JPS5988371A - Heat resistant composite material and manufacture - Google Patents

Heat resistant composite material and manufacture

Info

Publication number
JPS5988371A
JPS5988371A JP57197721A JP19772182A JPS5988371A JP S5988371 A JPS5988371 A JP S5988371A JP 57197721 A JP57197721 A JP 57197721A JP 19772182 A JP19772182 A JP 19772182A JP S5988371 A JPS5988371 A JP S5988371A
Authority
JP
Japan
Prior art keywords
heat
composite material
combustion chamber
resistant composite
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57197721A
Other languages
Japanese (ja)
Other versions
JPH0229627B2 (en
Inventor
剛志 加藤
大森 清州
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP57197721A priority Critical patent/JPS5988371A/en
Publication of JPS5988371A publication Critical patent/JPS5988371A/en
Publication of JPH0229627B2 publication Critical patent/JPH0229627B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は耐ヒートシヨツク性に優れた耐熱複合材料及び
その製造法に関する。詳しくは炭化ケイX(Siミリウ
ィスカ1種又は2m以上のMo。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant composite material with excellent heat shock resistance and a method for producing the same. For details, see silicon carbide

W、a、Cとから成る耐ヒートシヨツク性に優れた耐熱
複合材料及びその製造法に関する。
The present invention relates to a heat-resistant composite material composed of W, a, and C that has excellent heat shock resistance, and a method for producing the same.

本発明の複合材料を構成する炭化ケイ素(Sin)ウィ
スカは例えば次の如き特性を有するものである。
The silicon carbide (Sin) whiskers constituting the composite material of the present invention have, for example, the following characteristics.

直  径       0.1〜1.0 μm長   
さ         50〜200 μmアスペクト比
   50〜300 密  度       3.171/Q♂引張籏さ  
    300〜1400Qf/Wa12本発明者らは
この様な引張強さ等に優れた特性を有するSiCウィス
カを用い、これと金属成分等との複合材料について鋭意
検討したところ、所定量の8i0ウイスカに1種又は2
種以上のMo、W、B、Cを複合させて成る新規複合材
料が耐熱性に優れ、しかも耐ヒートシヨツク性にも優れ
ていることを見い出した。
Diameter 0.1-1.0 μm length
Size 50-200 μm Aspect ratio 50-300 Density 3.171/Q♂Tensile wire
300-1400Qf/Wa12 The present inventors used SiC whiskers, which have such excellent properties such as tensile strength, and conducted intensive studies on composite materials of this and metal components. species or two
It has been discovered that a new composite material made by combining Mo, W, B, and C in more than one species has excellent heat resistance and also has excellent heat shock resistance.

又本発明の耐熱複合材料は耐熱性に優れ又耐ヒートシヨ
ツク性に優れ、更に耐高温腐食性にも優れているので、
特にエンジンの燃焼室用就中デーゼルエンジンの渦流燃
焼室用として好適に用いられることが判った。
In addition, the heat-resistant composite material of the present invention has excellent heat resistance, heat shock resistance, and high temperature corrosion resistance.
It has been found that it is particularly suitable for use in the combustion chamber of an engine, particularly in the swirl combustion chamber of a diesel engine.

即ち、近年、燃料消費効率や排気ガス規制の面などから
、ディーゼルエンジンの有利さが注目を集めており、自
動皐への利用についてみれば、従来は大型トランクが中
心であったが、乗用車にも塔載される様になってきた。
In other words, in recent years, the advantages of diesel engines have been attracting attention in terms of fuel consumption efficiency and exhaust gas regulations, and when looking at their use in automatic doors, they have traditionally been used mainly in large trunks, but they are now being used in passenger cars. It has also come to be seen as a tower.

しかし乗用車のディーゼルエンジンは、必然的に小屋化
及び高速回転の要求が強く、そのため燃焼室周辺の熱負
荷が大とならざるを得ない。
However, diesel engines for passenger cars are inevitably required to be compact and to rotate at high speeds, which inevitably results in a large heat load around the combustion chamber.

近年ひろく採用されている渦流燃焼室をもつものにおい
ては、特に燃焼室噴口部付近は高温で高圧の燃焼ガスが
高速で吹きつげ通過して行くため1局部的に高温となり
損傷が著しい。又燃料の軽油や灯油中に含まれる不純物
、特にイオウやバナジウムに起因する腐食作用も受ける
In combustion chambers with whirlpool combustion chambers, which have been widely adopted in recent years, high-temperature, high-pressure combustion gas blows through the combustion chamber at high speed, especially near the nozzle of the combustion chamber, resulting in high temperatures locally and causing significant damage. It is also subject to corrosive effects caused by impurities, particularly sulfur and vanadium, contained in diesel fuel and kerosene.

最近の出力性能向上の要求にこたえたターボチャージャ
ーの装備により、エンジンの燃焼条件は一層苛酷なもの
となり、燃焼室を構成する材料に対して極めて温度の耐
熱性と耐高温腐食性が要求される様になった。ディーゼ
ルエンジンの渦流燃焼室の材料として、従来は、5UH
5゜SUH661等の耐熱鋼やNimocast  8
0の様なニッケル基耐熱合金が用いられてきたか、これ
ら材料はいずれも耐用寿命を決定する耐ヒートシヨツク
性(クラック発生の有無により判断、耐ヒートクラツク
性とも称し得る)が不十分であり、又噴口部先端の耐高
温腐食性にも問題があり、ディーセルエンジンの性能を
十分に発揮させる上で□制約になっていた。
With the installation of turbochargers that meet recent demands for improved output performance, engine combustion conditions have become even more severe, and the materials that make up the combustion chamber are required to have extreme heat resistance and high-temperature corrosion resistance. It became like that. Conventionally, 5UH was used as the material for the swirl combustion chamber of diesel engines.
Heat-resistant steel such as 5゜SUH661 or Nimocast 8
All of these materials have insufficient heat shock resistance (judged by the presence or absence of cracks, which can also be referred to as heat crack resistance), which determines the service life. There was also a problem with the high-temperature corrosion resistance of the tip of the nozzle, which was a constraint on fully demonstrating the performance of diesel engines.

本発明はその特性上一般耐熱部材として好適に使用でき
る他、上記した問題を解消できる耐熱複合材料に係るも
のであり、耐ヒートクランク性と耐高温腐食性を大巾\
に改善することに成功した。
The present invention relates to a heat-resistant composite material that can be suitably used as a general heat-resistant member due to its characteristics and can solve the above-mentioned problems, and has excellent heat-crank resistance and high-temperature corrosion resistance.
succeeded in improving.

本発明は炭化ケイ素ウィスカを50〜98%(垂蓋、以
下同じ)含み、残部がMo、W、B、c  の1種又は
2種以上より成る耐ヒートシヨツク性に優れた耐熱複合
材料に存する。
The present invention resides in a heat-resistant composite material with excellent heat shock resistance, which contains 50 to 98% silicon carbide whiskers (the same applies hereinafter), and the remainder is composed of one or more of Mo, W, B, and C. .

又本発明は耐ヒートシヨツク性に優れた耐熱複合材料を
好適に製造する方法に存し、その特徴は、炭化ケイ素ウ
ィスカを50〜98%含み、残部がMo、W、B、Cの
1#又は2種以上より成るブレンド物を真壁中又は不活
性ガス中で温度900℃以上で焼結することにある。
The present invention also resides in a method for suitably producing a heat-resistant composite material with excellent heat shock resistance, which is characterized by containing 50 to 98% silicon carbide whiskers, with the remainder being 1# of Mo, W, B, and C. Alternatively, a blend consisting of two or more types is sintered at a temperature of 900° C. or higher in a wall or in an inert gas.

不発明の複合材料は上記の如(炭化ケイ素ウィスカ50
〜98%、1種又は2種以上のMo。
The uninvented composite material is as described above (silicon carbide whisker 50
~98%, one or more types of Mo.

W、B、C残部即ち2〜50%より成る。これらM o
 、W e B + G  の含有量については耐熱複
合材料としての、特に篩温での耐酸化性の低下やSiC
の靭性の改善、低下を考慮する必要があるOMO又は(
及び)Wとの複合の場合、 Mo、W の含有量が50
%を越えるとぎには複合材料の高温での1販化性が低下
し、一方2%未満であるときには8i0の靭性が改善さ
れない。Mo、W  の場合好ましくは10〜60%で
ある。B又は(及び)Cとの被合の場合、B、Cの含有
量が50%を越えるときにはやはり高温での耐酸化性の
低下が著しいし、通にSiCの靭性の低下がみもれるよ
うになり、一方2%未満ではSiOの靭性の改善ができ
ない。B、Cの場合好ましくは10〜25%である。
The balance consists of W, B, and C, that is, 2 to 50%. These Mo
, W e B + G content as a heat-resistant composite material, especially the decrease in oxidation resistance at sieve temperature and SiC
OMO or (
and) In the case of a composite with W, the content of Mo and W is 50
If it exceeds 2%, the high temperature salability of the composite material decreases, while if it is less than 2%, the toughness of 8i0 is not improved. In the case of Mo and W, it is preferably 10 to 60%. In the case of bonding with B or (and) C, when the content of B and C exceeds 50%, the oxidation resistance at high temperatures is significantly decreased, and the toughness of SiC is often decreased. On the other hand, if it is less than 2%, the toughness of SiO cannot be improved. In the case of B and C, it is preferably 10 to 25%.

Mo、W、B、Cは本発明に於いてバインダー的役割を
来たすものと考えられ、SiOの成形性を高める。即ち
、本発明に於いては、通常SiCと他金属等とを複合さ
せる際に使用されるプラスチック等の如きバインダーを
必要とせずに、所定量のsicとMo、W、B、C粉末
とをブレンドし、好ましくは上記製法で焼結することに
より耐ヒートシヨツク性に優れた耐熱複合材料が得られ
る。
Mo, W, B, and C are considered to play a binder role in the present invention, and improve the formability of SiO. That is, in the present invention, a predetermined amount of SIC and Mo, W, B, C powder can be combined without the need for a binder such as plastic, which is normally used when combining SiC and other metals. A heat-resistant composite material with excellent heat shock resistance can be obtained by blending and sintering, preferably using the above manufacturing method.

本発明の戟ユの過程に於いて、Mo、W以外の耐火金属
例えばFe、TiについてSiCとの複合が検討された
が、FeやTiの場合Cとの反応が起こり好ましくない
ことが判った。この点Mo、WはCとの反応が起こらず
好ましいばかりでなく、得られた耐熱複合材料は耐ヒー
トシヨツク性、耐熱性、耐高温腐食性に優れ1こもので
あった。
In the process of developing the present invention, the combination of refractory metals other than Mo and W, such as Fe and Ti, with SiC was considered, but it was found that Fe and Ti reacted with C and were therefore undesirable. . In this respect, Mo and W are not only preferable because they do not react with C, but the resulting heat-resistant composite material has excellent heat shock resistance, heat resistance, and high-temperature corrosion resistance.

もちろん、SiOと8又は(及び)Cとの複合も好まし
いものである。
Of course, a composite of SiO and 8 or (and) C is also preferred.

SiCの含有量については上記から50〜98%である
ことが過当である。前記したMo、W、B+Cの含有量
の限定理由に加えて、SiCが98%を越える場合には
成形上難点があり、複合材料として強度の高いものか得
られない。
Regarding the content of SiC, it is reasonable that it is 50 to 98% from the above. In addition to the reasons for limiting the content of Mo, W, and B+C described above, if SiC exceeds 98%, there will be difficulties in molding, making it impossible to obtain a composite material with high strength.

次に本発明複合材料の前記した製造法についての説明を
補足する。
Next, a supplementary explanation will be given of the above-mentioned manufacturing method of the composite material of the present invention.

本発明の製造法により狽合材料を得る場合、ブレンド物
は真空中又は不活性ガス中でブレス焼結することが必要
である。大気中で行つ場合にはMo、W、B、Cが分解
し、所望の複合拐料が得られない。
When obtaining an assembled material by the production method of the present invention, it is necessary to press-sinter the blend in vacuum or in an inert gas. If carried out in the atmosphere, Mo, W, B, and C will decompose, making it impossible to obtain the desired composite powder.

又プレス焼結は温度900℃以上で行うことが必要であ
る。900℃を越えないときには焼結強度の両いものが
得られない。自該温度については特に上限はなく、高温
である程焼結強度の高いものが容易に得られる。通常9
00〜1250℃である。
Further, press sintering must be performed at a temperature of 900°C or higher. If the temperature does not exceed 900°C, both sintering strengths cannot be obtained. There is no particular upper limit to the temperature, and the higher the temperature, the easier it is to obtain a product with higher sintering strength. Normally 9
00-1250°C.

本発明の製造法の好ましい一実施態様を例示すると、S
iOウィスカの所定量をよ(はぐし、当該ウィスカにM
ol、B、Oの1m又は2種以上粉末の所定量をよくブ
レンドし、所定の型に入れて冷間成型する。尚本発明で
いうブレンド物にはかかる冷間成型後のブレンド物をも
包含する。
To illustrate a preferred embodiment of the production method of the present invention, S
Remove a predetermined amount of iO whisker, and apply M to the whisker.
A predetermined amount of powders of 1 m or more of OL, B, and O are thoroughly blended, placed in a predetermined mold, and cold-molded. Incidentally, the blended product as used in the present invention also includes such a blended product after cold molding.

次いで当該冷間成型後、同タイプの熱間プレス用型で真
壁中又はN2  等の不活性ガス中、好ましくは圧力1
0 kg / tram2 以上、温度900〜125
0℃で熱間プレス焼結を行い、P9r望により仕上げ加
工を施す。Mo、W、B、Oはいずれか1種でもよいが
、二種以□上を用いる′ことが好ましく、Mo、W  
との組合せやBとOとの組合せが推奨される。
Then, after the cold forming, the mold is heated in a hot press mold of the same type in a true wall or in an inert gas such as N2, preferably at a pressure of 1.
0 kg/tram2 or more, temperature 900-125
Hot press sintering is performed at 0°C, and finishing processing is performed according to P9r requirements. Any one type of Mo, W, B, and O may be used, but it is preferable to use two or more types.
A combination with B and O is recommended.

次に本発明を実施例及び比較例を以って説明する。Next, the present invention will be explained using Examples and Comparative Examples.

第1表は本実施例に供した試料の化学組成を示す。Table 1 shows the chemical composition of the samples used in this example.

上記試料は、所定量(第1表)のSiOウィスカをよく
ほぐし、これに残成分(MO,W、B、G )の所定量
(第1表)を混ぜてよく混合し、所定の星に入れて冷開
成形後、同タイプの熱間プレス用型で真空中、1250
°Cで熱間フ”レス焼結を行つ1こ後、若干の仕上げ加
工を行って作った。
The above sample is made by thoroughly loosening a predetermined amount of SiO whiskers (Table 1), mixing them with a predetermined amount of residual components (MO, W, B, G) (Table 1), and forming a predetermined star. After cold-opening molding, press in vacuum with the same type of hot press mold at 1250°C.
After performing hot freeless sintering at °C, some finishing processing was performed.

第1表 次に上記本発明材1〜5につ(・て耐熱耐酸イヒ性試験
を行った。即ち15 X’50 X 5trmrの各試
料について1700℃で大気中1時間加熱層の変化を調
べた。その結果本発明材1〜5につ(・て、いずれも何
らの変化も認められず、耐熱耐酸化性の優れていること
が判った。
Table 1 Next, heat resistance and acid resistance tests were conducted on the above-mentioned invention materials 1 to 5. Namely, each sample of 15 x'50 As a result, no change was observed in Inventive Materials 1 to 5, indicating that they had excellent heat resistance and oxidation resistance.

次に上記寸法、形状の試料につ(・て熱@S試験(ヒー
トショックテスト)を行った。即ち本発明材1〜5を先
ず1700”Cの加熱炉で加熱した門、直ちに5℃?冷
水中に投入する試験を繰り返して行った。その結果いず
れの試料も30回以上のサイクルを繰り返してもクラン
クを発生することなく、熱衝撃性に潰れて(・ることか
認められた。
Next, a heat@S test (heat shock test) was conducted on the samples having the above dimensions and shape. That is, the materials 1 to 5 of the present invention were first heated in a heating furnace at 1700"C, and then immediately heated to 5°C. Tests were repeated in which the samples were placed in cold water.As a result, none of the samples developed a crank even after 30 cycles or more, and it was observed that the samples collapsed due to thermal shock.

更に、本発明材1〜5を用い、第1図〜第3図に示す如
きディーゼルエンジンの渦流燃焼室を前記した方法でブ
レス焼結12て作成し、このもののサイクルテストを行
った。尚第1図〜第3図に示すディーゼルエンジンの渦
流燃焼室について説明すると、図中1が燃焼室であり、
2が燃焼ガスの噴口部である。尚第6図でをま燃焼室の
下半分だけを示腎、上半分及びクランク゛−は点線で示
しである。
Furthermore, using the materials 1 to 5 of the present invention, a swirl combustion chamber for a diesel engine as shown in FIGS. 1 to 3 was produced by breath sintering using the method described above, and a cycle test was conducted on this product. In addition, to explain the vortex combustion chamber of the diesel engine shown in FIGS. 1 to 3, 1 in the figure is the combustion chamber,
2 is a combustion gas nozzle. In FIG. 6, only the lower half of the combustion chamber is shown, and the upper half and crankshaft are shown by dotted lines.

この噴口部2は高温篩土の燃焼ガスが高速で吹き抜け、
突端部21.22は100℃を超える高温に達する。し
かも燃焼ガスはば化性力\つ腐食性である。従って、耐
高温腐食性、耐ヒートクラツク性が要求される。
This nozzle part 2 allows the combustion gas of the high-temperature sieve to blow through at high speed.
The tip 21.22 reaches a high temperature of over 100°C. Moreover, the combustion gas is oxidizing and corrosive. Therefore, high temperature corrosion resistance and heat crack resistance are required.

サイクルテストは2200ccの排気量の4サイクルデ
イーゼルエンジンに用いる渦流燃焼室について、先ずち
 負荷、5000 rpmで8分間、次いで無負荷、1
000 rpmで5分間のサイクルを、延べ200時間
にわたって繰り返して行った。
The cycle test was performed on a vortex combustion chamber used in a four-stroke diesel engine with a displacement of 2200 cc, first under load at 5000 rpm for 8 minutes, then under no load for 1 minute.
A cycle of 5 minutes at 000 rpm was repeated for a total of 200 hours.

そして、200時間後の主として燃焼室の噴口部の腐食
状況とヒートクランク発生の有無を調べた。結果を第2
表に示す。
After 200 hours, the corrosion status of the nozzle part of the combustion chamber and the occurrence of heat crank were examined. Second result
Shown in the table.

第2表に示す如く噴口部の腐食は認められず、又ヒート
クランクも生じなかった。
As shown in Table 2, no corrosion was observed at the nozzle port, and no heat crank occurred.

尚第2表には比較例として従来から使用されている5U
H3,Nimocast 80についてのテスト結果を
併記した。
Table 2 shows the conventionally used 5U as a comparative example.
Test results for H3 and Nimocast 80 are also listed.

第2表 尚噴口部を本発明材2で先ず成型焼結して作り、噴口部
以外の燃焼室部分を比較材1で鋳ぐるんで燃焼室を作り
、上記と同様のテストを行ったが、この場合も噴口部の
腐食は紹められず、又ヒートクラックも生じなかった。
Table 2 The nozzle part was first made by molding and sintering with Inventive Material 2, and the combustion chamber other than the nozzle part was cast with Comparative Material 1, and the same tests as above were conducted. In this case as well, no corrosion was observed at the nozzle, and no heat cracks occurred.

又鋳ぐる4はロストワンジス法により行い、本発明材2
よりなる噴口部を鋳型中に置き、これに比較材1の浴湯
を注いで酌ぐるんだ。
Casting hole 4 was made by the lost one-piece method, and inventive material 2
A spout made of the same material was placed in a mold, and bath water of Comparative Material 1 was poured into it to stir it.

次に本発明材2及び4について熱伝導率な測定した結果
、SICウィスカ100%単独の場合に比して10〜2
0%大きい値を示した。。この事は人命延長にある程度
寄与していると考えられる。
Next, as a result of measuring the thermal conductivity of the present invention materials 2 and 4, it was found that the thermal conductivity was 10 to 2
It showed a 0% larger value. . This is thought to have contributed to extending human life to some extent.

以上の通り、本発明複合材料は耐熱耐酸化性に於いて曖
れ、又耐ヒートシヨツク性にも優れ、ディーセルエンジ
ンの燃焼室用として使用した場合腐食が認められず、又
ヒートクランクの発生もなく、浚れた複合材料であるこ
とが判る。
As mentioned above, the composite material of the present invention has excellent heat and oxidation resistance, and is also excellent in heat shock resistance, and when used for the combustion chamber of a diesel engine, no corrosion is observed and no heat crank occurs. It can be seen that it is a dredged composite material.

更に、本発明複合材料はこの様な特性を有するので、エ
ンジンの予燃焼室、主燃焼室就中ディーセルエンジンの
渦流燃焼室の噴口部に好適に使用される他、耐熱部材と
して、ラジアンドテユープ、自゛動車の加熱プラグ、バ
ーナーノズル、熱交換器、ターボの羽根車インピラー、
排気管、ピストン等の耐熱性、耐ヒートクランク性等が
要求される装置部材として好適に使用される。
Furthermore, since the composite material of the present invention has such characteristics, it is suitable for use in the pre-combustion chamber and main combustion chamber of an engine, especially the nozzle part of the swirl combustion chamber of a diesel engine, and is also suitable for use as a heat-resistant member in radiant and tube combustion chambers. motor vehicle heating plugs, burner nozzles, heat exchangers, turbo impeller impillars,
It is suitably used as equipment components such as exhaust pipes and pistons that require heat resistance and heat crank resistance.

【図面の簡単な説明】[Brief explanation of drawings]

図面はディーセルエンジン用渦流燃焼室の一例について
その傅成を説明するためのものであって、第1図は平面
図、第2図は底面図、第3図は縦断面図である。 1・・・燃焼室 2・・・噴口部 特許出願人 大同特殊鋼株式会社
The drawings are for explaining the construction of an example of a swirl combustion chamber for a diesel engine, and FIG. 1 is a plan view, FIG. 2 is a bottom view, and FIG. 3 is a longitudinal sectional view. 1...Combustion chamber 2...Nozzle part Patent applicant Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 炭化ケイ索ウィスカを50〜98重量%含み、残
部がMo、W、B、Cの1種又は2種以上より成る耐ヒ
ートシヨツク性に優れた耐熱複合材料。 2、 エンジンの燃焼室に使用される、特許請求の範囲
第1項記載の耐熱複合材料。 3、 炭化ケイ素ウィスカを50〜98町量%を含み、
残部がM o + W 、B r Cの1種又は2種以
上より成るブレンド物を真壁中又は不活性ガス中で温度
900℃以上でプレス焼結することを特徴とする耐ヒー
トシヨツク性に優れた耐熱複合材料の製造法。
[Scope of Claims] 1. A heat-resistant composite material with excellent heat shock resistance, containing 50 to 98% by weight of silicon carbide whiskers, and the remainder being one or more of Mo, W, B, and C. 2. The heat-resistant composite material according to claim 1, which is used in the combustion chamber of an engine. 3. Contains 50 to 98% silicon carbide whiskers,
Excellent heat shock resistance characterized by press sintering a blend of one or more of M o + W and B r C in a Makabe or in an inert gas at a temperature of 900°C or higher. A manufacturing method for heat-resistant composite materials.
JP57197721A 1982-11-12 1982-11-12 Heat resistant composite material and manufacture Granted JPS5988371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197721A JPS5988371A (en) 1982-11-12 1982-11-12 Heat resistant composite material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197721A JPS5988371A (en) 1982-11-12 1982-11-12 Heat resistant composite material and manufacture

Publications (2)

Publication Number Publication Date
JPS5988371A true JPS5988371A (en) 1984-05-22
JPH0229627B2 JPH0229627B2 (en) 1990-07-02

Family

ID=16379242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197721A Granted JPS5988371A (en) 1982-11-12 1982-11-12 Heat resistant composite material and manufacture

Country Status (1)

Country Link
JP (1) JPS5988371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166963A (en) * 1985-01-17 1986-07-28 Daido Steel Co Ltd Tool material for high temperature use
JPS6395159A (en) * 1986-10-08 1988-04-26 株式会社日立製作所 Silicon carbide sintered body and manufacture
JPH04208321A (en) * 1990-11-30 1992-07-30 Matsushita Electric Ind Co Ltd Automatic hot water feeder device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088739Y2 (en) * 1993-03-05 1996-03-13 山岡金属工業株式会社 Cooking net

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166963A (en) * 1985-01-17 1986-07-28 Daido Steel Co Ltd Tool material for high temperature use
JPS6395159A (en) * 1986-10-08 1988-04-26 株式会社日立製作所 Silicon carbide sintered body and manufacture
JPH04208321A (en) * 1990-11-30 1992-07-30 Matsushita Electric Ind Co Ltd Automatic hot water feeder device

Also Published As

Publication number Publication date
JPH0229627B2 (en) 1990-07-02

Similar Documents

Publication Publication Date Title
JP2005530927A (en) Cast parts made of aluminum alloy with excellent tensile strength
CN105886847A (en) High-temperature-resistant ceramic nanoparticle reinforced aluminum alloy and preparation method and application thereof
US5066626A (en) Ceramic materials for use in insert-casting and processes for producing the same
JPS6250546B2 (en)
JPS5988371A (en) Heat resistant composite material and manufacture
US7156929B2 (en) Cast iron alloy
McLean The Application of Ceramics to the Small Gas Turbine
JPS61106742A (en) Material composition comprising aluminum and aluminum alloy and its production
JP2000054053A (en) Aluminum-base alloy excellent in heat resistance, and its production
JPS60186468A (en) Ceramic structural material and manufacture
JPH02221349A (en) Lightweight casting material
JPH03258908A (en) Soot filter
JPH0686642B2 (en) Heat resistant spheroidal graphite cast iron
JP3039269B2 (en) Method of forming thermal insulation film
JPH07204827A (en) Production of cast product inserting silicon nitride as cast-in
JPH08188926A (en) Conjugate fiber having heat resistance and durability
FR2501191A1 (en) REFRACTORY MATERIAL PARTICULARLY FOR CONTACT WITH MOLTEN ALUMINUM AND METHOD OF MANUFACTURING THE SAME
JPH0533105A (en) Cast ferritic heat resisting steel
JP3401054B2 (en) Spheroidal graphite cast iron and its manufacturing method
JPH0273935A (en) High strength aluminum alloy for machine structural body
JPS61238947A (en) Manufacture of al-si alloy blank
JPH01159355A (en) Heat resistant cast steel
JP3054102B2 (en) Ferritic heat-resistant cast steel
JPH0238880B2 (en) TANKAKEISOSHITSUNETSUKOKANKI
JPS58130259A (en) Sintered fe alloy with superior wear and corrosion resistance