JPS5990305A - Forcibly cooled superconductive wire - Google Patents

Forcibly cooled superconductive wire

Info

Publication number
JPS5990305A
JPS5990305A JP57200545A JP20054582A JPS5990305A JP S5990305 A JPS5990305 A JP S5990305A JP 57200545 A JP57200545 A JP 57200545A JP 20054582 A JP20054582 A JP 20054582A JP S5990305 A JPS5990305 A JP S5990305A
Authority
JP
Japan
Prior art keywords
base material
stabilizing base
superconducting wire
superconducting
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200545A
Other languages
Japanese (ja)
Other versions
JPS6356648B2 (en
Inventor
洸 我妻
海保 勝之
健一 小山
哲夫 山口
河野 宰
池野 義光
伸行 定方
四百苅 成夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP57200545A priority Critical patent/JPS5990305A/en
Priority to US06/551,689 priority patent/US4568900A/en
Publication of JPS5990305A publication Critical patent/JPS5990305A/en
Publication of JPS6356648B2 publication Critical patent/JPS6356648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S336/00Inductor devices
    • Y10S336/01Superconductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/884Conductor
    • Y10S505/885Cooling, or feeding, circulating, or distributing fluid; in superconductive apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は核融合炉等の超電導マグネットコイルに、使
用される超電導線に関し、特に冷却媒体により強制循環
冷却させる型式の超電導線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting wire used in a superconducting magnet coil of a nuclear fusion reactor, and more particularly to a type of superconducting wire that is cooled by forced circulation using a cooling medium.

最近に至り、断面中央に冷却媒体通路を形成したいわゆ
る中空超電導線を用い、冷却媒体通路に超臨界圧ヘリウ
ム等の冷却媒体を強制循環させて超電導線をその内側か
ら強制冷却するようにした超電導コイルが種々提案され
ている。このような超電導コイルに使用される中空超電
導線としては、例えば第1図に示すように、中央に冷却
媒体通路1を形成した断面矩形状の銅等の安定化母材2
の壁面内に超電導素線3Aが埋め込まれた型式のもの、
あるいは第2図に示すように同じく断面矩形状の銅等の
安定化母材2の外面にi柵多芯超電導素線3Bが巻付け
もしくは撚り合わされた型式のもの、さらには第3図に
示すように断面矩形状の安定化母材2の外面に凹溝4が
形成されるとともに各凹溝4に成形超電導素線3Cが嵌
合固定された型式のもの等がある。
Recently, a so-called hollow superconducting wire with a cooling medium passage formed in the center of its cross section has been used, and a cooling medium such as supercritical pressure helium is forced to circulate in the cooling medium passage to forcibly cool the superconducting wire from the inside. Various coils have been proposed. The hollow superconducting wire used in such a superconducting coil is, for example, as shown in FIG.
A model in which 3A superconducting wires are embedded in the wall surface of
Alternatively, as shown in FIG. 2, an i-rail multicore superconducting wire 3B is wound or twisted around the outer surface of a stabilizing base material 2 made of copper or the like having a rectangular cross section, or as shown in FIG. There is a type in which grooves 4 are formed on the outer surface of a stabilizing base material 2 having a rectangular cross section, and shaped superconducting wires 3C are fitted and fixed in each groove 4, as shown in FIG.

このような強制冷却型の超電導線を用いた超電導マグネ
ットにおいては、導体内に冷却媒体が強制循環されるた
め各部が均等に冷却でき、またコイルがコンパクトでし
かも機械的強度が高く、さらに冷却媒体の使用量が少な
くて済む等の利点を有するが、その反面、超電導素線に
対する冷却が銅等の安定化母材を介しての間接冷却とな
っているため、冷却効率が低く、そのため何らかの原因
で超電導素線の一部にヒートスポットが生じて超電導特
性が失われた場合に、その回復が遅れる問題がある。
In superconducting magnets using forced cooling type superconducting wire, each part can be cooled evenly because the cooling medium is forced to circulate inside the conductor, and the coil is compact and has high mechanical strength. However, on the other hand, since the superconducting wires are cooled indirectly through a stabilizing base material such as copper, the cooling efficiency is low, which may cause some problems. If a heat spot occurs in a part of the superconducting wire and the superconducting properties are lost, there is a problem in that recovery is delayed.

一方、第4図に示すように角型筒状体6の内側に多数本
の超電導素線3Bを収容し、その超電導素線間の空隙7
に液体ヘリウム等の冷却媒体を流すようにしたいわゆる
バンドルタイプの超電導線も提案されており、この場合
には超電導素線3Bの表面に直接冷却媒体が接して直接
冷却が行われる。しかしながらこの型式の超電導線にお
いては冷却媒体をスムーズに流すことが相当に困何であ
り、局部的に冷却媒体の流れが浦って濃度上昇し、ヒー
トスボッ1〜が生じたり、またヒートスポットの回復が
すみやかに行われなかったりする欠点がある。
On the other hand, as shown in FIG. 4, a large number of superconducting strands 3B are accommodated inside the square cylindrical body 6, and gaps 7 between the superconducting strands 3B are accommodated.
A so-called bundle-type superconducting wire in which a cooling medium such as liquid helium is flowed has also been proposed, and in this case, the surface of the superconducting wire 3B is directly cooled by the cooling medium in direct contact with the surface. However, in this type of superconducting wire, it is quite difficult to allow the cooling medium to flow smoothly, and the flow of the cooling medium is locally blocked, increasing the concentration, causing heat spots, and recovery of heat spots. The disadvantage is that it may not be done promptly.

そこで本発明者等は、前記中空超電導線の長所と第4図
に示す直接冷却型超電導線の長所とを取入れて、全体的
な冷却効率が高くしかも局部的な安定性も良好で、かつ
大きな電磁力に耐え得る構造とした超電導線を特願昭5
7−45795号において提案している。この提案の超
電導線の一例を第5図に示す。
Therefore, the present inventors took advantage of the above-mentioned hollow superconducting wire and the direct cooling type superconducting wire shown in FIG. 4 to achieve a high overall cooling efficiency and good local stability. Patent application for superconducting wire with a structure that can withstand electromagnetic force
It is proposed in No. 7-45795. An example of this proposed superconducting wire is shown in FIG.

第5図において、銅、銅合金、高純度アルミニウム、ア
ルミニウム合金等の良導電性材料からなる断面矩形状の
中空な安定化母材10の内側には、Nb −Ti合金、
Nb  TlTa合金等の合金系超電導材料あるいはN
b3Sn、 V3 Ga 、 Nb3Ge等の化合物系
超電導材料からなる複数本の超電導線11が収容されて
いる。そして安定化母材10の外側 J − は安定化母材10と同様な材料あるいはステンレス鋼等
からなる適当数のセパレータ12を介して銅、ステンレ
ス鋼、チタン、チタン合金等からなる断面矩形状の外被
13によって取囲まれ、前記セパレータ12により安定
化母材10の外面と外被13の内面との間に冷却媒体流
路14が確保されている。さらに前記安定化母材10に
は、その外側の冷却媒体流路14と内側の空間とを連通
させる丸孔状、長孔状、あるいはスリット状等の複数の
連通路15が形成されている。したがって冷却媒体流路
14を流れる超臨界圧ヘリウム等の冷却媒体は連通路1
5を流通して安定化母材10の内側の超電導素線11の
線間の空隙16に流入し、超電導素線11に直接冷却媒
体が接することになる。そしてこの安定化母材10の内
側の超電導素線11の線間空隙16においても冷却媒体
の流れが生じることになる。
In FIG. 5, inside a hollow stabilizing base material 10 with a rectangular cross section made of a highly conductive material such as copper, copper alloy, high purity aluminum, or aluminum alloy, Nb-Ti alloy,
Alloy superconducting materials such as Nb TlTa alloy or N
A plurality of superconducting wires 11 made of compound-based superconducting materials such as b3Sn, V3Ga, Nb3Ge, etc. are accommodated. The outer side J − of the stabilizing base material 10 is a rectangular cross-section made of copper, stainless steel, titanium, titanium alloy, etc., with an appropriate number of separators 12 made of the same material as the stabilizing base material 10 or stainless steel, etc. It is surrounded by a jacket 13, and a coolant flow path 14 is secured between the outer surface of the stabilizing base material 10 and the inner surface of the jacket 13 by the separator 12. Further, the stabilizing base material 10 is formed with a plurality of communication passages 15 in the shape of round holes, long holes, or slits, which communicate the cooling medium flow path 14 on the outside with the space on the inside. Therefore, the cooling medium such as supercritical pressure helium flowing through the cooling medium flow path 14 is
5 and flows into the gap 16 between the superconducting wires 11 inside the stabilizing base material 10, so that the cooling medium comes into direct contact with the superconducting wires 11. A flow of the cooling medium also occurs in the inter-wire gaps 16 of the superconducting wires 11 inside the stabilizing base material 10.

上記提案の超電導線においては、全体的な冷却は安定化
母材10の外側の冷却媒体流路14を流れる冷却媒体の
定常流によってなされるため従来4− の中空型超電導線の場合と同様に均等冷却が行われ、し
かも安定化母材10内の超電導素線11自体にも直接冷
却媒体が接して直接冷却がなされるため冷却効率が高く
、なおかつ安定化母材10の外側の冷却媒体と内側の冷
却媒体とが連通路15を介して流入、流出して交換され
るため従来の第4図に示すバンドルタイプの直接冷却超
電導線の場合のように内側の冷却媒体が局部的に温度上
昇してヒートスポットが生じたりその回復が遅れたりす
ることが極めて少なく、したがってトータルとしての冷
却効率が優れると同時に定常安定性および過渡安定性も
極めて優れている。また上記提案の超電導線においては
、じよう乱が生じて超電導状態が破れ、磁束流状態とな
った時に電流は安定化母材に分流することになるため安
定化母材の部分でも発熱することになるが、この安定化
母材の発熱も外側の冷却媒体により冷却されるから、第
4図に示す従来のハンドルタイプの直接冷却方式に比べ
、超電導状態をすみやかに回復することができ、さらに
上述のように安定化母材の内外の冷却媒体が連通路を介
して流入、流出するため、安定化母材内の超電導素線の
集合構造が、その長手方向に冷却媒体がスムースに流れ
にくい構造例えば編組構造や成形撚線構造となっていて
も特に支障はなく、したがって超電導素線の集合構造に
ついての制約がないためその設計の自由度が大きく、そ
してまた超電導素線が超電導線の中央部分に配置される
ため、マグネッ1〜等のコイルに巻いた場合の曲げ歪の
影響による超電導素線の特性劣化が少なく、しかも超電
導素線は外側の安定化母材によって保護されるため外部
からのN磁力により超電導素線が損傷劣化することが有
効に防止される等、従来の超電導線と比較して格段にI
れた特性を有する。
In the above proposed superconducting wire, the overall cooling is achieved by a steady flow of the cooling medium flowing through the cooling medium channel 14 outside the stabilizing base material 10, so that the same effect as in the case of the conventional hollow superconducting wire is achieved. Uniform cooling is performed, and the cooling medium directly contacts and cools the superconducting wires 11 themselves inside the stabilizing base material 10, resulting in high cooling efficiency. Since the inner cooling medium is exchanged by flowing in and out through the communication path 15, the temperature of the inner cooling medium does not locally rise as in the case of the conventional bundle type directly cooled superconducting wire shown in FIG. Therefore, the occurrence of heat spots and the delay in their recovery are extremely rare, and the overall cooling efficiency is excellent, as well as extremely excellent steady-state stability and transient stability. In addition, in the superconducting wire proposed above, when disturbance occurs and the superconducting state is broken and a magnetic flux flow state occurs, the current is shunted to the stabilizing base material, so heat is generated even in the stabilizing base material. However, since the heat generated by the stabilizing base material is also cooled by the cooling medium on the outside, the superconducting state can be recovered more quickly than with the conventional handle-type direct cooling method shown in Figure 4. As mentioned above, since the cooling medium inside and outside the stabilizing base material flows in and out through the communication path, the aggregate structure of superconducting strands in the stabilizing base material makes it difficult for the cooling medium to flow smoothly in the longitudinal direction. For example, there is no particular problem even if the structure is a braided structure or a formed stranded wire structure.Therefore, there is no restriction on the collective structure of the superconducting wires, so there is a great degree of freedom in its design. Since the superconducting wire is placed in a section, there is less deterioration of the properties of the superconducting wire due to bending strain when it is wound around a coil such as magnet 1. Moreover, since the superconducting wire is protected by the outer stabilizing base material, it is protected from the outside. Compared to conventional superconducting wires, the I
It has excellent characteristics.

なお第5図の超電導線においては、複数の超電導素線1
1からなる超電導素線果合体17A、17Bを2層に重
ね合せて安定化母材10内に収容し、かつ2層の超電導
素線集合体17A、17Bの間にキュプロニッケル等の
高抵抗導電材料からなる薄いチー118を介挿し、各層
の超電導素線集合体17A、17Bが直接接触しない構
成とされている。このように構成することにより、各層
間に結合電流が流れて例えばパルス駆動のごとく励磁速
度が極めて速い場合等における超電導特性の低下を防止
することができる。さらに第5図の超電S線においては
各層の超電導素線集合体17A、17Bと安定化母材1
0との間にも前記同様な高抵抗導電材料からなる薄いチ
ー71つが介挿されており、このテープ19は、安定化
母材1゜を介して両層間に結合電流が流れることを防止
する役割を果たす。但し第5図においては図の簡単化の
ため各H17A、17Bの外面の全面にそれぞれテープ
19を設けた状態を示しているが、実際には連通路15
からの冷却媒体の流入を妨げないように、適宜空所を形
成しておくのが通常である。
In the superconducting wire shown in FIG. 5, a plurality of superconducting strands 1
The superconducting wire assembly 17A, 17B consisting of 1 is stacked in two layers and accommodated in the stabilizing base material 10, and a high resistance conductive material such as cupronickel is placed between the two layers of superconducting wire assembly 17A, 17B. A thin chip 118 made of a material is inserted so that the superconducting wire assemblies 17A and 17B of each layer do not come into direct contact with each other. With this configuration, it is possible to prevent deterioration of superconducting properties when a coupling current flows between each layer and the excitation speed is extremely high, such as in pulse drive. Furthermore, in the superconducting S wire shown in FIG.
A thin tape 19 made of the same high-resistance conductive material as described above is also inserted between the two layers, and this tape 19 prevents a coupling current from flowing between the two layers through the stabilizing base material 1°. play a role. However, in order to simplify the drawing, FIG. 5 shows a state where the tape 19 is provided on the entire outer surface of each H17A and 17B, but in reality, the communication path 15 is
It is normal to form a space as appropriate so as not to impede the inflow of the cooling medium.

以上のように前記提案の超電導線は、従来の超電導線と
比較して冷却効率が良好でしかも安定性に優れ、かつま
た曲げや外力等に対する機械的強度も優れ、核融合のほ
か、各種電気機械、エネルギー貯蔵、各磁気共鳴吸収、
磁気分離等の各種用途、特に大型・高磁界マグネット用
超電導線に最適なものであり、また特に超電導線を多層
に収容して高抵抗導電材料からなるテープ18や19を
介挿した場合には、各層間の結合電流が高抵抗導電テー
プによって防止されるため、大電流によるパルス的な用
途に最適である。、しかしながら本琵明者等がさらに実
用化のための研究をすずめたところ、上記提案の超電導
線においては次のような問題があることが判明した。
As described above, the proposed superconducting wire has better cooling efficiency and stability than conventional superconducting wires, and also has excellent mechanical strength against bending and external forces. mechanical, energy storage, magnetic resonance absorption,
It is ideal for various uses such as magnetic separation, especially for superconducting wires for large-sized, high-field magnets, and especially when superconducting wires are housed in multiple layers and tapes 18 and 19 made of high-resistance conductive material are inserted. Since coupling current between each layer is prevented by the high-resistance conductive tape, it is ideal for pulsed applications with large currents. However, when the authors conducted further research for practical application, it was discovered that the above-mentioned proposed superconducting wire had the following problems.

すなわち、この種の超電導線は第6図に示すように幅広
な面A、Bが巻き半径に対する内周側、外周側に位置し
かつ幅狭の面C,Dが巻き中心軸Oに対し直角な面とな
るようにコイル状に巻込んで超電導マグネットとして使
用するのが通常であるが、安定化母材10はその肉厚が
相当に厚いため、全体としての剛性が高く、コイル巻加
工に相当な困難を伴う問題がある。また、前記提案の超
電導線を実際に製造するにあたって断面矩形状の安定化
母材10を作成する際には、第7図に示すようにコ型チ
ャンネル状の素材21と平板状の素材22とを用意して
おき、平板状素材22が安定化母材10の一方の幅広な
面10Aとなり、口型チャンネル状素材21が他の3面
10B、10C110Dとなるように合せてその合せ目
をスポット溶接することが考えられており、ここでスポ
ット溶接を行うのは、コイル巻加工時において安定化母
材10の蓋の役割を果たす平板状素材22がずれて内側
へ落ち込み、内部の超電導素線に損傷を与えてしまう事
態の発生を防止するためであるが、このスポット溶接の
手間が相当に繁雑で生産性が悪く、またスポット溶接を
施しておいてもコイル巻加工時に無理に曲げようとすれ
ばその溶接部が剥離して、前述の如く平板状素材22が
落ち込み、超電導素線を1傷させることがある等の問題
がある。一方、第7図の安定化母材と類似しているが、
第8図に示すように平板状素材22に嵌め合い部22A
、22Bを形成して、この嵌め合い部22A、22Bを
口型チャンネル状素材21の両端に嵌め込むことも考え
られているが、この場合でもスポット溶接が必要なのは
前記同様である。
That is, in this type of superconducting wire, as shown in Fig. 6, wide surfaces A and B are located on the inner and outer peripheral sides of the winding radius, and narrow surfaces C and D are perpendicular to the winding center axis O. Normally, it is used as a superconducting magnet by winding it into a coil so that it has a flat surface, but since the stabilizing base material 10 is quite thick, its overall rigidity is high, making it suitable for coil winding processing. There are problems that involve considerable difficulty. In addition, when creating the stabilizing base material 10 having a rectangular cross section in order to actually manufacture the proposed superconducting wire, as shown in FIG. Prepare and align the flat material 22 so that it becomes one wide surface 10A of the stabilizing base material 10, and the mouth-shaped channel material 21 the other three surfaces 10B, 10C and 110D, and spot the joints. Welding is considered, and spot welding is performed here because the flat material 22, which serves as a lid for the stabilizing base material 10, shifts and falls inward during the coil winding process, and the superconducting strands inside. This is to prevent the occurrence of a situation that could cause damage to the coil, but this spot welding is quite complicated and has poor productivity, and even if spot welding is performed, it is difficult to forcefully bend it during coil winding. If this happens, the welded portion may peel off, causing the flat material 22 to fall as described above, which may cause damage to the superconducting wire. On the other hand, although it is similar to the stabilizing base material in Figure 7,
As shown in FIG.
, 22B and fitting these fitting portions 22A, 22B into both ends of the mouth-shaped channel-shaped material 21 has been considered, but spot welding is required in this case as well, as described above.

この発明は以上の事情に鑑みてなされたもので。This invention was made in view of the above circumstances.

特願昭57−45795号記載の超電導線をさらに改良
し、コイル巻加工を容易にするとともに、安定化母材の
作成時におけるスポット溶接を不要とし、かつまた安定
化母材の一部の落ち込みによる超電導素線の損傷の発生
を防止した強制冷却型超電導線を提供することを目的と
するものである。
The superconducting wire described in Japanese Patent Application No. 57-45795 has been further improved to facilitate coil winding, eliminate the need for spot welding when creating the stabilizing base material, and reduce the depression of a portion of the stabilized base material. The object of the present invention is to provide a forced cooling type superconducting wire in which damage to the superconducting wire is prevented from occurring.

すなわちこの発明の超電導線は、中空状をなす断面矩形
状の安定化母材の内側に複数本のm74導素線が収容さ
れ、前記安定化母材とこれを取囲む外被との間には長手
方向に連続する冷fJ]媒体流路が形成され、かつ前記
安定化母材にはその内外を連通ずる連通路が形成されて
おり、前記冷却媒体流路を流れる冷却媒体が前記連通路
を介1ノ安定化母(オ内の超電導素線間の空隙に流入し
て超電導素線を直接冷却し得るように構成した強制冷却
型超電導線において、前記安定化は材が、断面コ状をな
す一対のチャンネル状素材を相互に対向状に嵌め合せる
ことにより全体として断面矩形状をなすように作られて
いることを特徴とするものである。
That is, in the superconducting wire of the present invention, a plurality of M74 conductive wires are housed inside a stabilizing base material having a hollow shape and a rectangular cross section, and a plurality of M74 conductive wires are housed inside the stabilizing base material which is hollow and has a rectangular cross section. A cooling medium flow path is formed that is continuous in the longitudinal direction, and a communication path is formed in the stabilizing base material to communicate the inside and outside of the stabilizing base material, and the cooling medium flowing through the cooling medium flow path is connected to the communication path. In a forced cooling type superconducting wire configured so that the superconducting wire can be directly cooled by flowing into the gap between the superconducting wires in the stabilizing mother (O), the stabilizing material has a U-shaped cross section. The device is characterized in that it is made to have a rectangular cross-section as a whole by fitting a pair of channel-shaped materials in a mutually opposing manner.

またこの発明の超電導線は、さらに前記安定化母材に、
その長手方向に沿って複数の突条部が形成され、かつそ
の安定化母材の側壁部に長手方向に直交するスリットが
間隔を置いて形成されていることを特徴とするものであ
る。
Further, the superconducting wire of the present invention further includes, in the stabilizing base material,
A plurality of protrusions are formed along the longitudinal direction, and slits perpendicular to the longitudinal direction are formed at intervals in the side wall of the stabilizing base material.

以下この発明の超電導線をさらに具体的に説明する。な
お以下の説明において安定化母材1oの部分以外の構成
は前記提案のものと同様であれば良く、したがって安定
化母材10以外についての説明は省略する。
The superconducting wire of the present invention will be explained in more detail below. Note that in the following description, the configuration other than the stabilizing base material 1o may be the same as that of the above proposal, and therefore the description of the parts other than the stabilizing base material 10 will be omitted.

第9図はこの発明の超電導線に使用されている安定化母
材10の一例を示すものであり、この安定化母材10は
、断面コ状をなす一対のチャンネル状素材23.24を
相互に対向状に嵌め合せた構成とされている。すなわち
、一方のチャンネル状素材23はその両側の側壁部23
A、23Bの外表面間の幅が他方のチャンネル状素材2
4の両側の側壁部24A、24Bの内表面間の間隔より
も小さくなるように作られ、前記一方の素材23の側壁
部23A、23Bが他方の素材24の側壁部24A、2
4Bの内側に位置するように嵌め合されて、全体として
矩形状をなす安定化母材10が形成されている。なお、
両チャンネル状素材23.24は、特にスポット溶接等
により相互に固着することなく、単に嵌め合せただけの
状態で使用されている。tた両チャンネル状素材23.
24かうなる安定化母材10に、その内外を連通ずる丸
孔状あるいはスリット状等の適宜の形状の複数の連通孔
15を適当な間隔を置いて形成しておくことは前記提案
の場合と同様である。
FIG. 9 shows an example of the stabilizing base material 10 used in the superconducting wire of the present invention. The structure is such that they are fitted in opposite directions. That is, one channel-shaped material 23 has side wall portions 23 on both sides thereof.
The width between the outer surfaces of A and 23B is the other channel-shaped material 2
The space between the inner surfaces of the side wall portions 24A, 24B on both sides of the material 23 is smaller than the distance between the inner surfaces of the side wall portions 24A, 24B on both sides of the material 24, and the side wall portions 23A, 23B of the one material 23 are
A stabilizing base material 10 having an overall rectangular shape is formed by being fitted so as to be located inside the base material 4B. In addition,
Both channel-shaped materials 23 and 24 are used in a state where they are simply fitted together without being fixed to each other, particularly by spot welding or the like. Double channel material 23.
In the case of the above proposal, a plurality of communication holes 15 having an appropriate shape such as a round hole shape or a slit shape, which communicate the inside and outside of the stabilizing base material 10, are formed at appropriate intervals in the stabilizing base material 10. The same is true.

上述のような安定化母材10を構成する一対のチャンネ
ル状素材23.24は相互に固着されておらず、単に嵌
め込まれただけであるから、互いに長手方向に摺動する
ことができる。したがってこのような安定化母材10を
用いた超電導線をコイル巻加工した場合、素材23.2
4が相対的に滑って引張側の延びを補うことができ、そ
のため曲げ加工を容易に行うことができる。また前記提
案の第7図に示す安定化母材の場合の如く平板状素材2
2がずれて内側へ落ち込むようなことがなく、したがっ
て内部の超電導素線11が安定化母材10を構成する素
材の落ち込みにより損傷される事態の発生を有効に防止
でき、さらにはスポット溶接を要しないため超電導線の
組立て工程も簡略化される。そしてまた、一方のチャン
ネル状素材23の側壁部23A、24Bと、他方のチャ
ンネル状素材24の側壁部24A、24Bとが相互に重
なり合って、安定化母材10としての側壁部分が2重と
なり、このような安定化母材10をパンケーキコイルに
巻き込む場合、第10図に示すように前述の2重になっ
た側壁部分が巻き中心軸Oに対して直角となって半径方
向に沿った面となるから、使用時においてコイルの径方
向に加わる大きな電磁力Fに対し著しく強くなり、その
結果使用時の径方向のtm力により安定化母材が圧潰あ
るいは変形して内部の超電導線が損傷されることも有効
に防止できる。
The pair of channel-shaped materials 23 and 24 constituting the stabilizing base material 10 as described above are not fixed to each other but simply fitted, so that they can slide longitudinally relative to each other. Therefore, when a superconducting wire using such a stabilizing base material 10 is coil-wound, the material 23.2
4 can be relatively slid to compensate for the elongation on the tensile side, and therefore bending can be easily performed. In addition, as in the case of the stabilizing base material shown in FIG. 7 of the above proposal, the flat material 2
2 will not shift and fall inward, therefore, it is possible to effectively prevent the occurrence of a situation in which the internal superconducting wire 11 is damaged due to falling of the material constituting the stabilizing base material 10, and furthermore, it is possible to prevent spot welding. Since this is not necessary, the superconducting wire assembly process is also simplified. Also, the side wall portions 23A and 24B of one channel-shaped material 23 and the side wall portions 24A and 24B of the other channel-shaped material 24 overlap each other, so that the side wall portion as the stabilizing base material 10 becomes double, When winding such a stabilizing base material 10 into a pancake coil, as shown in FIG. Therefore, it becomes extremely strong against the large electromagnetic force F applied in the radial direction of the coil during use, and as a result, the stabilizing base material is crushed or deformed by the radial tm force during use, damaging the internal superconducting wire. This can also be effectively prevented.

第11図はこの発明の超電導線に使用される安定化母材
10のざらに改良した例を示すものであリ、この場合に
は安定化母材10を構成する一対の口型チャンネル状素
材23.24の外面にその長手方向に沿った複数状の突
条部25が一体に形成されている。これらの突条部25
は、前述の特願昭57−45795号の提案(第5図参
照〉におけるセパレータ12に相当するものであって、
安定化母材10と外被13との間に冷却媒体通路14を
確保する役割を果たす。したがって第11図の安定化母
材10を用いて超電導線を組立てる場合には、別にセパ
レータ12を用意してこれを組込む必要がなく、組立て
作業が簡略化される。
FIG. 11 shows a slightly improved example of the stabilizing base material 10 used in the superconducting wire of the present invention. A plurality of protrusions 25 are integrally formed on the outer surfaces of 23 and 24 along the longitudinal direction thereof. These protrusions 25
corresponds to the separator 12 in the proposal of the above-mentioned Japanese Patent Application No. 57-45795 (see Fig. 5),
It plays a role of securing a cooling medium passage 14 between the stabilizing base material 10 and the outer sheath 13. Therefore, when assembling a superconducting wire using the stabilizing base material 10 shown in FIG. 11, there is no need to separately prepare and assemble the separator 12, which simplifies the assembly work.

また第11図の安定化母材10においては、各チャンネ
ル状素材23.24の側壁部23A123B、24A1
23Bに長手方向に直交する方向にスリット26が間隔
を置いて形成されている。このようにスリット26を形
成しておくことにより、コイル巻き加工時において安定
化母材10がより一層曲がり易くなり、そのためコイル
巻き加工がより一層容易となる。またこれらにより、大
型でしかも強磁界(10〜12T)の超電導線マグネッ
トが容易に1qられる。
In addition, in the stabilizing base material 10 shown in FIG.
Slits 26 are formed in 23B at intervals in a direction perpendicular to the longitudinal direction. By forming the slits 26 in this way, the stabilizing base material 10 becomes easier to bend during the coil winding process, thereby making the coil winding process even easier. Moreover, with these, 1q of large-sized superconducting wire magnets with a strong magnetic field (10 to 12 T) can be easily produced.

以下にこの発明の強制冷部型超電導線を製造した具体例
を記す。
A specific example of manufacturing a forced cold section type superconducting wire of the present invention will be described below.

フィラメント数7735本でNb拡散障壁を形成したC
u/非Cu= 0.83のNb3Sn素線をツイスト加
工を終了してから 1.4mmφまで伸縮し、第1次導
体とした。この第1次導体を15本成形撚線し、第2次
導体とした。この時の撚線ピッチは100+++mであ
る。
C formed a Nb diffusion barrier with 7735 filaments
After twisting the Nb3Sn wire with u/non-Cu = 0.83, it was expanded and contracted to a diameter of 1.4 mm and used as a primary conductor. Fifteen pieces of this primary conductor were formed and twisted to form a secondary conductor. The twisted wire pitch at this time is 100+++m.

別工程として嵌合型安定化母材を次のように製作した。As a separate process, a mating type stabilizing base material was manufactured as follows.

すなわち3.Onm厚さX 31.0llff1幅の無
酸素銅テープをロール圧延により、突条部1.5ml1
l高さ、平坦部1 、0w+m厚さの突条部を7ケ所も
つ異型テープ(1)を製作した。また同様にして突条部
を中央に3ケ所もつ27mm幅の異型無酸素銅テープ(
2)も製作し、(1)(2)を嵌合できるようコ型にフ
ォーミングした。なお(1)(2)にはプレス打抜きに
より予め10+u+間隔で幅21IIlのスリットが]
型の側面に当る部分にあけられる。
That is, 3. An oxygen-free copper tape with a width of Onm thickness
An irregularly shaped tape (1) having 7 protrusions with a height of l, a flat part of 1, and a thickness of 0w+m was manufactured. Similarly, a 27mm wide modified oxygen-free copper tape with three protrusions in the center (
2) was also manufactured and formed into a U-shape so that (1) and (2) could be fitted together. In addition, in (1) and (2), slits with a width of 21IIl are made in advance by press punching at intervals of 10+u+]
A hole is made in the part that corresponds to the side of the mold.

前述の第2次導体は連通路を妨害しないように適当な孔
をもった0、1■厚さ、20mm幅キュプロニッケルテ
ープにより巻かれ、これを2層重ね、合計30本の第1
次導体を前述のコ型に成型した鋳型テープ(1)、(2
)からなる嵌合ケースに連続的に挿入し、第3次導体と
した。次いで外被としての無酸素銅の連続溶接管製造ラ
インに第3次導体を流し、外被を溶接により製造し、こ
れをロールおよびダイスにより縮径し、平角状の第4次
導体を製造した。
The above-mentioned secondary conductor was wrapped with 0.1 mm thick and 20 mm wide cupronickel tape with appropriate holes so as not to obstruct the communication path, and this was layered in two layers to form a total of 30 primary conductors.
Mold tape (1), (2) in which the secondary conductor was molded into the above-mentioned U shape.
) was continuously inserted into a fitting case consisting of a tertiary conductor. Next, the tertiary conductor was passed through a continuous welded pipe production line using oxygen-free copper as the jacket, and the jacket was manufactured by welding, and the diameter of this was reduced using rolls and dies to manufacture a rectangular 4th conductor. .

第4次導体の寸法は13+1+1X 23111!lで
あり、100m以上の長尺導採を製造できた。
The dimensions of the 4th conductor are 13+1+1X 23111! 1, and it was possible to manufacture a long guide of 100 m or more.

さらにこの第4次導体に石英ガラステープで絶縁を施し
たあとコイルに巻込んだ。コイル寸法は内径30011
11.外径6001m、高さ約50+uである。このコ
イルを窒素ガス雰囲気で800℃×50HのNb3Sn
生成熱処理を施し、8コイル積み上げて強制冷却超電導
マグネットとした。
Furthermore, this fourth conductor was insulated with quartz glass tape and then wound into a coil. Coil dimensions are inner diameter 30011
11. It has an outer diameter of 6001m and a height of approximately 50m. This coil was heated with Nb3Sn at 800°C x 50H in a nitrogen gas atmosphere.
It was subjected to heat treatment and 8 coils were stacked to form a forced cooling superconducting magnet.

上述のようにして得られたマグネットを、発生磁界5T
の外部マグネットと組み合わせて冷却通電実験した。但
し冷却は超臨界圧ヘリウムを導体−17−、。
The magnet obtained as described above is subjected to a generated magnetic field of 5T.
A cooling energization experiment was conducted in combination with an external magnet. However, for cooling, supercritical pressure helium is used as a conductor -17-.

内部に流して行った。その結果5.5にで18000A
通電で中心磁界10Tを計測した。このような計測結果
は、1.4mmφ素線(第1次導体)の臨界電流特性が
920A (4,2に、 10T)であることからみて
、コイリングによる劣化等がなく良好な特性を有するマ
グネットとなっていることを示す。
It flowed inside. The result is 5.5 and 18000A
A central magnetic field of 10 T was measured by energizing. These measurement results indicate that the critical current characteristic of the 1.4 mmφ wire (primary conductor) is 920 A (10 T in 4, 2), and the magnet has good characteristics without deterioration due to coiling. Indicates that

以上の説明で明らかなように、この発明の超電導線は、
前&!提案の超電導線と同様に冷却効率が良好でしかも
安定性に優れ、かつまた曲げや外力等に対する機械的強
度も優れている等の利点を有するほか、特に安定化母材
10が一対の口型チャンネル状素材23.24を相互に
対向状に嵌め合せたものであるため、コイル巻き加工が
容易であり、しかもスポット溶接が不要なため超電導線
組立て工程も簡略化され、さらにパンケーキコイルに巻
いた場合の半径方向の電磁力に対して強く、安定化母材
の変形、圧潰により内部の超電導線が損傷、劣化するお
それが少ない等の種々の利点を有するものである。
As is clear from the above explanation, the superconducting wire of this invention is
Before&! Like the proposed superconducting wire, it has advantages such as good cooling efficiency, excellent stability, and excellent mechanical strength against bending and external forces. Since the channel-shaped materials 23 and 24 are fitted in opposite directions, coil winding is easy, and spot welding is not required, simplifying the superconducting wire assembly process. It has various advantages, such as being strong against radial electromagnetic force when the stabilizing base material is deformed or crushed, and that there is little risk of damage or deterioration of the superconducting wire inside.

18−18-

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図まではそれぞれ従来の中空超電導線の
一例を示す断面図、第4図は従来の直接冷却型超電導線
の一例を示す断面図、第5図はこの発明に先行して提案
されている超電導線の一例を示す断面斜視図、第6図は
第5図の超電導線をコイルに巻いた状態を示す略解的な
斜視図、第7図および第8図はそれぞれ第5図に示され
る超電導線に使用される安定化母材の組み立て方法の一
例を示す断面斜視図、第9図はこの発明の超電導線に使
用される安定化母材の一例を示す断面斜視図、第10図
は第9図の安定化母材をコイルに巻いた状況を示す略解
的な斜視図、第11図はこの発明の超電導線に使用され
る安定化母材の他の例を示す断面斜?!図である。 出願人  工業技術院長 藤倉電線株式会社 復代理人 弁理士 費田武久 (ばか1名) 19− 第9図 第10図 第11図 第1頁の続き ■出 願 人 藤倉電線株式会社 東京都江東区木場1丁目5番1
1 to 3 are cross-sectional views showing an example of a conventional hollow superconducting wire, FIG. 4 is a cross-sectional view showing an example of a conventional directly cooled superconducting wire, and FIG. 5 is a cross-sectional view showing an example of a conventional directly cooled superconducting wire. A cross-sectional perspective view showing an example of the proposed superconducting wire, FIG. 6 is a schematic perspective view showing the superconducting wire shown in FIG. 5 wound into a coil, and FIGS. 7 and 8 are respectively shown in FIG. 9 is a sectional perspective view showing an example of a method for assembling a stabilizing base material used in the superconducting wire of the present invention; FIG. 9 is a sectional perspective view showing an example of the stabilizing base material used in the superconducting wire of the present invention; FIG. 10 is a schematic perspective view showing the state in which the stabilizing base material of FIG. 9 is wound into a coil, and FIG. 11 is a cross-sectional oblique view showing another example of the stabilizing base material used in the superconducting wire of the present invention. ? ! It is a diagram. Applicant Director of the Agency of Industrial Science and Technology Fujikura Electric Wire Co., Ltd. Sub-Agent Patent Attorney Takehisa Kasuda (one idiot) 19- Figure 9 Figure 10 Figure 11 Continued from page 1 ■ Applicant Fujikura Electric Cable Co., Ltd. Koto-ku, Tokyo Kiba 1-5-1

Claims (2)

【特許請求の範囲】[Claims] (1)中空状をなす断面矩形状の安定化母材の内側に複
数本の超電導素線が収容され、前記安定化母材とこれを
取囲む外被との間には長手方向に連続する冷却媒体流路
が形成され、かつ前記安定化母材にはその内外を連通す
る連通路が形成されており、前記冷却媒体流路を流れる
冷却媒体が前記連通路を介し安定化母材内の超電導素線
間の空隙に流入して超電導素線を直接冷却し得るように
構成した強制冷却型超電導線において、 前記安定化母材が、断面コ状をなす一対のチャンネル状
素材を相互に対向状に嵌め合せることにより全体として
断面矩形状をなすように作られていることを特徴とする
強制冷却型超電導線。
(1) A plurality of superconducting strands are housed inside a stabilizing base material that is hollow and has a rectangular cross section, and there is a continuous line in the longitudinal direction between the stabilizing base material and the outer sheath that surrounds it. A cooling medium flow path is formed, and a communicating path is formed in the stabilizing base material to communicate the inside and outside of the stabilizing base material, and the cooling medium flowing through the cooling medium flow path is connected to the inside of the stabilizing base material through the communicating path. In a forced cooling type superconducting wire configured to directly cool the superconducting wire by flowing into the gap between the superconducting wires, the stabilizing base material has a pair of channel-shaped materials each having a U-shaped cross section facing each other. A forced cooling type superconducting wire characterized in that it is made to have a rectangular cross section as a whole by fitting together in a shape.
(2)前記安定化母材には、複数の突条部が長手方向に
沿って一体に設けられており、またその安定化母材の側
壁部には長手方向に直交するスリットが間隔を置いて形
成されている特許請求の範囲第1項記載の強制冷却型超
電導線。
(2) The stabilizing base material has a plurality of protrusions integrally provided along the longitudinal direction, and slits perpendicular to the longitudinal direction are provided at intervals on the side wall of the stabilizing base material. A forced cooling type superconducting wire according to claim 1, which is formed by:
JP57200545A 1982-11-16 1982-11-16 Forcibly cooled superconductive wire Granted JPS5990305A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57200545A JPS5990305A (en) 1982-11-16 1982-11-16 Forcibly cooled superconductive wire
US06/551,689 US4568900A (en) 1982-11-16 1983-11-14 Forced-cooled superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200545A JPS5990305A (en) 1982-11-16 1982-11-16 Forcibly cooled superconductive wire

Publications (2)

Publication Number Publication Date
JPS5990305A true JPS5990305A (en) 1984-05-24
JPS6356648B2 JPS6356648B2 (en) 1988-11-09

Family

ID=16426082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200545A Granted JPS5990305A (en) 1982-11-16 1982-11-16 Forcibly cooled superconductive wire

Country Status (2)

Country Link
US (1) US4568900A (en)
JP (1) JPS5990305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110916A (en) * 1984-11-05 1986-05-29 工業技術院長 Force-cooled type superconducting wire

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622531A (en) * 1985-04-26 1986-11-11 Wisconsin Alumni Research Foundation Superconducting energy storage magnet
US4786886A (en) * 1987-03-06 1988-11-22 Japan Atomic Energy Research Institute Forced-cooled superconductor
US4785142A (en) * 1987-04-10 1988-11-15 Inco Alloys International, Inc. Superconductor cable
DE3852426T2 (en) * 1987-05-13 1995-05-24 Sumitomo Electric Industries Mixed superconductor and process for its manufacture.
FR2625047B1 (en) * 1987-12-21 1990-05-18 Centre Nat Etd Spatiales DEVICE FOR STORING ELECTRICAL ENERGY IN A SUPERCONDUCTOR
JPH0719689B2 (en) * 1987-12-26 1995-03-06 日本原子力研究所 Superconducting coil
US4920754A (en) * 1989-02-06 1990-05-01 Westinghouse Electric Corp. System for dumping cryogens in a superconducting solenoid installation
US4912444A (en) * 1989-02-06 1990-03-27 Westinghouse Electric Corp. Superconducting solenoid coil structure with internal cryogenic coolant passages
US4912443A (en) * 1989-02-06 1990-03-27 Westinghouse Electric Corp. Superconducting magnetic energy storage inductor and method of manufacture
US5148137A (en) * 1989-11-20 1992-09-15 Advanced Cryo Magnetics, Inc. Containment vessel for use with a pulsed magnet system and method of manufacturing same
US5256993A (en) * 1990-07-16 1993-10-26 Chicago Bridge & Iron Technical Services Company Coil containment vessel for superconducting magnetic energy storage
JP3176952B2 (en) * 1990-11-22 2001-06-18 株式会社東芝 Superconducting wire and method of manufacturing superconducting wire
WO2000020795A2 (en) * 1998-09-14 2000-04-13 Massachusetts Institute Of Technology Superconducting apparatuses and cooling methods
US7626477B2 (en) * 2005-11-28 2009-12-01 General Electric Company Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet
RU2456696C2 (en) * 2006-04-24 2012-07-20 Александр Михайлович Джетымов Superconductive wire of "cable-conduit" type for magnetic systems winding
JP4790752B2 (en) * 2008-04-28 2011-10-12 株式会社日立製作所 Superconducting magnet
JP6463985B2 (en) * 2015-02-20 2019-02-06 株式会社日立製作所 Static induction machine
WO2017029676A1 (en) * 2015-08-19 2017-02-23 KAFRI, Amizur Hybrid superconducting magnetic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588206A (en) * 1978-12-25 1980-07-03 Japan Atomic Energy Res Inst Superconductive wire
JPS56134410A (en) * 1980-03-24 1981-10-21 Kogyo Gijutsuin Superconductive wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354261A (en) * 1966-03-16 1967-11-21 Porter Co Inc H K Electric bus element with coolant passages
CH601900A5 (en) * 1975-12-15 1978-07-14 Bbc Brown Boveri & Cie
DE2809573C2 (en) * 1978-03-06 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Superconductor structure and process for its manufacture
JPS5629310A (en) * 1979-08-17 1981-03-24 Toshiba Corp Superconductive magnet device
US4409431A (en) * 1981-08-07 1983-10-11 Harvey Hubbell Incorporated Oil well cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588206A (en) * 1978-12-25 1980-07-03 Japan Atomic Energy Res Inst Superconductive wire
JPS56134410A (en) * 1980-03-24 1981-10-21 Kogyo Gijutsuin Superconductive wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110916A (en) * 1984-11-05 1986-05-29 工業技術院長 Force-cooled type superconducting wire

Also Published As

Publication number Publication date
JPS6356648B2 (en) 1988-11-09
US4568900A (en) 1986-02-04

Similar Documents

Publication Publication Date Title
JPS5990305A (en) Forcibly cooled superconductive wire
EP1212760B2 (en) Rotor assembly with superconducting magnetic coil
US7985925B2 (en) Superconducting cable and method for the production thereof
US4336420A (en) Superconducting cable
US4384168A (en) Conductor for a fluid-cooled winding
EP2827344B1 (en) Superconductor electric cable and method for the obtainment thereof
CN115579184A (en) Superconducting conductor
JPS6137764B2 (en)
JPH0119721B2 (en)
CN113363010A (en) Stepped high-temperature superconducting CICC conductor with high current carrying capacity
JPH0250565B2 (en)
JPH0119722B2 (en)
JPS59130013A (en) Method of forming separator in forcibly cooling superconductive conductor
JPH0131244B2 (en)
JPS59130012A (en) Forcibly cooling superconductive wire
JPH01264112A (en) Superconductive conductor
JPS59132513A (en) Method of forming separator in forcibly cooling superconductive conductor
JP2019149344A (en) High temperature superconducting wire, and high temperature superconducting coil
JPS59130011A (en) Forcibly cooling superconductive wire
JPS5836442B2 (en) superconducting wire
JPH06260335A (en) High temperature superconducting magnet
JPS6388809A (en) Pancake type ac superconducting coil
JP2593549B2 (en) Forced cooling type superconducting cable and method of manufacturing the same
JP4202173B2 (en) Dislocation segment, manufacturing method thereof, manufacturing apparatus thereof, and superconducting application equipment
Agatsuma et al. Fabrication and test of a forced cooled Nb 3 Sn superconducting coil