JPS5989571A - Dc transmission controller - Google Patents

Dc transmission controller

Info

Publication number
JPS5989571A
JPS5989571A JP57200208A JP20020882A JPS5989571A JP S5989571 A JPS5989571 A JP S5989571A JP 57200208 A JP57200208 A JP 57200208A JP 20020882 A JP20020882 A JP 20020882A JP S5989571 A JPS5989571 A JP S5989571A
Authority
JP
Japan
Prior art keywords
power
reactive power
generator
static
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57200208A
Other languages
Japanese (ja)
Inventor
Tomoo Katauri
伴夫 片瓜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57200208A priority Critical patent/JPS5989571A/en
Publication of JPS5989571A publication Critical patent/JPS5989571A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To accurately control with sufficient cooperation of operating characteristic between a generator and a DC convertor by increasing or decreasing the reactive power of a stationary reactive power compensator when the generator is excessively excited or insufficiently excited. CONSTITUTION:A DC converter applies the prescribed reactive power 31 and reactive power 32 supplied from a stationary reactive power compensator to an adder 36, and the output of the adder is applied to logic OR circuits 38, 39 through an amplifier 37 having an insensitive zone of a generator side self-excited allowable limit value. When the generator is excessively excited at 34 or insufficiently excited at 35, the outputs of the OR circuits 38, 39 are applied to reactive power amplifying means 121 and reactive power reducing means 122.

Description

【発明の詳細な説明】 〔清明の技術分野〕 本発明は直流送電制御装置に関し、特に発心所の発生゛
成力を直流変換し送電する直流送区系統構成において、
直流変換装置が必要とする無効′成力供給用および高調
波吸収用フィルタとして静止形無効シカ補償装置を適用
し、この静止形無効(力補償装置の制御回路に発電機自
己励磁現象防止等の発d機運転制約条件および改良条件
を補助信号として加え制御するようにした装置に係わる
[Detailed Description of the Invention] [Technical Field of Seimei] The present invention relates to a DC power transmission control device, particularly in a DC distribution system configuration in which the generated power of a power generation center is converted into DC and transmitted.
A static reactive force compensator is applied as a filter for supplying reactive force and absorbing harmonics required by the DC converter. The present invention relates to a device in which control is performed by adding engine operation constraint conditions and improvement conditions as auxiliary signals.

〔発明の技術的背景〕[Technical background of the invention]

最近の発゛シ所は立地条件の制約により益々大容量化、
遠隔設置化の傾向を強めており、安定変り問題を抱えて
いる。
Recent power stations have become increasingly large in capacity due to location constraints.
There is a growing trend toward remote installation, and there are problems with stability changes.

一方、直流送電においては安定度の問題はなく、その実
績面も含め現在脚光を浴びている技術であり、鋭意各方
面にて実用化に当り検討が進められている。
On the other hand, there is no problem with stability in direct current power transmission, and it is a technology that is currently in the spotlight due to its proven track record, and studies are being carried out to put it into practical use in various fields.

〔背景技術の問題点〕[Problems with background technology]

マ しかしながら、実績が多いと言つ煽も、従来の直流送電
は電力系統間の電力融通の一手段が主目的であり、直流
送電により派生する高周波および無効電力融通という問
題は、各電力系統の島の中で吸収されてしまっており、
問題が外部へ表われてこなかったとも言える。
However, despite the fact that it has a proven track record, the main purpose of conventional DC power transmission is to provide a means of power interchange between power systems, and the problems of high frequency and reactive power interchange derived from DC power transmission are It has been absorbed within the island,
It can be said that the problem has not been exposed to the outside world.

このようなj直流送電系統においては、発電所で発生さ
れた交流′1力の殆んどが直流送電1カ統を対象として
おり、発電所発生電力と直流変換される直流送電1カが
ほぼ1対lの比率をもっているという特色を鳴しており
、この特殊性により新たに解決されるべき諸問題が山積
している。
In such a DC transmission system, most of the AC'1 power generated at a power plant is targeted for one DC transmission line, and almost all of the AC power generated at the power plant is targeted at one DC transmission line, and the DC power that is converted to DC from the power generated at the power station is approximately It is unique in that it has a ratio of 1:1, and this uniqueness creates a wealth of new problems that need to be solved.

〔発明の目的〕[Purpose of the invention]

ここにおいて本発明は、前述の諸問題のうちの1つのテ
ーマである直流送電設備の一部として本発明より設備さ
れた静止形無動電力補償装置の運用の改良および拡張を
計るようにした直流送′成制御装置を提供することを、
その目的とする。
Here, the present invention aims to improve and expand the operation of a static static power compensator installed as a part of DC power transmission equipment, which is one of the themes of the above-mentioned problems. To provide a transmission control device,
That purpose.

〔発明の概要〕[Summary of the invention]

本発明は、発電所の発生成力を直流送電する系統におい
て、 発電機に送電母線を経て接続された血−流変換器の交流
側に、サイリスクの逆並列およびリアクトルの直列接続
とコンデンサとを並列にして送電母線と大地間に挿入接
続式れた静止形無効逗力補噴装置を設け、 交流側の送′畦母線から計器用変圧器、変流器を介して
有効心力および無効電力を検出し、直流変換器FJT袈
無効′ぼ力と静止形無動電力補償装置供給無効電力との
偏差が発電機側自己励磁許容限界を越えるかあるいは発
電機が過励磁もしくは不足励磁のときに、静止形無効電
力償静装置の無効電力を増加あるいは減少させるように
した静止形無動電力補償装置の制御装置を備えた、 直流送鑞制御装置である。
In a system that transmits DC power generated by a power plant, the present invention provides an antiparallel connection of a cyrisk, a series connection of a reactor, and a capacitor on the AC side of a blood flow converter connected to a generator via a power transmission bus. A static reactive power auxiliary injection device is installed in parallel and inserted and connected between the power transmission busbar and the ground, and the active core force and reactive power are transferred from the transmission ridge busbar on the AC side via the voltage transformer and current transformer. When the deviation between the reactive power of the DC converter FJT and the reactive power supplied by the static passive power compensator exceeds the allowable self-excitation limit on the generator side, or when the generator is over-excited or under-excited, This is a DC feeder control device that is equipped with a control device for a static passive power compensator that increases or decreases the reactive power of the static reactive power compensator.

〔光明の実施例〕[Example of light]

一般に発電機はその出力端子にコンデンサ等容量性の負
荷が接続された状態で励磁が供給きれると、その発生電
圧により進み電流が電機子イ別に流れ、それが増磁作用
により更に電圧が上昇し、従ってより過大な電機子電流
が流れ、苛酷な場合には過大な磁磯子鎮圧が絶縁をおび
やかす程度にまで制御不可能のまま上昇し続ける現象が
発生する。
In general, when a generator is fully supplied with excitation with a capacitive load such as a capacitor connected to its output terminal, the generated voltage advances and current flows to each armature, which further increases the voltage due to the magnetizing effect. Therefore, an even more excessive armature current flows, and in severe cases, a phenomenon occurs in which excessive magnetic isostatic pressure continues to rise uncontrollably to the extent that it threatens insulation.

これを発電機の自己励磁現象と称せられる。このとき発
電機の最大許容充電谷値Q′は、次の(1)式にて表わ
される。
This is called the self-excitation phenomenon of the generator. At this time, the maximum allowable charge valley value Q' of the generator is expressed by the following equation (1).

ここに、 Qは発′亀機定格容量、 SCRは発電機の短絡比、 σは定格電圧における発電機の飽和率である。Here, Q is the rated capacity of the generator, SCR is the short circuit ratio of the generator, σ is the saturation rate of the generator at the rated voltage.

一方、直流送電設備においては前述のように、直流変換
に伴い必ず必要となる無効電力用コンデンサおよび高調
波吸収用フィルターが設置されており、この容量は最大
直流送電容量と同程度の容量が必要となる。
On the other hand, as mentioned above, in DC power transmission equipment, reactive power capacitors and harmonic absorption filters are installed, which are essential for DC conversion, and the capacity of these capacitors must be about the same as the maximum DC power transmission capacity. becomes.

また、所要無効電力量および発生高調波量も負荷の増減
、すなわち変換器の制御角に従って推移してゆく。
Further, the required amount of reactive power and the amount of generated harmonics also change according to the increase and decrease of the load, that is, the control angle of the converter.

そして、必要無効電力Rは一般に次式で表わされる。The required reactive power R is generally expressed by the following formula.

R= Vdo・Id ” X(u、α) ””” (2
)ただし、 Vdoは理想直流側゛鎮圧、 Idは@流電流、 αは直流変換器の制御角、 Uは重なり角、 ・・・・・・・(3) である。
R= Vdo・Id ”X(u,α) ””” (2
) However, Vdo is the ideal DC side suppression, Id is the current, α is the control angle of the DC converter, U is the overlap angle, etc. (3).

ここで本発明により送電母線に静止形無動電力補償装置
が挿入された一系統のブロック図を第1図に示す。
FIG. 1 shows a block diagram of a system in which a static static power compensator is inserted into a power transmission bus according to the present invention.

複数台の発電機1が主変圧器21重電機遮断器3および
系統側°遮断器4ならびに変換器用変圧器5を経由し、
直流変換器6に接続されるが、この油流変換56の父流
側の送は母線8には無効電力供給用および高周波吸収用
の静止形無動電力補償装置7が設置される。
A plurality of generators 1 pass through a main transformer 21, a heavy electrical equipment circuit breaker 3, a grid side circuit breaker 4, and a converter transformer 5,
Although connected to the DC converter 6, the bus 8 on the father flow side of the oil flow converter 56 is provided with a static immobile power compensator 7 for supplying reactive power and absorbing high frequencies.

この静止形無効・シカ補償装置7は、さきに述べたよう
に、はぼ直流変換器容量相当つまシ発vt機の総容量相
当の補償能力を有しており、通常の電力系新島間の連系
においCは、系統への彰響を最小に抑えるため、直流変
換器6の運転状態によって決まる無効電力を供給するよ
うに運用される。
As mentioned earlier, this static type null/deer compensator 7 has a compensating capacity equivalent to the total capacity of the VT machine, which is equivalent to the capacity of a direct current converter, and is In grid connection, C is operated so as to supply reactive power determined by the operating state of the DC converter 6 in order to minimize the effects on the grid.

それは、必要補償容量を運転状態に従いリアクトルに流
れる遅れ電流をサイリスタにより調整するようにしてな
される。
This is done by adjusting the lagging current flowing through the reactor with a thyristor according to the operating state of the required compensation capacity.

第2図はその静止形無動電力補償装置の制i、ll系の
構成図である。
FIG. 2 is a block diagram of the control i and ll systems of the static non-dynamic power compensator.

図中第1図と同一符号のものは同一もしくは相当部分を
示す。
In the figure, the same reference numerals as in FIG. 1 indicate the same or corresponding parts.

第2図において、9は計器用変圧器、10は計器用変流
器、11は有効電力および無効電力検出装置、12は静
止形無助成力補償装置の制御装置、71はコンデンサ、
72はサイリスタ、73はリアクトルである。
In FIG. 2, 9 is an instrument transformer, 10 is an instrument current transformer, 11 is an active power and reactive power detection device, 12 is a control device for a static unassisted force compensator, 71 is a capacitor,
72 is a thyristor, and 73 is a reactor.

リアクトル73を流通される′d流が調整されると同時
に、コンデンサ71は前記発′醒機の自己励磁現象と関
係があり、次式を満足するようにその容量−が調整され
る。
At the same time as the current flowing through the reactor 73 is adjusted, the capacitance of the capacitor 71, which is related to the self-excitation phenomenon of the starter, is adjusted so as to satisfy the following equation.

ここで、 nは発電機運転台数、 ★は総コンデンサ容量、 Ql。は直流変換器に必要な無効電力、である。here, n is the number of generators in operation, ★ is the total capacitor capacity, Ql. is the reactive power required for the DC converter.

一般的には無効電力QRは制御角αが30’程度とする
と、4流値に比例して増加するため、直流送電シカが大
になるほど大きくなり、初負荷投入時点においては設備
容量の約2〜5チ程度である。
In general, when the control angle α is about 30', the reactive power QR increases in proportion to the 4-current value, so the larger the DC power transmission distance, the larger it becomes. It is about ~5 inches.

従って、この場合には(4)式右辺は0.95〜0.9
8QC程度の容重となり、発電機n台の場合には(7) の無効電力を各発電機1が分担しなければならず、全4
機自己励磁現象にとっては極めて厳しい。この現象は特
に発磁機1が1台の場合が最も苛酷な条件となる。
Therefore, in this case, the right side of equation (4) is 0.95 to 0.9
The capacity and weight is approximately 8QC, and in the case of n generators, each generator 1 must share the reactive power of (7), and the total 4
This is extremely severe for mechanical self-excitation phenomena. This phenomenon is particularly severe when there is only one magnet generator 1.

この状態で自己励磁現象を避けるためには静止形無動電
力補償装置7の制御にあたっては、発電機1台の場合に
は S(、R Q・    >Qo−Q□・・・・・・(5)1+σ なるように、無効電力供給分を過補償にならぬよう制限
される。
In order to avoid the self-excitation phenomenon in this state, when controlling the static passive power compensator 7, in the case of one generator, 5) The reactive power supply is limited so as not to overcompensate so that 1+σ.

また同時に、発′鑞機はその励磁制御により遅れまたは
進みのいずれの運転も可能となる。系統側からの無効電
力要求が大きいときや充電各階等が大きいときは、それ
ぞれ過励磁状態になったり不足励磁状態になったりし、
いずれも発′は機にとっては好ましくない状態が起きる
可能性がある。
At the same time, the brazing machine can be operated in either a delayed or advanced manner by controlling its excitation. When the reactive power demand from the grid side is large, or when each charging floor is large, the system may become over-excited or under-excited, respectively.
In either case, an unfavorable situation may occur for the aircraft.

これら発電機側状態を検出し、静止形無動電力(8) 補償装置7f!:制御することにより、発電機異常状態
を解消できる。
These conditions on the generator side are detected and static non-dynamic power (8) compensator 7f! : By controlling it, the abnormal condition of the generator can be resolved.

このような技術的観点からなされた、本発明の一実施例
の構成を示すブロック図’に第3図に示す。
FIG. 3 is a block diagram illustrating the configuration of an embodiment of the present invention from such a technical viewpoint.

31は直流変換器6が所要とする無効電力、32は静止
形無効蹴力補償装置7から供給される無効電力、33は
光電機側自己励磁の許容限界値、34は発電機lの検出
された過励磁、35は発′tlt磯1の検出された不足
励磁、36は加算器、37は艶電@1則自己励磁許容限
界値を不感帯とする増幅器、38 、39は論理和回路
、121は静止形無動電力補償装置7への供給無効電力
制御装置12からの無効成力増加手段、122はその無
効電力減少手段である。
31 is the reactive power required by the DC converter 6, 32 is the reactive power supplied from the static reactive kicking force compensator 7, 33 is the permissible limit value of self-excitation on the photoelectric machine side, and 34 is the detected value of the generator l. 35 is the detected underexcitation of the tlt Iso 1, 36 is an adder, 37 is an amplifier whose dead zone is the permissible limit value of self-excitation @ 1 law, 38 and 39 are OR circuits, 121 122 is reactive power increasing means from the reactive power control device 12 supplied to the static non-dynamic power compensator 7, and 122 is its reactive power decreasing means.

常時静止形無動電力補償装置7は直流変換器6の運転状
態によって決まる無効電力を供給すべく運転されており
、実際の指令回路は第3図に表わすようlこ、直流変換
器6の所要無効電力と静止形無動電力補償装置7の供給
無効電力の偏差を取り、ある幅を持った不感帯を越えた
ら静止形無効′ば力補償装置7の無効電力の増あるいは
減の制御を行なうよう構成されている。すなわち、通常
は直流変換器6側で必要な無効電力を全て静止形無動電
力補償装置7側にて供給するという運転がなされる。
The constant stationary power compensator 7 is operated to supply reactive power determined by the operating state of the DC converter 6, and the actual command circuit is as shown in FIG. The deviation between the reactive power and the reactive power supplied by the static passive power compensator 7 is calculated, and when a dead zone with a certain width is exceeded, the reactive power of the static reactive force compensator 7 is controlled to increase or decrease. It is configured. That is, normally, an operation is performed in which all the reactive power required on the DC converter 6 side is supplied on the static passive power compensator 7 side.

一方、その的j路(こは頻繁な静止形無動電力補償装置
7の無効電力調整動作を避けるために、偏差信号がある
値を越えたら静止形無効ゼカ袖偵装置7を制御するよう
に不g帯を設けているが、この不感帯の幅の大きさによ
っては発電機自己励磁現象を惹き起す可能性があり、発
′成磯台数に従った不感帯幅の調整を発電機側目己励磁
許答限界3:(の条件により行なわれる。
On the other hand, in order to avoid frequent reactive power adjustment operations of the static passive power compensator 7, the static reactive power compensator 7 is controlled when the deviation signal exceeds a certain value. Although a dead zone is provided, depending on the width of this dead zone, there is a possibility of causing a generator self-excitation phenomenon, so the generator side self-excitation is required to adjust the dead zone width according to the number of generators. Acceptance limit 3: Performed under the conditions of (.

そしてまた、発電機1の過励磁および不足励磁を検出し
、各々静止形無動電力補償装置7の無効電力の増加ある
いは減少させる制御を実施し、真前運転を解消している
Furthermore, over-excitation and under-excitation of the generator 1 are detected, and control is performed to increase or decrease the reactive power of the static non-dynamic power compensator 7, respectively, thereby eliminating the front-end operation.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、発電機と直流変換器が直接接
続された系統においても、静止形無動電力補償装置の優
れた制御特性を維持しつつ、機器の保障も含めた発電機
と直流交換装置間の運転特性の十分なる協調制御が竹な
われ、その制御精度は一段と向上する。
Thus, according to the present invention, even in a system where a generator and a DC converter are directly connected, the excellent control characteristics of the static static power compensator can be maintained, and the generator and DC exchange, including equipment security, can be performed. Sufficient cooperative control of operating characteristics between devices will be achieved, and control accuracy will further improve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により送電母線に静止形無効′成力補償
装置が挿入された一系統のブロック図、第2図はその錆
止形無効電力補償装置のiffff系の構成因、第3図
は本発明の一実施例の構成を示すブロック図である。 1・・・光′げ機、2・・・生変圧器、3・・・発電機
遮断器、4・・・系統側遮断器、5・・・変換器用変圧
器、6・・・曲流変換器、7・・・静止形無動電力補償
装置、8・・・送電母線、9・・・計器用変圧器、10
・・・計器用変流器、11・・・有効成力および無効゛
電力検出装置、12・・・静IF形無効ば力補償装置の
f!+!I御装置、:31・・・直流変換器所委無効電
力、32・・・静止形無動電力補償装置供給無効電力、
33・・・錯′イ機側自己励磁許容限界、34・・・発
電機過励磁、35・・・発電機過励磁1,36・・・加
算器、37・・・不感帯のある増幅器、38 、39・
・・論理和回路、(11) 71・・・コンデンサ、72・・・サイリスク、73・
・・リアクトル、121・・・無効電力増加手段、12
2・・・無効電力減少手段。 出願人代理人  猪 股    清 (12) 第1図 第2図
Fig. 1 is a block diagram of a system in which a static reactive force compensator is inserted into the power transmission bus according to the present invention, Fig. 2 is the configuration of the iffff system of the anti-corrosion reactive power compensator, and Fig. 3 1 is a block diagram showing the configuration of an embodiment of the present invention. FIG. 1... Light generator, 2... Raw transformer, 3... Generator breaker, 4... System side breaker, 5... Converter transformer, 6... Curved flow Converter, 7... Static non-active power compensator, 8... Power transmission bus, 9... Instrument transformer, 10
... Instrument current transformer, 11... Active force and reactive power detection device, 12... f! of static IF type reactive force compensator. +! I control device: 31... DC converter commission reactive power, 32... Static non-active power compensator supply reactive power,
33... Allowable self-excitation limit on the complex side, 34... Generator overexcitation, 35... Generator overexcitation 1, 36... Adder, 37... Amplifier with dead band, 38 , 39・
... OR circuit, (11) 71 ... Capacitor, 72 ... Cyrisk, 73.
...Reactor, 121...Reactive power increasing means, 12
2...Means for reducing reactive power. Applicant's agent Kiyoshi Inomata (12) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、@置所の発生成力を直流送電する系統において、 発電機に送電母線を経て接続された直流変換器の交流側
に、サイリスタの逆並列およびリアクトルの直列接続と
コンデンサとを並列にして送電母線と大地間に挿入接続
された静止形無動電力補償装置を設け、 交流側の送電母線から計器用変圧器、変流器を介して有
効電力および無効電力を検出し、直流変換器所要無効電
力と静止形無動電力補償装置供給無効電力との偏差が発
電機側自己励磁許容限界を越えるかあるいは発電機が過
励磁もしくは不足励磁のときに、静止形無効成力補償装
置の無効電力を増加あるいは減少させるようにした静止
形無動電力補償装置の制御装置を備えた、 ことを特徴とする直流送電制御装置。
[Claims] 1. In a system that transmits direct current power generated at a site, on the alternating current side of a direct current converter connected to a generator via a power transmission bus, thyristors are connected in antiparallel and reactors are connected in series. A static static power compensator is installed in parallel with a capacitor and connected between the power transmission bus and the ground, and detects active power and reactive power from the power transmission bus on the AC side via the voltage transformer and current transformer. However, if the deviation between the reactive power required by the DC converter and the reactive power supplied by the static passive power compensator exceeds the allowable self-excitation limit on the generator side, or if the generator is overexcited or underexcited, the static reactive power compensator A DC power transmission control device comprising: a control device for a static passive power compensator configured to increase or decrease reactive power of a force compensator.
JP57200208A 1982-11-15 1982-11-15 Dc transmission controller Pending JPS5989571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200208A JPS5989571A (en) 1982-11-15 1982-11-15 Dc transmission controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200208A JPS5989571A (en) 1982-11-15 1982-11-15 Dc transmission controller

Publications (1)

Publication Number Publication Date
JPS5989571A true JPS5989571A (en) 1984-05-23

Family

ID=16420600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200208A Pending JPS5989571A (en) 1982-11-15 1982-11-15 Dc transmission controller

Country Status (1)

Country Link
JP (1) JPS5989571A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044447A (en) * 1973-08-24 1975-04-21
JPS56150929A (en) * 1980-04-23 1981-11-21 Hitachi Ltd Received power factor control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044447A (en) * 1973-08-24 1975-04-21
JPS56150929A (en) * 1980-04-23 1981-11-21 Hitachi Ltd Received power factor control device

Similar Documents

Publication Publication Date Title
CN109830969B (en) Method and system for inhibiting subsynchronous oscillation of thermal power generating unit
CN103023043B (en) Two-phase STATCOM (Static Synchronous Compensator) management device on traction side of electrified railway, and control method of device
US6107784A (en) System interconnection protective device for non-utility generation equipment
US20070278797A1 (en) Power conditioning architecture for a wind turbine
US10571948B2 (en) Use of distributed generator (DG) inverters as STATCOMs for decreasing line losses
CN102007662A (en) Wind energy system having a connection protection device
AU2014345684B2 (en) Turbulence compensation system and method for turbine generators
CN105633981A (en) Unified power flow controller additional damping control system capable of restraining subsynchronous oscillation
CN102255327A (en) Method for solving three-phase voltage imbalance by using SVG (Static Var Generator)
JP2000078896A (en) Wind power generating system
EP3469679A1 (en) Improvements relating to the interconnection of multiple renewable energy power plants
Wang et al. Grid-Forming Control of Offshore Wind Farms Connected with Diode-based HVdc Links based on Remote Active Power Regulation
US9920747B2 (en) Turbulence protection system and method for turbine generators
JPS5989571A (en) Dc transmission controller
CN104934983A (en) Multifunctional electric energy quality controller and electric energy quality control method
JPH09312934A (en) Power system stabilizer of power system
CN104269868A (en) STATCOM+SEDC combined restraining method for generator set subsynchronous oscillation
Chand Auxiliary power controls on the Nelson River HVDC scheme
Wu et al. Enhancement of static excitation system performance for generators near electric arc furnace loads
Chen et al. System stability and control technologies after large-scale wind power integration
CN118100327B (en) Electric net drilling energy balance control device and working method thereof
Kuppurajulu et al. Minimisation of reactive-power installation in a power system
CN201498989U (en) Compound current quality regulating device
Agila et al. Harmonic Compensation using Coordinated Control of Dual Interfacing Converters at Microgrid
Vithayathil et al. DC systems with transformerless converters