JPS5990357A - Positive plate for alkaline battery - Google Patents

Positive plate for alkaline battery

Info

Publication number
JPS5990357A
JPS5990357A JP57199973A JP19997382A JPS5990357A JP S5990357 A JPS5990357 A JP S5990357A JP 57199973 A JP57199973 A JP 57199973A JP 19997382 A JP19997382 A JP 19997382A JP S5990357 A JPS5990357 A JP S5990357A
Authority
JP
Japan
Prior art keywords
nickel
pasted
sponge
glycol
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57199973A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamitsu
中満 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP57199973A priority Critical patent/JPS5990357A/en
Publication of JPS5990357A publication Critical patent/JPS5990357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain the positive plate having excellent discharge performance by filling the porous material made of nickel formed like sponge with the pasted active substance powder using organic solvent. CONSTITUTION:A porous material made of nickel formed like sponge having the structure which is continuous in three-dimensional is filled with active substance powder paste mainly consisting of nickel hydrate and conductive material which has been pasted using a single material or mixture of organic solvents such as ethylene glycol, polypropylene glycol or triethylene glycol, etc. For example, the mixed powder of nickel hydrate of 85 part and nickel powder of 15 part is pasted through addition of ethylene glycol, the porous material made of nickel formed like sponge having the structure which is continuous in three-dimensional with average pore diameter of 0.3mm., porosity of 95% and thickness 0f 1.2mm. is filled with said pasted mixed powder. It is then dried under 100 deg.C for 4hr, such porous material is then impregnated with dispersion liquid of fluorine resin. The material is further dried under 80 deg.C for an hour and then pressed with a pressure of 500kg/cm<2>. Thereby, a positive plate can be obtained.

Description

【発明の詳細な説明】 本発明は、スポンジ状ニッ))ル多孔体にペース1〜状
の活物質を充填するアルカリ電池用正極板に関Jるもの
で、活物質粉末をペース1〜化する際に有機溶媒、例え
ばエチレングリコール、プロピレングリコールあるいは
1へり■チ1ノングリ]−ル等の単体もしくはそれらの
混合物を用いることにより放電性能のすぐれた正極板を
得ることを目的とづるーbのである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive electrode plate for alkaline batteries in which a sponge-like porous body is filled with an active material in the form of paste 1. The purpose of this method is to obtain a positive electrode plate with excellent discharge performance by using an organic solvent such as ethylene glycol, propylene glycol, or a mixture thereof, such as ethylene glycol, propylene glycol, or a mixture thereof. be.

従来、アルカリ電池の正極板の基板どしては、ニッケル
粉末の焼結体が用いられているが、その多孔磨は70〜
80%程度であり、これ以1に多孔洟を上げると、その
機械的強度が著しく減少し、したがってぞの空隙内に正
極活物質を充填した場合に、基板の変形、亀裂や活物質
の剥離等をIR来する欠点があった。また、活物質を充
填Mる場合、通常減圧含浸法どよばれる方法すなわち硝
酸ニッケルや硫酸ニッノノル等の塩の水溶液を基板に減
圧含浸したのち、アルカリ水溶液で処理し、さらに湯洗
、乾燥Jるという操作を繰り返す方法がとられている。
Conventionally, a sintered body of nickel powder has been used as a substrate for the positive electrode plate of alkaline batteries, but the porosity of the sintered body is 70~
This is approximately 80%, and increasing the porosity beyond this level will significantly reduce its mechanical strength, and therefore, when the positive electrode active material is filled into the voids, the substrate may deform, crack, or the active material may peel off. There was a drawback that IR was generated. In addition, when filling the active material, a method called vacuum impregnation method is usually used, that is, the substrate is impregnated with an aqueous solution of a salt such as nickel nitrate or ninonol sulfate under reduced pressure, and then treated with an alkaline aqueous solution, followed by washing with hot water and drying. A method of repeating this operation is used.

しかしながら、−回の操作によって充填される量は少り
、シかも、2回目から充填される量は次第に減少してく
るので通常4〜10回の操作を繰り返り必要がある。そ
のため製造工程が複雑で経済的コストが高くなるという
欠点があった。
However, the amount filled in the first operation is small, and the amount filled from the second time onward gradually decreases, so it is usually necessary to repeat the operation 4 to 10 times. Therefore, the manufacturing process is complicated and the economic cost is high.

一方、エチレングリコールやプロピレングリ三]−ル等
の(it幾溶媒どフッ系tri l1ijの/) iB
!液とを用いて水酸化ニッケルとグラフアイ1−どの混
合物をペース1〜ft、 1.、、7こ後、ニッケル網
等の支持体に塗層する、いわゆるロールボンデツド方式
が提案されているが、この方法は製造■稈が簡便である
反面、極板の強度が小さいために寿命の点で問題がある
ことが知られている。
On the other hand, ethylene glycol, propylene glycol, etc.
! Using a mixture of nickel hydroxide and Grapheye 1-ft, paste 1-ft. After that, the so-called roll bonding method was proposed, in which a layer is coated on a support such as a nickel net, but while this method is easy to manufacture, it has a short lifespan due to the low strength of the electrode plate. is known to have problems.

そこで近釘、三次元的に連続した4M i’bを有Jる
ニッケル金属J、りなるスポンジ状多孔体にカルボ4シ
メヂルレル[1−ス等の水溶)(kでペース1−状にし
た正極)古物質を直接充l眞するもの7ノ畳1目されて
さている。
Therefore, a positive electrode was prepared using a nickel metal having three-dimensionally continuous 4M i'b, and a water-soluble carbonaceous material (such as a water-soluble carbonate such as 1-base) in a spongy porous material. ) There are seven tatami mats that are directly filled with ancient materials.

三次元的に連続したDj迄を右するスポンジ状ニッケル
多孔体は、その多孔度が90・−98%と高く、しかL
)l幾緘的強Yaが大きい。ぞのうλ、孔径が人きいの
でこの多孔体に活物質を充1眞1′ると正極板の高容量
化を図る事が出来ると共に充填が極めて簡便になり連続
工稈が可能で経済的にも右利と27る。しかしながら多
孔体と活物質粒子どの間の接触状態(J必ずしし良θ1
ではなく、カルボ:1−ジメチルセル[]−ス等の絶縁
物が存在覆ること1b、+4I板を乾燥する際に多孔体
15導電祠の表面が一部分酸化されて電気抵抗が増大J
ること等の原因にJ、−)て充分な極板の性能が1qら
れないという欠点がある。
The sponge-like porous nickel material that extends to the three-dimensionally continuous Dj has a high porosity of 90.-98%, and only L
)l The strength of Ya is large. Since the pore diameter is small, if this porous body is filled with an active material, it is possible to increase the capacity of the positive electrode plate, and filling is extremely simple, making continuous production possible and economical. There are also 27 people on the right. However, the contact state between the porous body and the active material particles (J is always good θ1
Instead, an insulating material such as carbo:1-dimethylcell[]-su is present. 1b, When drying the +4I plate, the surface of the porous body 15 is partially oxidized, increasing the electrical resistance.
There is a drawback that sufficient performance of the electrode plate cannot be obtained due to J, -).

本発明は、活物質をペース1へ化J−る際の練液として
右1幾溶媒、例えばTヂレングリ−1−ル、プロピレン
グリー1−ルあるいはトリ丁ヂレンクリー]−ル等の単
体あるい(よそれらの混合物を用いると、極板の放電性
能が著しく白土することを見出したことに基づくもので
ある。
The present invention uses solvents such as T-dilene glycol, propylene glycol, tri-dilene glycol, etc. alone or ( This is based on the discovery that when a mixture of these is used, the discharge performance of the electrode plate is significantly reduced.

以下、本発明の実施例ならびにイの効里を詳述J−る。Examples of the present invention and its effects will be described in detail below.

本発明に用いた正極板は次の様にして製作した。The positive electrode plate used in the present invention was manufactured as follows.

まず、水酸化ニッケル85部とニッケル粉末15部どの
混合粉末にTヂレングリ1−ル等の有機溶媒を加えてペ
ースト状にした。つぎ′にこのペーストを平均孔径0 
、3 m m 、多孔度9り%、厚さ 1.2mmの三
次元的に連続した構造を有するスポンジ状ニッケル多孔
体に充填し、100℃で4時間乾燥した後、フッ素樹脂
の分散液を含浸1)、更に80℃で1時間乾燥して7)
+ rう5001<0 /’の圧力で加圧して本発明に
J:る正極板をl[71::。イしてこの正極板1枚ど
対極どして焼結式カドミウム負極板2枚と、電解液どし
てS 、 G 、1,2!+0 (20℃) K (’
) l−1水溶液とを用いて公称容部1.OAt+の本
発明によるグラフデッドタイプの電池をφ11作し、0
.IOAで16時間充電した後、1.OCAで酸化第二
水銀電極に対してO■まで放電して活物質利用率を求め
た。練液どじで用いる有機溶媒の種類を変えた場合の活
物質利用率の変化を第1図に示す。図からプロピレング
リコールやエチレングリコール等のような比較的粘度の
高い有機溶媒を用いた場合に活物質利用率の良いことが
判る。そこで粘度の影響を児るlζめに代表例どして王
チルアルコールとプロピレングリコールとのilN合物
を練液として用いた場合の混合溶媒の粘度ど活物質利用
率との関係を第2図に示す。図から混合溶媒の粘度が2
0c、p、以上の範囲において活物質利用率の真い事が
判る。また、エチレングリコール、トリエチレングリコ
ールやメ5− チルアルコール等の混合物を用いても同(]2の結束が
得られる事を確認した。
First, an organic solvent such as T-dilene glycol was added to a mixed powder of 85 parts of nickel hydroxide and 15 parts of nickel powder to form a paste. Next, apply this paste with an average pore size of 0.
, 3 mm, 9% porosity, and 1.2 mm thick sponge-like porous nickel material having a three-dimensionally continuous structure was filled with the material, and after drying at 100°C for 4 hours, the fluororesin dispersion was Impregnation 1), further drying at 80°C for 1 hour 7)
The positive electrode plate according to the present invention is pressurized with a pressure of 5001<0/'. Then, put one positive electrode plate, two sintered cadmium negative electrode plates, and electrolyte as the opposite electrode. S, G, 1, 2! +0 (20℃) K ('
) 1-1 aqueous solution to a nominal volume of 1. A graph dead type battery according to the present invention of OAt+ was made with a diameter of 11 mm.
.. After charging for 16 hours with IOA, 1. The active material utilization rate was determined by discharging to O■ against a mercuric oxide electrode using OCA. Figure 1 shows the change in the active material utilization rate when the type of organic solvent used in the mixing process was changed. From the figure, it can be seen that the active material utilization rate is good when an organic solvent with relatively high viscosity, such as propylene glycol or ethylene glycol, is used. Therefore, as a representative example of the influence of viscosity, Figure 2 shows the relationship between the viscosity of the mixed solvent and the active material utilization rate when an ilN compound of kingyl alcohol and propylene glycol is used as a working solution. Shown below. From the figure, the viscosity of the mixed solvent is 2
It can be seen that the active material utilization rate is true in the range of 0c, p or more. It was also confirmed that the same bonding properties (2) can be obtained using a mixture of ethylene glycol, triethylene glycol, methyl alcohol, and the like.

次に、練液どしてプロピレングリコ:1−ルを用いて製
作した本発明による正極板1枚と、従来から公知のペー
ス1〜式カドミウム負極板1枚どを一ノーイ[1ン不織
布のセパレータを介して渦巻状に巻き、電解液にS、 
G、1.300(20℃)水酸化カリウム水溶液を用い
て公称容i12,4Ahの本発明による密閉形ニッケル
・カドミウム電池(Δ)を製作した。
Next, one positive electrode plate according to the present invention manufactured using propylene glycol: Wrap it in a spiral shape through a separator, add S to the electrolyte,
A sealed nickel-cadmium battery (Δ) according to the present invention having a nominal capacity of i12.4Ah was fabricated using an aqueous potassium hydroxide solution at 1.300°C (20°C).

また比較のために練液として0.6wt%カルポキシメ
チルレル[1−ス水溶液を用いた正極板を用いて従来法
による電池(B)を製作した。これらの電池を20℃、
  0.IOAで16時間充電した後、082C△でi
、oyl:で放電した時の放電特性を第3図に示す。図
から、本発明による電池(△〉は従来法による電池(、
B)よりも放電電位特性および放電容量共に著しく優れ
ている事が判る。
For comparison, a battery (B) was manufactured using a conventional method using a positive electrode plate containing a 0.6 wt % aqueous solution of carboxymethylrel[1-su] as a mixing solution. These batteries at 20℃,
0. After charging with IOA for 16 hours, i with 082C△
, oil: is shown in FIG. 3. From the figure, the battery according to the present invention (△〉) is the battery according to the conventional method (,
It can be seen that both discharge potential characteristics and discharge capacity are significantly superior to B).

何故、活物質をペース1〜化する際の練液として有機溶
媒を用いると利用率が著しく向−1ニするのかは定かで
ないが、次の様な理由によるものと考え−〇− られる。即ち、カルボキシメチルpル1]−ス等の結着
剤の水溶液を用いて活物質をペースト化した場合には、
1輌板内に絶縁性の結着剤が含まれるために内部抵抗が
大きくなると考えられる。まIζ、ペースh i):活
物質を充填した極板を乾燥づる際に、導電材粒子や多孔
体の骨格の表面の一部が酸化されて電気抵抗が大きくな
ると考えられる。そのために極板全体の内部抵抗が大き
くなり放電性能が悪くなるものど考えられる。しかしな
がら、本発明によると、極板内に絶縁性の物質が含まれ
ることはなく、J:だ、導電材の表面等が酸化されるこ
とも少ないと考えられる。そのために従来法による正極
板と比較して放電+11能が著しく向上するものと考え
られる。
Although it is not clear why the use of an organic solvent as a mixing solution when converting the active material into paste 1 improves the utilization rate by 1, it is thought to be due to the following reasons. That is, when the active material is made into a paste using an aqueous solution of a binder such as carboxymethyl p-su,
It is thought that the internal resistance increases because an insulating binder is contained in one plate. Iζ, pace h i): When drying the electrode plate filled with the active material, it is thought that part of the surface of the conductive material particles and the skeleton of the porous body is oxidized, increasing the electrical resistance. It is conceivable that this may increase the internal resistance of the entire electrode plate, resulting in poor discharge performance. However, according to the present invention, no insulating substance is contained in the electrode plate, and it is thought that the surface of the conductive material is less likely to be oxidized. Therefore, it is considered that the discharge ability is significantly improved by +11 compared to the positive electrode plate made by the conventional method.

以上の様に本発明によると、活物質をペース1〜化する
際の練液に有機溶媒を用いることによって正極板の放電
性能を著しく向上さμることができる。
As described above, according to the present invention, the discharge performance of the positive electrode plate can be significantly improved by using an organic solvent in the mixing solution when the active material is made into a paste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図I」練液として用いる有機溶媒の種類を変えた場
合の活物質利用率の変化を示しlc図、第2図は混合触
媒の粘度と活物質利用率との関係を示した図、第3図は
本発明による電池(△)と従来の方法による電池(B)
の1CΔ放電特性の比較図である。 グ Z  凶 粕  宸  < to ’c )   ((:、 r 
)方  3  図 0            /、 6        
  2゜放 電  容 t   (AId)
Figure 1 is a lc diagram showing the change in the active material utilization rate when the type of organic solvent used as a mixing solution is changed, and Figure 2 is a diagram showing the relationship between the viscosity of the mixed catalyst and the active material utilization rate. Figure 3 shows a battery according to the present invention (△) and a battery according to the conventional method (B).
FIG. 2 is a comparison diagram of 1CΔ discharge characteristics of FIG. gu Z 紕 宸 < to 'c ) ((:, r
) Way 3 Figure 0 /, 6
2゜Discharge capacity t (AId)

Claims (1)

【特許請求の範囲】 1、水酸化ニッケルおJ:び導電材を主とJる活物質粉
末を有機溶媒、例えばエチレングリコール。 プ1コピレンゲリコールあるいは1−リJヂレングリコ
ール等の単体もしくはそれらの混合物を用いてペースト
状にしたものを用いて、三次元的に連続した構造を有J
るスポンジ状ニッケル多孔体に充IRiることを特徴ど
Jるアルhり電池用正極板。 2、上記有機溶媒の単体、b +、 <はそれらの混合
物の粘度が20c、10以上である特許請求の範囲第1
項記載のアルカリ電池用正極板。
[Claims] 1. Nickel hydroxide and active material powder, mainly containing conductive material, in an organic solvent such as ethylene glycol. A paste with a three-dimensionally continuous structure is made by using a single substance such as 1-copyrene glycol or 1-diylene glycol or a mixture thereof.
A positive electrode plate for an aluminum battery, characterized by being filled with a sponge-like porous nickel material. 2. The viscosity of the simple substance of the organic solvent, b + , < is 20 c, 10 or more, as a mixture thereof. Claim 1
A positive electrode plate for alkaline batteries as described in .
JP57199973A 1982-11-15 1982-11-15 Positive plate for alkaline battery Pending JPS5990357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57199973A JPS5990357A (en) 1982-11-15 1982-11-15 Positive plate for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57199973A JPS5990357A (en) 1982-11-15 1982-11-15 Positive plate for alkaline battery

Publications (1)

Publication Number Publication Date
JPS5990357A true JPS5990357A (en) 1984-05-24

Family

ID=16416662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57199973A Pending JPS5990357A (en) 1982-11-15 1982-11-15 Positive plate for alkaline battery

Country Status (1)

Country Link
JP (1) JPS5990357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415945A (en) * 2011-02-28 2013-11-27 应用材料公司 Manufacturing of high capacity prismatic lithium-ion alloy anodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149768A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Sealed nickel-cadmium storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149768A (en) * 1980-04-18 1981-11-19 Yuasa Battery Co Ltd Sealed nickel-cadmium storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415945A (en) * 2011-02-28 2013-11-27 应用材料公司 Manufacturing of high capacity prismatic lithium-ion alloy anodes
US9240585B2 (en) 2011-02-28 2016-01-19 Applied Materials, Inc. Manufacturing of high capacity prismatic lithium-ion alloy anodes
US9583770B2 (en) 2011-02-28 2017-02-28 Applied Materials, Inc. Manufacturing of high capacity prismatic lithium-ion alloy anodes

Similar Documents

Publication Publication Date Title
JPS5990357A (en) Positive plate for alkaline battery
JPH0221098B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0494058A (en) Non-sintering type nickel positive electrode plate for alkaline storage battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JPH0429189B2 (en)
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JPS6048868B2 (en) Manufacturing method of electrode substrate
JPS59128766A (en) Positive plate for alkaline battery
JPS59128767A (en) Positive plate for alkaline battery
JPS60143569A (en) Positive plate for alkaline battery
JPS59128764A (en) Positive plate for alkaline battery
JPS5832743B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPS5990358A (en) Positive plate for alkaline battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH05217584A (en) Manufacture of sintered substrate for alkaline battery
JPH03133059A (en) Manufacture of paste type cadmium negative electrode
JP3145392B2 (en) Paste nickel positive electrode
JPS60211770A (en) Positive electrode plate for alkaline battery
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPH0119620B2 (en)
JPS601759A (en) Alkaline storage battery
JPS61135054A (en) Manufacture of nickel electrode for alkaline secondary battery
JPH0682552B2 (en) Nickel positive electrode for alkaline storage battery