JPS5987966A - Casting method for manufacturing casting by alloy which can be oxidized - Google Patents

Casting method for manufacturing casting by alloy which can be oxidized

Info

Publication number
JPS5987966A
JPS5987966A JP58188288A JP18828883A JPS5987966A JP S5987966 A JPS5987966 A JP S5987966A JP 58188288 A JP58188288 A JP 58188288A JP 18828883 A JP18828883 A JP 18828883A JP S5987966 A JPS5987966 A JP S5987966A
Authority
JP
Japan
Prior art keywords
furnace
pressure
alloy
mold
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58188288A
Other languages
Japanese (ja)
Other versions
JPH0428467B2 (en
Inventor
ジヨエル・パマ−ル
リオ・ベロツシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain PAM SA
Original Assignee
Saint Gobain PAM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain PAM SA filed Critical Saint Gobain PAM SA
Publication of JPS5987966A publication Critical patent/JPS5987966A/en
Publication of JPH0428467B2 publication Critical patent/JPH0428467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は1400℃を越える高い鋳込温度をもう液体状
態において酸化し得る合金で鋳造品を製造覆る鋳造法に
係り、より特定的には多少複雑な形状を有し大きな熱応
力下で使用される厚みの薄い又は厚いvj造部材の製造
に係る。対象となる部材は主として鉄含120%未満の
超合金製部材と、20%を越える鉄を含む耐熱合金又は
高合金鋼の部材である。これらの超合金はクロム合金で
あって、ニラクルをベースとするか、コバルトをベース
どするか、又は1久−ニッケルークr−1ノ1、鉄−一
一ツ9ルークロム−コバルトの如くニラクル又はコバル
トと鉄とをベースどする合金である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a casting method for manufacturing castings with an alloy that can be oxidized in a liquid state at a high casting temperature of over 1400°C, and more specifically to casting products having a somewhat complex shape. The present invention relates to the production of thin or thick VJ structural members used under large thermal stresses. The target members are mainly superalloy members containing less than 120% iron, and heat-resistant alloy or high alloy steel members containing more than 20% iron. These superalloys are chromium alloys, either based on nyracles, cobalt-based, or nickel- or cobalt-based, such as nickel-nickel r-1 no. 1, iron-11x chromium-cobalt It is an alloy based on iron and iron.

本発明はまた低合金鋼の部材と普通の鋼の部材どの鋳造
にも係る3、何故ならこれらの鋼も液体状態では極めて
酸化し易いからである。
The invention also concerns the casting of both low-alloy steel parts and ordinary steel parts, since these steels are also highly susceptible to oxidation in the liquid state.

超合金及び高合金鋼は、特に金属機械工業、航空工業、
航空宇宙工業等の分野で熱間作動部材(冶金用の炉、機
械、ターどンのロータ、レール上及び道路上を走行する
車両)の製造に使用される。
Superalloys and high alloy steels are especially used in metal machinery industry, aerospace industry,
It is used in the aerospace industry and other fields for the production of hot working parts (metallurgical furnaces, machines, rotors of tardons, vehicles running on rails and roads).

合金鋼はまた「特殊鋼」或いは「精鋼 (refined 5teel ) Jとも称する。Alloy steel is also known as ``special steel'' or ``refined steel''. (Refined 5teel) Also called J.

このような部材の一製法として、合金(超合金、高合金
特殊鋼又は低合金特殊鋼)を誘導炉の如き電気溶解炉内
で調成し、これを重力により鋳型に鋳込む方法が知られ
ている。
One known method for manufacturing such parts is to prepare an alloy (superalloy, high-alloy special steel, or low-alloy special steel) in an electric melting furnace such as an induction furnace, and then cast it into a mold using gravity. ing.

誘導炉の主な利点は浸炭雰囲気が無いことと、極めて高
い温度が得られることとにあり、これは特殊鋼にとって
右利である。しかしながらこの炉では金属を撹拌覆る。
The main advantages of induction furnaces are the absence of a carburizing atmosphere and the extremely high temperatures available, which are advantageous for special steels. However, in this furnace the metal is stirred and covered.

ため、ガス状介在物発生の危険があることh目ら、超合
金又は耐熱合金にどっては不利C゛ある。また、現在の
製法では、酸化及び巣等の欠陥のために廃棄される鋳造
製品の率が高い場合が時々見う1プられる。更に、重力
による型込めは酸化及び巣形成の危険性を増大させると
共に、合金鋳込み効率が余り高くないという欠点も右し
ている。この「効率」どは鋳造製品の正味の重量と型内
に導入された合金の合31重司との間の比を意味する。
Therefore, superalloys or heat-resistant alloys are disadvantageous due to the risk of gaseous inclusions. Additionally, current manufacturing methods sometimes result in a high rate of cast products being wasted due to defects such as oxidation and voids. Moreover, gravity loading increases the risk of oxidation and void formation, and also has the disadvantage that the alloy casting efficiency is not very high. By "efficiency" is meant the ratio between the net weight of the cast product and the total weight of the alloy introduced into the mold.

この効率を低くする原因は鋳造製品から切り離さな1プ
ればならないシJ−1・及び湯口の重量と、やはり切り
1llf寸必要のある重い押湯の存在とにある。この押
湯は巣の形成を最大限に回避覆るためのものであるが、
必ずしも満足のい<1−:果は得られない。
The causes of this low efficiency are the weight of the pipe and sprue, which must be separated from the cast product, and the presence of a heavy feeder, which also requires a cut of 110 mm. This riser is intended to avoid and cover the formation of nests as much as possible,
Not necessarily satisfactory<1-: No results are obtained.

本発明は前述の如き酸化し易い合金の生成及び鋳込みを
、閉鎖状又はほぼ閉鎖状容器を用い、酸化を回避しなが
ら、且つ低圧下でできるだ()速い14込み速度で行な
う方法を提供覆る。ぞのためこの方法では、各鋳型への
液体合金の導入を、型内部に該合金の乱流が一切生じな
いような条(’lの下に、下から上へと実施する。
The present invention provides a method for producing and casting such oxidizable alloys in a closed or nearly closed vessel, while avoiding oxidation, and at low pressure and at extremely high charging speeds. . Therefore, in this method, the introduction of the liquid alloy into each mold is carried out from the bottom to the top under such conditions that no turbulent flow of the alloy occurs inside the mold.

即ち、本発明の目的は1400℃を越える高い鋳込み温
度をもち液体状態において酸化し留る合金から部材を鋳
造により製造する方法を提供することにあり、この方法
はこのよ゛うな合金をグラフ?イトバー何111鎖′市
気炉で生成し、この金属浴を該炉内で不活性ガスの圧力
下におき、鋳型を該溶解炉の出湯口に密着させ、該液体
合金を低L「下で下から上へと鋳型に供給すべく、前記
不活性ガスの駆動圧力(pression  motr
ice )下で溶解炉から該鋳型へど直接送り込み、こ
のJ:うにして溶解炉とvj型どの集合体を鋳込み時に
不活佃ガス圧力下におかれる開鎖容器どして用いること
を特徴とする。
That is, an object of the present invention is to provide a method for producing parts by casting from an alloy that has a high casting temperature of over 1400°C and remains oxidized in the liquid state, and this method can be used to produce such alloys by casting. The metal bath is placed under the pressure of inert gas in the furnace, the mold is brought into close contact with the outlet of the melting furnace, and the liquid alloy is heated under low L. The driving pressure (pressure motor) of the inert gas is adjusted to feed the mold from bottom to top.
The melting furnace is directly fed into the mold under ice), and the assembly of the melting furnace and vj type is used as an open-chain container that is placed under inert gas pressure during casting. do.

本発明の一特徴に1、れば、前述の方法は基本成分とし
てクロム、ニラタル、」バルト及び鉄から選択された金
属を含む合金の生成に使用される。
According to one feature of the invention, the method described above is used to produce an alloy containing as basic constituents a metal selected from chromium, niratal, balt and iron.

しかし乍ら、本発明の方法は輻射により加熱されるグラ
フアイ1−バー何溶解炉を使用するため溶解中の金属浴
撹拌が完全に回避されるという利点をもつ代りに加熱(
こ時間がかかるという問題を有Jる。
However, since the method of the present invention uses a graphite 1-bar melting furnace heated by radiation, it has the advantage that stirring of the metal bath during melting is completely avoided;
There is a problem that this process takes time.

そこで別の特徴として、本発明の方法では先ず一部を合
金組成の最も酸化し難い成分、特にニッケル、°」パル
1〜、鉄、を含む液体装入物の形で炉内に装入し、次い
で一部を最も酸化し易い成分、特にクロムを含む固体装
入物の形で装入することにより、前述の合金の溶融速度
を増大させる。
Therefore, another feature of the method of the present invention is that a portion is first charged into the furnace in the form of a liquid charge containing the least oxidizable components of the alloy composition, in particular nickel, nickel, and iron. The melting rate of the aforementioned alloy is then increased by charging a portion in the form of a solid charge containing the most oxidizable constituents, in particular chromium.

このようにりれば固体装入物はA′i′i的に炉内へ予
め導入しU J>いた金属浴への浸漬にJ、って溶m′
し、一方輻射によるグラフアイ1〜バーの加熱が線温の
温度を」ニ屏させる役割を果だTa本出願人は既に夫々
1974年12月24日、197フイt3月21日及び
1979年5月2日の仏国特許出願第7442713号
(公開番号2295808) 、第77083 (i 
4号(公開番号23845(i13)及び第79110
67  (公開番E2455491)において、種々の
低圧力[ζ型込め法を提供してきた。これらの方法では
鋪“造すベぎ部材の厚みが厚い場合に巣ができるのをμ
I止し、鋳込み金属の効率を向上させ、且つ多少とも複
利な形状の製品を無傷で製造すべく、鋳型を縦形導管の
出湯口に密着さけて圧力下で下から上へど金属を供給す
る。しかし乍らこれらの方法には酸化し易い合金を鋳込
む場合の配慮がなされていない。
If this is done, the solid charge will be immersed in a metal bath that has been previously introduced into the furnace as A'i'i, and melted as
On the other hand, the heating of the graphite by radiation plays a role in increasing the temperature of the wire. French Patent Application No. 7442713 (Publication No. 2295808), No. 77083 (i
No. 4 (Publication No. 23845 (i13) and No. 79110
67 (Publication No. E2455491), various low pressure [ζ molding methods] have been presented. These methods prevent the formation of nests when the thickness of the paving material is thick.
In order to improve the efficiency of the cast metal and to produce products with a more or less compound shape without damage, the mold is placed in close contact with the outlet of the vertical conduit and the metal is fed from the bottom to the top under pressure. . However, these methods do not take into consideration the case where alloys that are easily oxidized are cast.

そこで本発明では更に別の特徴として、鍋?(°!充填
時の酸化防止対策どして、鋳型への鋳込みサイクル中に
溶解炉内の不活性ガスの駆動圧力を以下の如く複数の段
階に分(Jて変化させる。
Therefore, in the present invention, as another feature, a pot? (°! As a measure to prevent oxidation during filling, the driving pressure of the inert gas in the melting furnace is varied in multiple steps as shown below during the casting cycle into the mold.

−「低圧値」又は「予圧力値(prepress:Ol
l ) jど称づる圧力値を用いて出湯口近傍に合金を
導入(る多段階、 −鋳型に合金を充填すべく圧力を前記の低圧値又は予圧
値から急速に高圧値に上昇させる第1段階、 −鋳型内に導入された液体合金の動きを静めるべく、第
1段階で最終的に得られた前記高圧値の圧力を第1段階
J、り大幅に長い時間に亘っ−C紐持づる第2段階。
- “Low pressure value” or “Prepress value (prepress: Ol
l) multi-step introduction of the alloy in the vicinity of the tap using a specific pressure value; - a first step in which the pressure is rapidly increased from the low pressure value or pre-pressure value to a high pressure value in order to fill the mold with the alloy; step - sustaining the pressure at the high pressure value finally obtained in the first step for a significantly longer time in order to calm the movement of the liquid alloy introduced into the mold; Second stage.

〜 乱流を完全に阻止し且つ押湯効果を得るべく、即ち
出湯口レベルの合金を液体状に維持すべく、第1段階よ
り長い時間をかけて第1段階より緩慢に圧力4上げなが
ら第1段階の前述の高圧値よりかなり高い過剰圧)j値
たる最大値を1qるための圧力上昇及び抑揚効果発生用
第3段階、 −圧力を鋳型内の部4.flのみが完全に凝固するまで
鋳込み(ブイタルの合81時間に比べてかなり長い間第
3段階で得られl〔最大過剰圧力値にIr[持りる第4
段階、 −合金が凝固している鋳型を空にすることなく鋳込み路
を少なくとも部分的に空にづべく、不活性カス圧力を短
時間の中に前記最大過剰圧力値から初期の低圧値又は予
圧値まで降下さぜる第5段階。
~ In order to completely prevent turbulence and obtain a feeder effect, that is, to maintain the alloy at the outlet level in a liquid state, the second step is carried out over a longer period of time than in the first step, while increasing the pressure by 4 more slowly than in the first step. A third stage for the production of a pressure rise and intonation effect to bring the maximum value of the value 1q (excess pressure considerably higher than the above-mentioned high pressure value of the first stage) to the part 4. in the mold. Only fl was cast until completely solidified (obtained in the third stage for a considerably longer time compared to the total of 81 hours for Buitar).
- increasing the inert gas pressure from said maximum overpressure value to an initial low pressure value or preload within a short period of time in order to at least partially empty the casting channel without emptying the mold in which the alloy is solidifying; The fifth step is to descend to the value.

このJζうに鋳込みサイクル中に圧力を変化さけると、
鋳型内の合金の乱流が、従って成形用字Wi。
If you avoid changing the pressure during this Jζ sea urchin casting cycle,
The turbulent flow of the alloy in the mold thus causes the forming character Wi.

部の内部又は表面への酸化ガスの流入が完全に回避され
、巣も全く発生けずに無傷の鋳造品が1qられ、且つ出
湯口に固り(b o u c I+ o n又はcar
otte 。
The inflow of oxidizing gas into the interior or surface of the part is completely avoided, an intact casting is cast without any cavities, and it is hardened at the outlet (b o u c I + o n or car).
Otte.

即ち合金が凝固したもの)が生じることもない。In other words, no solidified alloy is formed.

本発明では、鋳込み合金生成の間浴中の乱流を完全に回
避けしめるグラフフフイトバー付溶解炉の選択に加えて
、更にこのような鋳造対策がどられている。
In addition to selecting a melting furnace with a graphite bar that completely avoids turbulence in the bath during the production of cast alloy, the present invention takes such casting measures.

本発明の一特徴にJ、れば、使用Jる不活性ガスはアル
ゴンである。
According to one feature of the invention, the inert gas used is argon.

本発明の他の特徴及び利点は、添イ」図面に基づく以下
の非限定具体例の説明から明らかにされJ:う。
Other characteristics and advantages of the invention will become apparent from the following description of non-limiting embodiments based on the accompanying drawings.

第1図及び第2図の具体例によれば本発明のh法を実施
りるための装置は主として溶解炉1と鋳型2とから成り
、これら溶解炉と鋳型とが合体して閉鎖容器状鋳込みア
センブリを形成する。
According to the specific example shown in FIGS. 1 and 2, the apparatus for carrying out method h of the present invention mainly consists of a melting furnace 1 and a mold 2, and these melting furnaces and molds are combined to form a closed vessel shape. Form a cast assembly.

にり詳細には、溶解炉1は電気炉であり、台枠の軸受5
[に載置されたローラ4に支持されている弓形湾曲台3
を介して傾倒する。ローラ4の一方1ま駆動]:1−ラ
であり歯車付電動機6によっ−C回転する。炉1は反射
壁C゛あり、水平グラツノ・イ1〜バー7の輻射にJ、
って加熱される。炉1のアーチが輻則熱を金属浴上べ反
則覆るのである。炉1は取外し可能のドア又(1厘)に
より密閉し40 ?a装入口8と、閉鎖した又は管状の
横断面をもつ出湯樋10こを備えている。該出湯樋は一
端が炉の内部空間に連通し、細端が自由端であって該樋
−L面上に好ましくは円錐台状の出湯口11を形成し−
(いる。
In detail, the melting furnace 1 is an electric furnace, and the bearing 5 of the underframe is
An arcuate curved table 3 supported by rollers 4 placed on [
Lean through. One of the rollers 4 is driven by the geared motor 6 and rotated by the geared motor 6. The furnace 1 has a reflecting wall C, and the radiation from the horizontal bars I1 to B7 has J,
It gets heated. The arch of the furnace 1 directs the radiant heat onto the metal bath. Furnace 1 is sealed with a removable door (1 door). It has a charging inlet 8 and a tap trough 10 with a closed or tubular cross section. One end of the tapping gutter communicates with the internal space of the furnace, the narrow end is a free end, and a preferably truncated conical tap hole 11 is formed on the L surface of the gutter.
(There is.

この出湯口11は後述の如く鋳型2の鋳込み口と密封的
に接合される。管12は炉1の内部空間に連通して加圧
された不活性ガスフ1]−を金属浴Mの液面N上方に導
入する。この不活性ガスはアルゴンが好ましい。該管1
2上には、金属浴M上ブjの炉内空間の圧力を測定づる
測定板を備えた圧力調整装置13が載置しCある。この
圧力調整にはIL力低下(mise ’a la d6
charge)も含まれる。該調整測定装置を第1図及
び第2図に簡略に示した。錆型2(第1図・)はこの具
体例ては合成粘結剤て固めl〔砂を枠内部に密に詰めて
形成した砂型であるが、枠のない抜き砕砂型、枠内で充
填物を詰める樹脂砂製鋳造マスク、砂で覆われた又は覆
われていない金属製冷し鋳型、又はグラファイトf!A
鋳型等を使用してもJζい。
This tap 11 is hermetically connected to the pouring port of the mold 2, as will be described later. The pipe 12 communicates with the interior space of the furnace 1 and introduces a pressurized inert gas flow 1 to above the liquid level N of the metal bath M. This inert gas is preferably argon. The tube 1
A pressure regulating device 13 equipped with a measuring plate for measuring the pressure in the furnace space of the metal bath M upper tube j is mounted on the metal bath M. This pressure adjustment requires IL force reduction (mise 'a la d6
charge) is also included. The adjusting and measuring device is shown briefly in FIGS. 1 and 2. Rust mold 2 (Fig. 1) is a concrete example of this sand mold formed by densely packing sand into a frame with a synthetic binder. Plastic sand casting masks for filling, metal cold molds covered or uncovered with sand, or graphite f! A
Even if you use a mold etc., it is difficult.

該具体例では鋳型2は2つの部分から成っており、中空
回転体状部材の製造に使用されるため、固めた砂で形成
されたコア14を右している。従って成形用空洞部15
は、外側の所謂鋳型2と該コア14との間の環状スペー
スで構成されている。成形用空洞部15の下り部分には
注入器即ち液体合金供給路16が前記回転体状部材の軸
XXに従い連通している。該供給路16は間ロ17分介
して鋳型2の底面に連通しているが該間口17は例えば
円鉗台形であり、適切な材料のシールリング18を介し
て炉1の出湯樋10の出湯口11に公知の方法で密封的
に接合される。
In this embodiment, the mold 2 consists of two parts, which include a core 14 formed of compacted sand, for it is used for the production of a hollow rotating body-like component. Therefore, the molding cavity 15
is constituted by the annular space between the outer so-called mold 2 and the core 14. A syringe or liquid alloy supply channel 16 communicates with the descending portion of the molding cavity 15 along the axis XX of the rotary member. The supply channel 16 communicates with the bottom of the mold 2 through a gap 17, which has a trapezoidal shape, for example, and is connected to the outlet of the tap trough 10 of the furnace 1 via a sealing ring 18 of a suitable material. It is hermetically joined to the sprue 11 by a known method.

鋳込み詩に吸引にJ、ってガスの排出を容易にし月つ鋳
型のキ17ビデイ即ら空洞部15への液体合金Mの導入
を促進Jべく、該空洞部は11穴の如く直径の小さい包
・路又は通路から成る揚り19を介して鋳型2の上面に
接続されている。
In order to facilitate the discharge of gas and promote the introduction of the liquid alloy M into the cavity 15 of the mold, the cavity has a small diameter such as the hole 11. It is connected to the upper surface of the mold 2 via a lift 19 consisting of a channel or channel.

鋳型2を、シールリング18を押しつふりか又は少なく
とも圧迫する程強く、出湯口11上に当接し−(密着さ
Uるために、ジヤツキ(図示せず)のピストン棒21先
端に具備された軸XXをもつ穿孔プレー1−20が圧力
により鋳型2の土面に押しつりられる。
A jack (not shown) is provided at the tip of the piston rod 21 in order to bring the mold 2 into contact with the spout 11 strongly enough to push or at least compress the seal ring 18. A drilling plate 1-20 having an axis XX is pressed against the soil surface of the mold 2 by pressure.

鋳型2がこのように出湯樋10の出湯L111上に当接
されると、該8ffI自体も地上の支持部材22などに
押しつけられる。この支持部材22は仏語Cベキーユ(
b6quille)とも称し、該具体例では高さが固定
されているが、例えばネジ−ナツトシステムどハンドル
とにより高さを調整できるようにしてもよい。鋳型2は
排気鐘23の下に配置されているが、該排気鐘は本質的
に鋳型2の上面と前記穿孔プレート20とを覆い、下端
に鋳型2側面に当接する環状パツキン24を備えている
。該パツキン24は鋳型の周縁が円形の場合は円環状で
あってJ、く、又は単一リップパツキンか或いは鋳型側
面の外周に応じて円形、正方形、長方形等の形状をもつ
スカー1−1’あってもJ:い。前記排気鐘23の上部
には穿孔プレート20の上方に伸長して真空源(図示せ
ず)に接続された管25が具備されている。この管25
は吸引管Cあって、鋳込み時に前記揚り19とプレー1
−20の孔とを介しCガスが鋳型2から流出するのを容
易に覆るだめのものである。ジVツ′キ21は鋳型2移
動装置(図示Uず)上に載置されている。
When the mold 2 is thus brought into contact with the tap water L111 of the tap tap trough 10, the 8ffI itself is also pressed against the support member 22 on the ground. This support member 22 is referred to in French as C Bequille (
Although the height is fixed in this example, the height may be adjustable, for example by means of a screw-nut system or a handle. The mold 2 is placed under an exhaust bell 23, which essentially covers the upper surface of the mold 2 and the perforated plate 20, and is provided with an annular packing 24 at the lower end that abuts against the side surface of the mold 2. . The packing 24 may be annular if the periphery of the mold is circular, or it may be a single lip packing, or it may be a scar 1-1' having a circular, square, rectangular, etc. shape depending on the outer circumference of the side surface of the mold. Even if there is, J: No. A pipe 25 is provided at the top of the exhaust bell 23 and extends above the perforated plate 20 and is connected to a vacuum source (not shown). This tube 25
There is a suction pipe C, and the above lift 19 and play 1 are connected during casting.
-20 holes to easily prevent the C gas from flowing out of the mold 2. The screw 21 is placed on a mold 2 moving device (not shown).

本発明では更に必要に応じ、出湯口11の周りに、そし
てドア9が開いている場合は炉1の装入口8の周りにも
、アルゴンの如き不活性カスを吹きつ【Jるための円環
リングを使用する。
In the present invention, if necessary, inert gas such as argon is blown around the tap 11 and also around the charging port 8 of the furnace 1 when the door 9 is open. Use a circular ring.

前述の装置ににる鋳造品の製法 成形用空洞部15をbつ鋳型2内で軸XXをもつ環状回
転体部伺、例えばタービンのロータを鋳造Jると仮定す
る。
Manufacturing method of a cast product using the above-mentioned apparatus Let us assume that a molding cavity 15 is used to cast an annular rotating body part having an axis XX in a mold 2, for example, a rotor of a turbine.

一例どして、次の組成(単位二重愼%)の超合金にッケ
ルークロムーコバルトの合金〉を溶解炉1内で生成Jる
場合を想定する。生成された超合金は金属浴Mとして使
用される。
As an example, it is assumed that a superalloy of the following composition (unit: double %) of nickel-chromium-cobalt is produced in the melting furnace 1. The produced superalloy is used as metal bath M.

−クロム・・・7〜15% −コバル1〜・・・5へ・40% −チタン及びアルミニウム・・・7〜10.5%、チタ
ン及びアルミニウム間の比は0.6乃至1.4 − ホウ素・・・0.005〜0.1%−炭素・・・0
,05〜0.5% −り−イ素・・・O〜0.8% −マンガン・・・0〜1% −鉄・・・0〜10% −ジルコニウム・・・0−0.2% −残り、不純物以外はニッケルから成る(14乃’f1
75%) この合金は高温で圧力をかけた場合の破壊強さが大きく
、約1600 ℃の鋳込み温度を有する。
-Chromium...7 to 15% -Cobal 1 to 5 to 40% -Titanium and aluminum...7 to 10.5%, the ratio between titanium and aluminum is 0.6 to 1.4 - Boron...0.005-0.1% - Carbon...0
,05~0.5% -Ri-Iron...O~0.8% -Manganese...0~1% -Iron...0~10% -Zirconium...0~0.2% -The rest, except for impurities, consists of nickel (14'f1
75%) This alloy has a high fracture strength under pressure at high temperatures and a casting temperature of approximately 1600°C.

別の例として、500乃至900”Cの温度下で使用さ
れる部材を形成するための耐熱合金鋼を溶解炉1で生成
づると仮定する。この合金鋼(鉄も含むクロム−ニッケ
ルーコバルト合金)の組成は次の通り(重量%)。
As another example, assume that melting furnace 1 produces a heat-resistant alloy steel for forming parts to be used at temperatures between 500 and 900"C. This alloy steel (a chromium-nickel-cobalt alloy that also contains iron) ) is as follows (wt%):

−クロム・・・13〜23% −ニッケル・・・13〜28% −コバル1−・・・22〜28% − ボウ素・・・o、ooi〜0,5%−タングステン
・・・0〜5% −モリブデン・・・0〜5% −二Aブ・・・0〜5% −タンタル・・・0〜5% −チタン・・・0〜5% −バナジウム・・・0〜5% −炭素・・・0.05〜0.46% −マン刀ン・・・2%まで −クイ素・・・′1%まで −鉄及び不純物・・・残り(50%未満)本発明の方法
はこの合金く前記超合金又は前記耐熱合金鋼)を生成し
、炉1と鋳型2どの合体にJ:り形成された閉鎖容器を
用いて該合金を鋳込み、該容器内への空気の流入による
酸化と溶融時及び鋳込み時にお(プる液体合金の乱流と
を完全に回避することにある。そのため本発明の方法で
は輻射ににって加熱され且つ密閉し得るグラフi・イ1
〜バー(q溶解炉1を使用し、本出願人にJ、す198
2年9月28日(こ出願された特許出願第821642
7号に開示の装入手段、即ち炉1内部に深く挿入される
装入手段、を用いて液体装入物及び固体装入物を順次導
1内に装入し、炉1内のアルゴン(又は場合により窒素
)の圧ノjを後述の方法で適切に調整して鋳型内に液体
合金Mを導入し、且つ鋳型の交換を速やかに行う、、場
合によっては吹込み環状リング26を用いて炉1への装
入時、鋳込み時及び鋳型2交換詩に炉1の開口と鋳型2
の開口とを保護する。
-Chromium...13-23% -Nickel...13-28% -Cobal 1-...22-28% -Boron...o, ooi~0.5% -Tungsten...0~ 5% - Molybdenum...0 to 5% - Di-Album...0 to 5% - Tantalum...0 to 5% - Titanium...0 to 5% - Vanadium...0 to 5% - Carbon: 0.05 to 0.46% - Carbon: up to 2% - Carbon: up to 1% - Iron and impurities: the remainder (less than 50%) The method of the present invention This alloy (the above-mentioned superalloy or the above-mentioned heat-resistant alloy steel) is produced, the alloy is cast using a closed vessel formed by combining the furnace 1 and the mold 2, and oxidation is caused by air flowing into the vessel. The purpose is to completely avoid the turbulent flow of the liquid alloy during melting and casting.Therefore, the method of the present invention uses graphs i and 1 that can be heated by radiation and sealed.
~ bar (using q melting furnace 1, to the applicant J, S 198
September 28, 2015 (Patent Application No. 821642 filed here)
The liquid charge and the solid charge are sequentially charged into the conduit 1 using the charging means disclosed in No. 7, that is, the charging means deeply inserted into the inside of the furnace 1, and the argon ( In some cases, the liquid alloy M is introduced into the mold by appropriately adjusting the pressure nozzle (or nitrogen) using the method described below, and the mold is quickly replaced. In some cases, the blowing annular ring 26 is used. Opening of furnace 1 and mold 2 during charging into furnace 1, casting and replacing mold 2
and protect the openings.

本発明の方法はより詳細には以下の如〈実施される。The method of the present invention is carried out in more detail as follows.

1) 溶解炉1への装入(第2図) 炉1の底には前回の鋳型への鋳込みの後に多少の浴が残
存し−Cいると想定して、樋10が上方向へ傾斜し、そ
の結果合金Mが屈渇口11より下に下がるよう炉1を傾
斜させる。このようにすれば合金Mの表面と空気との直
接的接触が回避される。この場合はアルゴン吹込み環状
リング26を用いて出湯口11をアルゴンの幕で閉鎖す
るためJ、り完璧に回避される。更に、本出願人により
1982年9月13日に出願された仏1−■特h′F出
願第8215556号に開示の手段□一部が出湯樋10
自体の管状壁面内に浸漬され、一部が線樋の外側に浸漬
される電気的加熱手段□を用いて出湯樋10内全体の合
金Mの鋳込み温度を1600℃に維持し、このようにし
て読出m Fa 10内で合金の凝固を回避する。ドア
9を17+1放し且つ必要であれば装入口8の入口に配
置した吹込みリング26を用いてアルゴンの保護幕を円
状に形成した後で、前述の仏国特許出願第821642
7号に記載の手段により液体装入物と固体装入物とを順
次導入する。この手段は図面簡明化のため単一の装入+
!!i27として第2図に簡略に示した。
1) Charging into the melting furnace 1 (Fig. 2) Assuming that some bath remains at the bottom of the furnace 1 after the previous casting into the mold, the gutter 10 is tilted upward. As a result, the furnace 1 is tilted so that the alloy M is lowered below the cooling opening 11. In this way, direct contact between the surface of alloy M and air is avoided. In this case, the argon blowing annular ring 26 is used to close the outlet 11 with an argon curtain, so that the problem is completely avoided. Further, the means disclosed in French Patent Application No. 8215556 filed on September 13, 1982 by the present applicant □ Part of the hot water gutter 10
The casting temperature of the alloy M throughout the tap trough 10 is maintained at 1600° C. by means of an electric heating means □ which is immersed within its tubular wall and partially immersed outside the wire trough 10, and in this way. Avoid solidification of the alloy within the reading m Fa 10. After releasing the door 9 by 17+1 and, if necessary, forming a protective curtain of argon in a circular shape using the blow ring 26 placed at the entrance of the charging port 8, the above-mentioned French patent application No. 821,642
A liquid charge and a solid charge are introduced one after another by the means described in No. 7. This method uses a single charge +
! ! It is simply shown in FIG. 2 as i27.

外気との接触を完全に回避づべく、該装入i;127の
自由端は溶M炉1の空洞内へできるた(プ深く挿入しな
(〕れぼイrらない。導管12を介して炉1の浴Mの液
面N上プjの空間にアルゴン(又は窒素)雰囲気を吹入
れる。
In order to completely avoid contact with the outside air, the free end of the charge 127 should not be inserted deeply into the cavity of the melting furnace 1 (it should not spill). Then, an argon (or nitrogen) atmosphere is blown into the space above the liquid level N of the bath M in the furnace 1.

a)液体装入物の装入 この液体装入物は前記の超合金又は合金鋼の成分の中形
も酸化し難いもの、即ぢクロム、チタン、アルミニウム
、マンガン及び炭素以外の成分を含む。この液体装入物
は超合金の場合は全装入物の73乃18f4 m%を占
め、多数の訪込みザイクルを行う炉の容量が例えば50
0k(Jであれば全装入物500k(]の中40(1k
gを占めることになる。
a) Charge of liquid charge This liquid charge contains components other than the medium and oxidizable components of the superalloy or alloy steel mentioned above, namely chromium, titanium, aluminum, manganese and carbon. This liquid charge occupies 73 to 18 f4 m% of the total charge in the case of superalloys, and the capacity of the furnace for carrying out a large number of cycles is, for example, 50 m.
0k (If J, 40 (1k
g.

前述の耐熱合金鋼の場合には液体装入物は全装入物の7
0乃至86重量%を占め、例えば全装入物500 k 
Qに対し350 k Qである。
In the case of the aforementioned heat-resistant alloy steel, the liquid charge is 7% of the total charge.
0 to 86% by weight, e.g. total charge 500 k
350 k Q for Q.

b)固体装入物の、装入 固体装入物は前記超合金の場合は全装入物の約14乃至
27重量%、従って液体装入物J、りかなり少ない割合
を占め、最も酸化し易い成分即ちクロム、チタン−アル
ミニウム群、マンガン、炭素を含み、全装入物量が50
0 k (]の場合例えば100 k (]に相当する
b) Of the solid charge, the solid charge accounts for approximately 14 to 27% by weight of the total charge in the case of the superalloys, and therefore accounts for a much smaller proportion than the liquid charge J, which is the most oxidized. Contains easy components such as chromium, titanium-aluminum group, manganese, and carbon, with a total charge of 50
For example, 0 k (] corresponds to 100 k (]).

前記耐熱合金鋼の揚台は全装入物の14乃至30重量%
で例えば、150 k Qを占め、最も酸化し易い成分
即ちクロム、炭素の仙タングステンの全部又は一部、マ
ンガンの全部又は一部、ケイ素の全部又は一部を含む。
The heat-resistant alloy steel lifting platform accounts for 14 to 30% by weight of the total charge.
For example, it accounts for 150 k Q and contains all or part of the most oxidizable components, namely chromium, carbon, all or part of tungsten, all or part of manganese, and all or part of silicon.

液体装入物と固体装入物とを順次装入する操作は本出願
人による前述の仏国特許出願第8216427号に記載
されている。
The operation of sequentially charging liquid and solid charges is described in the aforementioned French Patent Application No. 8216427 by the applicant.

溶解炉1は未だ浴Mが幾らか残っていたため最初から熱
かったと仮定し、一定時間が経過りると、装入された全
ての装入物は液体状になる。固体装入物はグラフンフイ
1〜バー7からの輻射熱のみにょるJ、り遥に早く液体
装入物中に溶解した。しがちグラフパイ1へバー7によ
る加熱にJ、って溶解時の金属浴Mの撹拌は一切回避さ
れた。−力、導管12を介して加圧アルゴンを吹込むこ
とにJ:り類1内に所定の予圧下の雰囲気を設定して合
金を出湯口11のレベルまで上昇せしめた。
It is assumed that the melting furnace 1 was hot from the beginning because some bath M still remained, and after a certain period of time, all the charged materials become liquid. The solid charge dissolved into the liquid charge much more quickly due to the radiant heat from graphene fillers 1-7. Due to the heating by the graphite bar 7, stirring of the metal bath M during melting was avoided at all. - By blowing pressurized argon through the conduit 12, an atmosphere under a predetermined prestress was established in the pipe 1, causing the alloy to rise to the level of the tap 11.

2) 鋳型の配置と鋳込み(第1図及び第3図)溶融時
間が経過して浴M全体が1400℃をかなり上回る温度
の液体になったら鋳込みを行う。
2) Mold arrangement and casting (Figures 1 and 3) After the melting time has elapsed and the entire bath M has become a liquid with a temperature considerably higher than 1400°C, casting is carried out.

シトツキ2つを担持した移動装置によって鋳型2を速や
かに導入し、次いで穿孔ブ、レート20にJ、り該鋳型
2を出湯口11上に密封的に押しつりる。
The mold 2 is quickly introduced by a moving device carrying two screws, and then the mold 2 is tightly pressed onto the tap hole 11 by means of a perforation plate 20.

排気f!23を鋳型2の導入時に配置しておかなかった
場合は、出湯口11と鋳型の鋳込み口17との間にシー
ルリング18を挿入した後でこの排気鐘23をパツキン
24を介して密封性が得られるよう鋳型2にかぶせ、出
湯樋10が支持部材22」ニに当接づるまで圧力によっ
て鋳型2を出湯口11上に押しつ(プ続りながら、歯f
ii (q電動(幾6によりローラ上で炉1を傾倒させ
る。次いで、それ自(本知られてはいるが理論的である
方法にJ、す、栄を完全に回避づへく超合金又は耐熱合
金の冷月1順序を考慮して、鋳型への充填を乱流を伴わ
ずに行うJ、う鋳込みリイクルを次の如〈実施(る。最
初に導入されて最初に2’y fJIされるべき、合金
は空洞部15の最上部即ち供給管又は供給路16から最
も遠い部分に導入され、最後に凝固すべき従って最も長
い門形も高い湿度を紺持づることになる合金部分は成形
用空洞部1j)の最下部即ち供給路16に最も近い部分
を占めなりればならない。
Exhaust f! 23 is not placed at the time of introducing the mold 2, after inserting the seal ring 18 between the outlet 11 and the inlet 17 of the mold, the exhaust bell 23 is sealed via the gasket 24. Place the mold 2 on top of the spout 11 using pressure until the tap trough 10 comes into contact with the support member 22''.
(ii) Tilting the furnace 1 on the rollers by means of an electric motor (6). Considering the cold month order of the heat-resistant alloy, the filling into the mold is carried out without turbulence, and the casting recycle is carried out as follows. The alloy should be introduced into the uppermost part of the cavity 15, that is, the part furthest from the supply pipe or channel 16, and should be solidified last, so that even the longest portal will have a high humidity.The alloy part should be molded. It must occupy the lowest part of the cavity 1j), that is, the part closest to the supply channel 16.

鋳込み湿度は1400℃J、り高く、例えば1420℃
Cあり得、最高が例えば1650℃であってもよい。そ
のため超合金及び耐熱合金鋼の場合は140 (1°C
:てあり1イる最低鋳込み温度と1700°Cであり1
′:fる最高鋳込み温度との間に聞ぎかある。この最高
温度を越えるど、エネル4゛が浪費されるだ(プでなく
鋳型内での凝固が遅くなる。また、最低温度を下回ると
鋳型の供給路16で、又は炉の出湯taioの出湯口1
1辺りでさえも、既に凝固してしまう危険がある。
The casting humidity is 1400℃J, higher, for example 1420℃
C, and the maximum temperature may be, for example, 1650°C. Therefore, in the case of superalloys and heat-resistant alloy steels, 140 (1°C
: The minimum casting temperature is 1,700°C, which is 1.
': There is a difference between the maximum casting temperature and the maximum casting temperature. Above this maximum temperature, 40% of energy is wasted (solidification slows down in the mold rather than at the bottom).Besides, below the minimum temperature, energy is wasted in the mold supply channel 16 or at the outlet of the furnace outlet. 1
Even around 1, there is a risk that it will already solidify.

従っC鋳込み温度は前述の範囲内の値に設定りる1゜鋳
型2を出湯樋10の出湯口11上に密封的に押しつ(〕
る時点では、導管12を介しアルゴンを導入することに
よって、炉1の内部スペースに予圧力1)1即ち低圧力
を維持しておく。この値P1は調整測定装@13を適切
に調節することによって得られる。圧力がこの値P1に
設定されると液体金属は出湯樋10の出湯口11のすぐ
下まで到達するが、これは大気圧が炉1内部の圧力P1
より高いことににる。この値P1は例えば0.15バー
ルである。
Therefore, the C casting temperature is set to a value within the above-mentioned range.
At this point, a prepressure 1) 1, i.e. a low pressure, is maintained in the interior space of the furnace 1 by introducing argon via the conduit 12. This value P1 is obtained by suitably adjusting the adjusting measuring device @13. When the pressure is set to this value P1, the liquid metal reaches just below the outlet 11 of the tap trough 10, but this is because the atmospheric pressure is equal to the pressure inside the furnace 1, P1.
It's more expensive. This value P1 is, for example, 0.15 bar.

−第1殺 鋳型への充填を行うためには圧力1〕1を圧力P2に変
える。饋P2はPlより大きく、例えば0、4バールで
ある。値1つ1から値[〕2への圧力上昇(こかかる時
間( 1: 2 ”− t 1 ) 、即ち鋳込みザイ
クルの進展を示り線のへ及び13間の時間は、供給路1
G及び成形用空洞部15内での時期早尚な凝固を完全に
回避すべく十分短くしな(プればならないが、この圧ツ
ノ変化は合金が乱流を伴わずに層流の形で成形用空洞部
15内に流入するより余り2ミ速過ぎてもいりない。勿
論、圧力上昇速度は生産ピッチ上の明らかな理由に応じ
て決定される。時間(l−2−tl)は更に鋳型2内に
導入リーベき合金の量にも依存する。
- In order to fill the first mold killing mold, change pressure 1]1 to pressure P2. The pressure P2 is greater than Pl, for example 0.4 bar. The pressure rise from value 1 to value [ ] 2 (time (1: 2 '' - t 1 ), i.e. the time between lines 1 and 13 indicating the development of the casting cycle, is
G and forming cavity 15 should be short enough to completely avoid premature solidification (although this pressure horn change should be short enough to completely avoid premature solidification within the forming cavity 15), this pressure horn change will cause the alloy to flow in a laminar flow without turbulence. It does not need to be more than 2 milliseconds faster than the flow into the molding cavity 15.Of course, the rate of pressure rise will be determined according to obvious reasons on the production pitch. It also depends on the amount of Liebe alloy introduced into the mold 2.

− 第3段階C:圧力の維持 成形用空洞部15全体に亘り、はんの僅かの間隙にb、
導入路16と鋳込み口17とから最−t)PI(れた最
上部にも、金属が十分に充填されるよう、第1段階の時
間J、り大幅に長い時間(t3−12)に亘って高圧力
P2を維持する。水平部BCで示された時間の間圧力[
)2を維持すると、合金は少なくとも鋳込み口17から
最も遠い成形用空洞部最上部分では凝固を開始りる。し
かし乍ら鋳込み1コ17に最も近い最下部では合金Mは
未だ液体である。この液体状態は次の段階でも維持され
ることになる。
- 3rd stage C: maintain pressure throughout the molding cavity 15, b,
In order to ensure that the metal is sufficiently filled from the introduction channel 16 and the pouring port 17 to the topmost part (t3-12), the time J of the first stage is significantly longer (t3-12). and maintain a high pressure P2.The pressure [
)2, the alloy begins to solidify at least in the uppermost portion of the molding cavity furthest from the pour port 17. However, at the bottom closest to the casting hole 17, the alloy M is still liquid. This liquid state will be maintained in the next step as well.

− 第3段階CD:圧力の上昇と押湯効果従来の如く、
鋳込み口から最も離れた凝固中の最」一部の供給時には
未だ液体状である最下部、即ち鋳込み口に最も近い部分
ではホール又は巣が形成され易い。本発明ではこれらの
ボール又は巣を埋めるべく、[熱いJ液体合金を補給す
るためのり1アーバ、ポケット又は押湯を鋳型に具備す
る代りに、圧ツノを高圧値P2から最大値P3まで時間
L3から1−4の間に上昇させる。この値P3は該具体
例では0.7バールであり、t3から1[4までの11
4間は乱流を完全に回避ずべく実験に阜づいC決定した
値である。このような押湯効果を与えると、高温の液体
金属が圧力下で鋳型の下部に補給され、その結果鋳込み
I:]17.J:り最も離れた最上部から、液体金属が
最終的に供給路16内の該鋳込み口17の上のレベルま
で凝固する最上部、即ち該鋳込み1]17の最近傍部へ
向り°C凝固が徐々に進行づる間中、成形用空洞部15
全体に亘る完璧な充填状態lj確実に得られる。これが
次の段階で47るべき結果である。
- 3rd stage CD: pressure rise and riser effect As before,
Holes or cavities are likely to be formed in the lowest part, which is still in liquid state when the most solidified part furthest from the casting opening is supplied, that is, the part closest to the casting opening. In the present invention, in order to fill these balls or cavities, [instead of providing the mold with a glue arbor, pocket or riser for replenishing the hot J-liquid alloy, the pressure horn is heated from a high pressure value P2 to a maximum value P3 for a time L3. to between 1 and 4. This value P3 is 0.7 bar in the specific example and is 11 bar from t3 to 1[4.
The value C was determined based on experiments in order to completely avoid turbulence. By providing such a riser effect, hot liquid metal is replenished under pressure into the lower part of the mold, resulting in pouring I:]17. J: from the top most distant to the top where the liquid metal finally solidifies in the supply channel 16 to a level above the spout 17, i.e. the closest part of the pour 17 °C While the solidification is gradually progressing, the molding cavity 15
A perfect filling condition throughout is ensured. This is the result that should be achieved in the next step.

− 第4段階D[=最大圧ツノのl−凝固この段階は最
大圧力P3を低下させずに実施し、鋳造品が完全に凝固
りるまで時間( t 5−1: 4 )に亘って行う。
- Fourth stage D[=l-solidification of the maximum pressure horn This stage is carried out without reducing the maximum pressure P3 and is carried out for a time (t5-1: 4) until the casting is completely solidified. .

この時間は鋳型に導入される合金の量と、紡型全体に及
ぶ完全な充填の難しさとに依?′7′覆る。
This time depends on the amount of alloy introduced into the mold and the difficulty of completely filling the entire spindle. '7' Cover.

この凝固IJ漸進的且つ緩慢であって、ql【こ上方か
らド方へと進行しなければならない。即ら最初に凝固す
べき最も遠い成型用空洞部15最上部分から最後に凝固
−リベき最下部即ち鋳込み[]17の最近傍部分へと下
方向に進む必要がある。lli’i間l−5では、凝固
は供給路16の高さの土のレベル、即ち成ン 形用空洞部15の下方まで進んでいる。このように圧力
]〕3を前述の11.1間に0って維持すれば、巣のな
い良質の部材が得られ、次いで成型用空洞部15内で使
用されなかった過剰液体金属を速やかに下降さけること
ができる。ここで留意リベぎこととして、成形用空洞部
15の形が複雑であればある程、又は複数の部材を一度
に製造すべく成形用空洞部内の四部の数が多ければ多い
程t4及びt5間の圧力P3維持時間は長くなる。即ち
この維持時間(’L: 5−t /I )は成形用空洞
部全体への充填の伺しさと、該空洞部内において巣を伴
わずに完全に凝固心ける咄しさどに依存する。
This coagulation IJ must be gradual and slow and proceed from the upper direction to the lower direction. That is, it is necessary to proceed downward from the uppermost part of the molding cavity 15 which is farthest to be solidified first, and finally to the lowermost part, that is, the closest part of the casting part 17 to be solidified and reshaped. In the interval 1-5, solidification has proceeded to the level of the soil at the level of the supply channel 16, ie below the molding cavity 15. If the pressure]]3 is maintained at 0 during the above-mentioned 11.1, a good quality part without cavities can be obtained, and then the excess liquid metal not used in the molding cavity 15 can be immediately removed. You can avoid descending. It should be noted here that the more complex the shape of the molding cavity 15, or the greater the number of four parts in the molding cavity to manufacture multiple parts at once, the more the time between t4 and t5 increases. The pressure P3 maintenance time becomes longer. That is, this maintenance time ('L: 5-t/I) depends on the degree of filling of the entire molding cavity and the degree of solidification to ensure complete solidification within the cavity without any cavities.

第5段階[IT:圧ツノの上手ど液体金属の降下時間t
5に達りると鋳造品は?iff実に完全な凝固状態にな
る。この時点C炉1内のHI力を予圧力なる低圧値1つ
1まで急激に降下さける。この時も前記の調整測定装置
13を使用する。[)3からPlへのこの圧力降下は、
供給路16内に残存し17るが、当然のことながら、金
属が完全に凝固した状態にある成形用空洞部15の外側
に存在する液体金属全てを急速にF乃へ戻す−ベく、t
5から16の極めてλ(1時間の中に実施する。P3か
61〕1への圧力降下をこのように急速にすることは、
鋳込み金属の収率を向上さ−ける上で重要である。尚こ
の収率は所謂鋳造品を構成4る金属の用足と一1鋳型2
内で、従って成形用空洞部15と供給路1Gの一部とに
おいて凝固した金属の総重量どの比である。
5th stage [IT: Falling time t of liquid metal on top of pressure horn
When it reaches 5, what about cast products? If it really becomes a complete coagulation state. At this point, the HI force in the C furnace 1 is suddenly reduced to a low pressure value 1, which is the preload pressure. At this time as well, the adjustment and measurement device 13 described above is used. This pressure drop from [)3 to Pl is
All of the liquid metal remaining in the supply channel 16 and outside the forming cavity 15, where the metal is of course in a completely solidified state, is rapidly returned to F.
Such a rapid pressure drop from 5 to 16 extremely λ (carried out in 1 hour, P3 or 61) 1
This is important in improving the yield of cast metal. Furthermore, this yield is based on the 4 metal feet and 11 molds 2 that make up the so-called cast product.
Therefore, what is the ratio of the total weight of the metal solidified in the molding cavity 15 and part of the supply path 1G?

これと同時に歯車付電動機6を作動さけて炉1を第2図
の位置まで傾倒させると、出湯?1fD10が炉1の内
部スペース方向へ下がるよう傾斜し、そのため金属浴M
が該内部スペース内に容易に戻され、該浴液面が出湯口
11の下方まで容易に下降り−る。
At the same time, if the geared electric motor 6 is turned off and the furnace 1 is tilted to the position shown in Fig. 2, will the hot water come out? 1fD10 is inclined downward towards the internal space of the furnace 1, so that the metal bath M
is easily returned to the internal space, and the bath liquid level is easily lowered to below the outlet 11.

未だ排気鐘23て被覆されたままの鋳型2を時間l(3
で」一方へ移動させ、鋳造品の型ばらしを行うべく退去
させる。時間1:6の後は、同一の排気鐘23で覆われ
た別の鋳型2を鋳込みを完了した先行の鋳型の位置に配
置しなければならない。鋳込み終った鋳型の移送と新し
い鋳型の導入どの間に生じる空時間の間吹込みリング2
6にJ、り出湯口11にアルゴンを吹きか(〕ると有利
である。
The mold 2, which is still covered with the exhaust bell 23, is heated for a time l(3
"Then," he moved to one side and left the mold to break out the mold. After time 1:6, another mold 2 covered with the same exhaust bell 23 must be placed in the position of the previous mold which has been completely poured. During the idle time between the transfer of the finished mold and the introduction of a new mold, the blowing ring 2
It is advantageous to blow argon into the outlet sprue 11.

勿論、新しい鋳型を導入する時にはシールリング18を
取り換える。鋳型への充填を行う第1段階ΔBと、供給
路16の一部を空にする最終段階FFどにおいて、時間
t 2− t 1とt 6− t 5とは極めて短いか
余りにも急激な圧ノj上昇と圧力降下とを生じる程過度
に知く]ノてはならない。これは炉の出湯6Bioの出
湯口11土にJ3りる鋳型からの流11旨排出又は鋳型
の接ぎあとを一切回避り、るため乙ある1、実際出湯1
]11は、液体金属が漏出し−C凝固したものがイ」着
しているようなことのない出湯樋10側の面上に配置J
べきシールリング18を、鋳型を交換づる毎に受容する
ため常に清潔でなりればならない。
Of course, the seal ring 18 is replaced when a new mold is introduced. In the first stage ΔB for filling the mold and the final stage FF for emptying a part of the supply path 16, the times t2-t1 and t6-t5 are extremely short or the pressure is too rapid. Do not overdo it so as to cause an increase in pressure and a drop in pressure. This is to avoid any discharge of the flow from the mold or the jointing of the mold, which is connected to the hot water outlet 11 of the furnace.
] 11 is placed on the surface on the tap water gutter 10 side where liquid metal will not leak and solidify.
The seal ring 18 must be kept clean as it receives each mold change.

孔庄 1) 超合金の酸化予防 前述の如く本発明の方法で(よ2種類の酸化予防措置が
とられている。
1) Preventing oxidation of superalloys As mentioned above, two types of oxidation preventive measures are taken in the method of the present invention.

a) 冶金学的予防措置 最も酸化し難い成分を液体装入物に、最も酸化し易い成
分(クロム、チタン、アルミニウム、タングステン、炭
素、マンガン、クイS)を固体装入物に混入1べく、酸
化性に応じ先ず液体装入物の成分を、次いで固体装入物
の成分を選択づるこどにJ、す、芸人中の合金成分酸化
の危険を回避覆る。
a) Metallurgical precautions Mixing the least oxidizable components in the liquid charge and the most oxidizable components (chromium, titanium, aluminum, tungsten, carbon, manganese, Kui S) in the solid charge; By selecting first the components of the liquid charge and then the components of the solid charge according to their oxidizing properties, the risk of oxidation of the alloy components in the medium is avoided.

[))  気体にJ、る予防ノI装置 空気の流入を阻止し、炉1の開口、特に装入口E3ど鋳
型2特に鋳込み口17への出湯口11との密封性を保持
する。イのために、シールリング18を介し1」つ支持
部祠22に対向するプレート20に−こり推力を加える
ことににって鋳型2を出湯口11上に密Jj的に押しつ
【ノ、炉1と鋳型2との集合体からなる閉鎖容器を形成
する。
[)) Preventive device for preventing air from flowing into the furnace 1, and maintains a tight seal between the openings of the furnace 1, especially the charging port E3, the mold 2, and especially the tap port 11 to the casting port 17. For this purpose, the mold 2 is tightly pressed onto the spout 11 by applying a stiff thrust to the plate 20 facing the support part 22 through the seal ring 18. A closed vessel is formed by an assembly of a furnace 1 and a mold 2.

金属浴の液面N上方の炉1内スペースにアルゴンを導入
して、液体金属で占められていないスペース全体にアル
ゴンを充満させるため、内部に存在し得る空気が、従っ
て酸素が排気鐘23と穿孔プレート20と楊り19とを
介し゛て完全に排出される。
Argon is introduced into the space in the furnace 1 above the liquid level N of the metal bath, so that the entire space not occupied by liquid metal is filled with argon, so that any air that may be present inside, and therefore oxygen, is removed from the exhaust bell 23. It is completely discharged via the perforated plate 20 and the toothpick 19.

場合によっては吹込みリング26によりアルゴンを噴霧
して、装入時には装入口8の入口に、鋳型への液体金属
鋳込み11jには鋳込I月117.1:i (J出湯]
−111上に未Iこ鋳型が当接されていない場合はこの
出湯1」11の上方に、保護膜を形成づること)こJ、
って前記の予防IM置を補強する。
In some cases, argon is sprayed by the blowing ring 26 to the inlet of the charging port 8 during charging, and to the liquid metal pouring 11j into the mold.
- If the mold is not in contact with 111, a protective film shall be formed above this tapping 11).
This reinforces the preventive IM system mentioned above.

鋳込み合金が低合金鋼の場合は、前述のリング26を用
いて装入口8と出湯口11どにアルゴンを吹きつ【ノる
111置を省略してl、い。
If the casting alloy is low alloy steel, use the ring 26 described above to blow argon into the charging inlet 8 and outlet 11.

輻射熱によるグラフ7フイトハー付炉を使用覆るため炉
内の浴Mの撹拌が完全に回避される。
Due to the use of a graph 7 furnace with radiant heat, agitation of the bath M in the furnace is completely avoided.

鋳込みサイクル中、特に鋳型への充填を行う段階A’B
で圧力を変化させるため、乱流をイ゛1′わり゛に層流
状に充填ツることができる。
During the casting cycle, in particular the stage A'B of filling the mold
Since the pressure is changed at the same time, it is possible to fill the turbulent flow into a laminar flow rather than a turbulent flow.

本発明の方法はその特徴として、これらの利点を有して
いるため、緩慢溶解炉でも可能な限り迅速且つ経演的に
良質の部オイを得ることができ、従つC液体状では極め
て酸化し易< 14oo℃を越える高い鋳込み温度をも
つ合金の組成に起因した問題と、例えば2mmまでの薄
い厚みか、又は逆に厚い厚みをもつ多少複雑な形状の成
形用空洞部15に起因した問題、即ち押湯効果を必要と
する問題とが解決される。
The process according to the invention has these advantages as its characteristic, so that even in a slow melting furnace it is possible to obtain a part oil of good quality as quickly and as efficiently as possible, which means that in the C liquid form it is highly oxidized. Problems due to the composition of the alloy with a high casting temperature exceeding 140° C. and problems due to the somewhat complex shape of the molding cavity 15 with a thin thickness of, for example, up to 2 mm or, conversely, a large thickness. , that is, the problem of requiring a feeder effect is solved.

変形例 合金が完全に溶融した後で、鋳型2への鋳込み前に、溶
解炉1の密封性を利用して次の如く浴M  ゛の脱酸素
処理を行う。導管12を吸気源に接続して炉1の内部ス
ペースを具空又は負圧下におく。浴Mはその中に含まれ
た炭素と同浴内のM素との化学反応 C+O→CO。
After the modified alloy is completely melted and before being poured into the mold 2, the bath M' is deoxidized as follows using the hermeticity of the melting furnace 1. Conduit 12 is connected to a source of air suction to evacuate or place the interior space of furnace 1 under negative pressure. Bath M is a chemical reaction between the carbon contained therein and the M element in the same bath: C+O→CO.

ににり脱酸処理される。Garlic is deoxidized.

発生した炭酸ガスは導管12を介して利用される。The carbon dioxide gas generated is utilized via the conduit 12.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本光明の方法を実施づべく鋳込みリイクル中に
合体した溶解炉と鋳型とを示づ一簡略断面図、第2図は
液体合金の一成分を装入り−る間の溶解炉を示す第1図
と類似の断面図、第3図は鋳込みり“イクルにおける溶
解炉内の不活性ガスj十力[〕の変化を時間tの関数と
して示づグラフである。 1・・・溶解炉      2・・・鋳型3・・・湾曲
台      4・・・ローラ6・・・歯車付電動機 
  7・・・グラフj・イ1ヘパ−8・・・装入口  
    9・・・蓋10・・・出湯樋     811
・・・出湯口12・・・導管       13・・・
圧力調整測定装置15・・・成形用空洞部   1C・
・・供給路17・・・鋳込み口     18・・・シ
ールリング19・・・揚り       20・・・穿
孔プレー1〜22・・・支持部月23・・・排気鐘 24・・・パツキン     25・・・吸引包。 2G・・・吹込みリング tB願人 庄ご;クー4−−/ン ニス・7−代理人弁
理士川  口  義 雄 代理人弁理士今  村   元
Figure 1 is a simplified sectional view showing the melting furnace and mold that are combined into a casting recycle to carry out the method of the present invention, and Figure 2 is a simplified cross-sectional view of the melting furnace during charging of one component of the liquid alloy. Figure 3 is a graph showing the change in the inert gas in the melting furnace during the casting cycle as a function of time t. Furnace 2...Mold 3...Bending table 4...Roller 6...Geared motor
7...Graph j・i1hepar-8...Charging port
9... Lid 10... Hot water gutter 811
... Outlet 12 ... Conduit 13 ...
Pressure adjustment and measurement device 15...Molding cavity 1C.
... Supply channel 17 ... Casting port 18 ... Seal ring 19 ... Lifting 20 ... Perforation plates 1 to 22 ... Support portion 23 ... Exhaust bell 24 ... Packing 25. ...Suction capsule. 2G... Blow ring tB applicant Shogo; Ku 4--/n Niss 7-Representative patent attorney Yoshio Kawaguchi Representative patent attorney Hajime Imamura

Claims (1)

【特許請求の範囲】 (1)  1400℃を、ト回る高い鋳込み温度をもち
液体状では酸化し得る合金により鋳造品を製造づ−るた
めの鋳造法であり、炉内で金属浴を不活性ガスの圧力下
にJ3ぎ、鋳型を溶解炉の出湯「−1」−に密封的に当
接し、液体金属を前記不活性ガスの駆動圧力下で・該溶
解炉から鋳型へと直接移送しながら鋳型への充填を低圧
力下で下から上へと行うタイプの方法であって、生成す
べき合金の基本成分をクロム、ニッケル、コバルト及び
鉄の中より選択し、このような合金を密閉されたグラフ
1イ1〜バー付電気炉で生成することを特徴とする方法
。 (2〉 前記合金をグラフアイ1−バー付炉内で生成1
べく、先す一部を最も酸化し&l[い成分、特にニッケ
ル、」パル]〜及び鉄、を含む液体装入物の形で炉に装
入し、次いで一部を最も酸化し易い成分、特にクロム、
を包む固体装入物の形で装入することを特徴とする特許
請求の範囲第1項・に記載の方法。 (3) 合金が超合金の場合は、炉への装入物の総重量
の73乃至86重量%を占め且つ該超合金の最も酸化し
難い成分、即ちり[1l\、チタン、アルミニウム、マ
ンガン及び炭素以外の成分を含む液体装入物を先ず炉内
に導入し、次いで総装入物閉の14乃至27重1u%を
占め且つ該超合金の最t)酸化し易い成分、即ちクロム
、チタン、アルミニウム、マンガン及び炭素を含む固体
装入物を導入づることを特徴とする特6![請求の範囲
第1項に記載の方法。 (/1) 合金が耐熱鋼の場合は、総装入物吊の70)
lJ〒116%を占め14つ該耐熱合金鋼の最す酸化し
TJllい成分を含む液体装入物を先ず炉内に導入し、
次いで総装入物用の14乃至30重重%を占め且つ該耐
熱合金鋼の最も酸化し易い成分、即ちり[]ム、炭素、
タングステン、マンガン、クイ素、チタン及びアルミニ
ウムをSむ固体装入物を導入することを特徴とする特許
請求の範囲第1項に記載の方法。 (5) 溶解炉内部の金属浴上方の不活性ガス圧力を種
々の段階、即ち −炉の内部スペース内の予圧力又は低圧力を用いて合金
を炉の出湯口近傍まで導入覆る多段階、−炉内部スペー
スの高圧力を用いて鋳型への充填を行う第1段階、 −成形用空洞部全体に隈なく充填1べく、炉内に前記高
圧力を維持しておく第2段階、−炉内部スペースの圧力
を前記高圧ツノより太きい最大J−E LりまC土臂さ
C(押湯効果4−冑る第こ3丁Ω階、 −鋳造品が凝固しCいる間中炉内に前記最大11力を維
持しておく第4段階、 −成形用空洞部の外側にある液体金属を悪法に下方へ戻
づべく、圧力を前記最大圧力から前記予圧力又は低圧力
へと降下させる第5段階、に応じて変化させることを特
徴とする特許請求の範囲第1項に記載の方法。 (6) 前記予圧ツノが0.15バール、第1及び最終
段階の高圧力が0.4バール、第3及び第4段階の最大
圧力が0.7バールであることを特徴とする特Y[請求
の範囲第5項に記載の方法。 (7) 吹込みリングを用いて電気溶解炉の装入L1と
出湯口どに不活性ガスを保副位状に吹きっ【プることを
特徴とする特許請求の範囲第1項に記載の方法。 (F3)  溶解炉の密封性を利用して鋳型への錨込み
の0&に合金浴の脱酸素処理を行うべく、炉の内部スベ
ー、スを鋳込み前に真空下又は負圧干におき、イれによ
って金属浴中の炭素と同浴中の酸素とを反応さμ、この
反応の結果生じた炭素ガスを吸引にJ、り排出すること
を特徴とする特許請求の範囲第1項に記載の方法。
[Claims] (1) A casting method for producing cast products using an alloy that has a high casting temperature of 1,400°C and can be oxidized in liquid form, and the metal bath is inert in the furnace. Under the pressure of the gas, the mold is brought into sealing contact with the tap water "-1" of the melting furnace, and the liquid metal is directly transferred from the melting furnace to the mold under the driving pressure of the inert gas. A type of method in which the mold is filled from the bottom to the top under low pressure, in which the basic components of the alloy to be produced are selected from among chromium, nickel, cobalt and iron, and such alloy is sealed. Graph 1-1 - A method characterized in that it is produced in an electric furnace with a bar. (2> Producing the above alloy in a graph eye 1-bar equipped furnace 1
In order to achieve this, a portion is first charged to the furnace in the form of a liquid charge containing the most oxidizable components, especially nickel, pal, and iron, and then a portion is charged to the furnace in the form of a liquid charge containing the most oxidizable components. Especially chrome,
2. A method according to claim 1, characterized in that the method is characterized in that it is charged in the form of a solid charge enclosing. (3) If the alloy is a superalloy, the components that account for 73 to 86% by weight of the total weight of the charge to the furnace and are the least oxidizable of the superalloy, namely dust [1l\\, titanium, aluminum, manganese] A liquid charge containing components other than carbon and carbon is first introduced into the furnace, and then the most oxidizable components of the superalloy, i.e. chromium, Special feature 6, characterized by the introduction of solid charges containing titanium, aluminum, manganese and carbon! [The method according to claim 1. (/1) If the alloy is heat-resistant steel, the total charge weight is 70)
A liquid charge containing the most oxidized components of the heat-resistant alloy steel, accounting for 116% of the heat-resistant alloy steel, is first introduced into the furnace;
Next are the components that account for 14 to 30% by weight of the total charge and are the most easily oxidized components of the heat-resistant alloy steel, namely dust, carbon,
2. A method as claimed in claim 1, characterized in that a solid charge of tungsten, manganese, di, titanium and aluminium is introduced. (5) varying the inert gas pressure above the metal bath inside the melting furnace, i.e. multiple stages in which the alloy is introduced close to the tap opening of the furnace using a preload or low pressure in the interior space of the furnace; A first stage in which the mold is filled using high pressure in the space inside the furnace; - A second stage in which the high pressure is maintained in the furnace in order to thoroughly fill the entire molding cavity; - Inside the furnace. The pressure in the space is increased to a maximum value greater than the high-pressure horn. a fourth step of maintaining said maximum force of 11; - a step of reducing the pressure from said maximum pressure to said pre-force or lower pressure in order to force the liquid metal outside the forming cavity downwardly; 5. The method according to claim 1, characterized in that the preload horn is 0.15 bar, and the high pressure of the first and final stages is 0.4 bar. , the maximum pressure of the third and fourth stages is 0.7 bar [method according to claim 5]. The method according to claim 1, characterized in that inert gas is blown into the inlet L1 and the outlet in a protective position. (F3) Utilizing the sealing property of the melting furnace In order to deoxidize the alloy bath before it is anchored into the mold, the inner base of the furnace is dried under vacuum or negative pressure before casting, and the carbon in the metal bath and the carbon in the same bath are 2. A method according to claim 1, characterized in that the carbon gas produced as a result of the reaction with oxygen is suctioned and discharged.
JP58188288A 1982-10-11 1983-10-06 Casting method for manufacturing casting by alloy which can be oxidized Granted JPS5987966A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8217120A FR2534167B1 (en) 1982-10-11 1982-10-11 METHOD FOR THE FOUNDRY MANUFACTURE OF MOLDED PARTS IN OXIDIZABLE METAL ALLOYS
FR8217120 1982-10-11

Publications (2)

Publication Number Publication Date
JPS5987966A true JPS5987966A (en) 1984-05-21
JPH0428467B2 JPH0428467B2 (en) 1992-05-14

Family

ID=9278225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58188288A Granted JPS5987966A (en) 1982-10-11 1983-10-06 Casting method for manufacturing casting by alloy which can be oxidized

Country Status (3)

Country Link
JP (1) JPS5987966A (en)
FR (1) FR2534167B1 (en)
IT (1) IT1160212B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2556996B1 (en) * 1983-12-26 1988-03-11 Pont A Mousson METHOD FOR SUPPLYING FOUNDRY MOLDS WITH METAL ALLOYS UNDER CONTROLLED DIFFERENTIAL PRESSURE
FR2666036A1 (en) * 1990-08-27 1992-02-28 Pont A Mousson INTERMEDIATE DEVICE FOR THE CASTING OF MOLDED PARTS.
FR2773337B1 (en) * 1998-01-07 2000-02-11 Seva LOW PRESSURE CASTING PROCESS AND INSTALLATION IN A CERAMIC SHELL MOLD
CN104668521B (en) * 2014-12-31 2017-05-03 南车戚墅堰机车车辆工艺研究所有限公司 Low-pressure casting bath unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2043804B1 (en) * 1969-05-30 1977-07-08
DE2805751A1 (en) * 1978-02-10 1979-08-16 Protherm Ofenbau Gmbh Low pressure casting of light metal and alloys etc. - using furnace with separate melting and holding zones
DE2936418A1 (en) * 1979-09-08 1981-03-26 Siegerländer Kupferwerke GmbH, 5900 Siegen METHOD AND DEVICE FOR CASTING METALS USING A MOLD

Also Published As

Publication number Publication date
JPH0428467B2 (en) 1992-05-14
FR2534167A1 (en) 1984-04-13
IT8368038A0 (en) 1983-10-10
IT1160212B (en) 1987-03-04
FR2534167B1 (en) 1985-06-07

Similar Documents

Publication Publication Date Title
US4589466A (en) Metal casting
US3998264A (en) Apparatus for producing metallic castings by progressively melting a solid charge
US2500097A (en) Exothermic composition for controlling the fluidity of castings
JP2783193B2 (en) Levitation melting method and levitating melting and casting equipment
US3674315A (en) Cast steel wheels for heavy-duty vehicles
US3976118A (en) Method for casting material under pressure
JPS5987966A (en) Casting method for manufacturing casting by alloy which can be oxidized
US4527608A (en) Method for inoculating liquid metal cast under low pressure
RU1838029C (en) Method and furnace for pouring metal melt in semifused state
US4617982A (en) Method of and apparatus for continuously manufacturing metal products
GB2057937A (en) Casting metals using bottom pouring
US6453979B1 (en) Investment casting using melt reservoir loop
CN206869045U (en) A kind of two-way cooling dynamic pours into a mould the device of composite ingot
JP2003311389A (en) Method for casting metal and casting apparatus used therefor
JPH06622A (en) Method and device for differential anti-gravita- tional casting
JPH08117966A (en) Production of metallic mold for forming and device for casting metallic mold for forming
JPH11138248A (en) Semisolid forming method and production of semisolidified metallic slurry used to this
RU2376105C2 (en) Method of continuous casting of blanks
Campbell Counter gravity casting
JPS6099473A (en) Pressure casting device for member having aperture
JPH07155919A (en) Method for charging rheometal into die casting machine
Chandley Quality Enhancement by Fluid Flow Control in Counter Gravity Casting Processes
SE430571B (en) Method and layout for continuous casting of metal
Catalina et al. COUNTER GRAVITY CASTING
RU2323802C9 (en) Method of making moulding