en) Magnetic powder filling apparatus, magnetic powder filling method, and neodymium sintered magnet manufacturing method
JPS61115316A (en) Magnet manufacturing die
JPH0272603A (en) Core
JPS61140125A (en) Metal mold structure for press of magnetic powder
JPS60240112A (en) Metal mold for compression forming in magnetic field
JP4772171B2 (en) Method for producing anisotropic oxide permanent magnet and molding die
JPS6167599A (en) Magnetic field forming method and forming device
JPH0213452B2 (en)
JP2545687B2 (en) Molding die and powder molding method
JPH0410606A (en) Ring magnet molding apparatus and ring magnet manufactured using same
JPS6421003A (en) Compacting die for producing small-sized parts
JPS583562A (en) Yoke for step motor of watch and manufacture thereof
JP2697954B2 (en) Electromagnetic devices such as mass spectrometers