JPS5987340A - Method of measurement of concentration in water current model - Google Patents

Method of measurement of concentration in water current model

Info

Publication number
JPS5987340A
JPS5987340A JP57196096A JP19609682A JPS5987340A JP S5987340 A JPS5987340 A JP S5987340A JP 57196096 A JP57196096 A JP 57196096A JP 19609682 A JP19609682 A JP 19609682A JP S5987340 A JPS5987340 A JP S5987340A
Authority
JP
Japan
Prior art keywords
water
bubbles
current
flow
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57196096A
Other languages
Japanese (ja)
Other versions
JPH0327861B2 (en
Inventor
Toshiaki Hasegawa
敏明 長谷川
Yasuo Hirose
広瀬 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP57196096A priority Critical patent/JPS5987340A/en
Publication of JPS5987340A publication Critical patent/JPS5987340A/en
Publication of JPH0327861B2 publication Critical patent/JPH0327861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To measure a momental concentration in an optional position through a model current approximating the actual current without contacting state, by picking up the image of the change of a scattered light, for which fine and homogeneous bubbles passing through an orifice are a tracer, with a TV camera and calculating the concentration electrically. CONSTITUTION:Fine and uniform bubbles are formed in a water current by the deairing phenomenon accompanied with local pressure reduction of a pressure water current passing through the orifice provided with perforations of <=3mm. diameter. A current model due to a water current including homogeneously bubbles 4 which become a good tracer is formed in a water tank 1 by this water current including bubbles and the pressure water current which does not pass through the orifice, and the scattered light due to a slit light source 3 through the tracer is image picked up by a TV camera 20, and the flow is made visible by a TV monitor 21. The monitor image is converted to an electric signal by a photosensor 22, and the electric signal near a water current nozzle of the water tank 1 is used as a reference value and is compared with the electric signal in a desired position, thereby measuring the momental concentration in an optional position through the model current approximating the actual current without contacting.

Description

【発明の詳細な説明】 本発明は、水流モデルにおいて非1妾触状!?!+ H
に流れ場の任意個所の瞬間的な濃度を測定りる方法に関
Jる、1 従来、水流モデルにおいて淵麿を測定でる方法としく(
ま、流体の一部を抽出づるサンプリング法と流れ場を作
り出づ一方の流体に塩水を使用しτ加分温度の変化を電
気伝導度の変化として測定覆る電気的測定η、とがある
。しかし、これらの温度測定法は、いずれも流れ場内に
抽出管あるいはl?ンザを設(「jしなければならない
接触型のため、流体の流れを実際のものと異なるものに
変えてしまう問題がある。また、サンプリング法に43
いては、瞬間々々の濃度変化を測定できず、平均化され
たものとして把えるしかなく、測定精度が低下するとい
う欠点がある。また、電気的測定法においては、濃度変
化を電気的にしか把握覆ることができず、併せて流れの
現象を目視観察Jることができない。斯様に、水流上デ
ルにおいて非接触状態下で瞬間的な濃度を精確に測定す
る方法、殊に流れの現象を併゛lて18?観察できる方
法は従来から存在しなかった。尚、流れ全域の動向を一
目でIIQ察でさる可視化法どして気泡をi〜レーサに
用いる気泡式1〜lノーリー法が古くから使用されてい
るが、この方法は微細かつ均質な気泡を流体に密に含ま
tl(Qないため定IB化できないので温度測定には従
来から使用でさイ【い。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a non-contact model in a water flow model! ? ! +H
Regarding the method of measuring the instantaneous concentration at any point in the flow field, 1. Conventionally, there was a method for measuring the concentration in a water flow model (
Well, there is a sampling method that extracts a part of the fluid, and an electrical measurement η that creates a flow field and uses salt water as one of the fluids and measures the change in temperature by adding τ as a change in electrical conductivity. However, all of these temperature measurement methods require an extraction tube or l? Since it is a contact type that requires a sample sensor to be set up ("j"), there is a problem that the fluid flow may be changed to something different from the actual flow.
In this case, it is not possible to measure moment-to-moment changes in concentration, and the only way to understand it is as an averaged value, which has the disadvantage of reducing measurement accuracy. Furthermore, in the electrical measurement method, concentration changes can only be detected electrically, and flow phenomena cannot be visually observed. In this way, a method for accurately measuring instantaneous concentration under non-contact conditions in a water flow del, especially in conjunction with flow phenomena, is proposed. Until now, there has been no method for observing this. In addition, the bubble type 1-l Norley method, which uses air bubbles as an i-laser, has been used for a long time as a visualization method that allows IIQ to detect trends in the entire flow area at a glance. Since it is not densely contained in the fluid and cannot be made constant IB, it cannot be used for temperature measurement.

本発明は、気泡を1〜レーりどl)で用い、水流モデル
におい−て非1区触状態下に流れ場の任意個所の瞬間的
な濃度を測定し10る方法を提供りることを目的とする
The present invention provides a method for measuring the instantaneous concentration at any point in a flow field under non-contact conditions in a water flow model using air bubbles of 1 to 10 degrees. purpose.

斯かる目的を達成りるため、本発明は、モデル水槽と圧
力水供給源とを繋ぐ管路に直径3mm以下の小孔を少な
くと(−)1つ穿孔したAリフイスを設置tノ”c−A
リフイス通過時の局所的圧力低下に伴う脱気現象によっ
て微細かつ均質な気泡を水流中に大間に出現さ1!、こ
の微細かつ均質な気泡を密に含む水流(・水槽内に流れ
場を再現l)、この流れ場【、ニスリット・光を当てて
気泡での乱反q・iにより任意断面にお1−jる流れを
可視化Jる一方、散乱光をTVカメラで囮影しこれをモ
ニタテレビのブラウン管に映し出づど共に任意の点にA
3りる11シ乱尤の強さを前記ブラウン?11のノA1
−レンりて測定して電気的信号(4二変換し、これを前
記水槽の水流噴出D +j近のjjシ乱光からjIJら
1また幇卑電気fハ8ど比較演n1)測定点にil’3
 tノる1Ii8 葭を求めるようにしたt)のである
In order to achieve such an objective, the present invention installs an A-refrigerator with at least one (-) small hole with a diameter of 3 mm or less in the pipeline connecting the model water tank and the pressure water supply source. -A
Due to the degassing phenomenon caused by the local pressure drop when passing through the refill, fine and homogeneous air bubbles appear in the water flow1! , This water flow densely contains fine and homogeneous air bubbles (reproducing the flow field in the water tank), and this flow field [, 1- While visualizing the flowing flow, we use a TV camera to capture the scattered light and project it on the cathode ray tube of the TV monitor.
3 Riruru 11 Shi Ranyu's strength as mentioned above Brown? 11 no A1
- Measure the electric signal (42 conversion and convert it to the water jet D + j of the aquarium near jj scattered light to jIJ et al. il'3
tnoru1Ii8 This is t), which was made to look for yoshi.

1ズ下ホ発明を図面に示?J装置にJl(づいて詳細に
説明づ−る。
Is the invention shown in the drawing? The J device is equipped with Jl (details will be explained below).

第1図に本発明方法を実施りる水流tアル可視化装置を
概略図で示ず5.この可視化装置に11、可視化しよう
とづる流れ場を再現するL−1゛ル水槽(以ト水槽と略
称づる)1と、この水槽1に気泡4を混入さlだ流体・
水を例えば底面から供給りる流体供給コニツ[・2及び
水槽1内の流れ場にスリット光5を照用qるスリット光
源3どから主LZ、 tM成されている。この可視化装
置において、水槽′1の底面から流入した流体は、水槽
1内に、 il3いて流4′1場を再現(〕Iこの1つ
水槽1の上方の1ノ1水1−16から図示1ノない1ノ
1水管を通じて川水される。1ノ1水kL気泡以外の異
物を含んCおらず又気泡も 部を除い(− 、5− 再び水に溶(〕込んで・しまうため、何らの処rり!を
施す−ことイ1−<イのil :Lυ1水Iノて1)J
:いし、そのままの状態で再使用Jるごとも可能である
。尚、流体を水1f’l 1の1−プjから尋人1ノ底
面からυi水りることも、また側壁から導入づ−ること
もある。
FIG. 1 shows a schematic diagram of a water flow visualization device for carrying out the method of the present invention.5. This visualization device includes an L-1 water tank (hereinafter referred to as water tank) 1 that reproduces the flow field to be visualized, and a fluid containing air bubbles 4 mixed into this water tank 1.
The main LZ and tM are composed of a fluid supply unit 2 that supplies water from the bottom, for example, and a slit light source 3 that illuminates the flow field in the water tank 1 with a slit light 5. In this visualization device, the fluid flowing from the bottom of the tank '1 flows into the tank 1, and the flow 4'1 field is reproduced. River water is poured into the river through water pipes that do not contain water.1 kL of water does not contain any foreign substances other than air bubbles, and air bubbles are also removed (-, 5- because they dissolve (incorporate) into the water again. Do something wrong!
:It is also possible to reuse it in its original state. Incidentally, the fluid may be drained from the bottom of the body 1 from the water 1f'l 1, or may be introduced from the side wall.

ここC゛、1111記水槽1に流体・水を供給田る流体
供給コニツ1〜2は、図示しない圧力水供給源と水槽1
の流体噴出1−17とを結ぶ費路8の途中に設けられた
ΔリノCス9とから成り、297129部分における局
所的減圧作用に伴う脱気現象にJ−っ−(圧送される流
体中に固溶されている空気を気泡4として流体中に出現
させ、気泡4を人mに含んだ流体と(〕C供給づるらの
である。
Here, fluid supply units 1 and 2 supplying fluid and water to the water tank 1 in 1111 are connected to a pressure water supply source (not shown) and the water tank 1.
Δ Reno CS 9 is installed in the middle of the passage 8 connecting the fluid jet 1-17 of 297129. The air solidly dissolved in the liquid is made to appear in the fluid as bubbles 4, and the air containing the bubbles 4 is mixed with the fluid containing the air (C).

Aリンス9は、直径3+nm1x下の小孔を少な(どし
1つ穿孔したものである。Aリフイス9の小孔のf¥ど
発/1気泡4の直径及び均質栢どには密接な関連1/I
があり、小孔直径が3IIl111を越えると、発生気
泡4が極めて不均質どなり精密な測定や定量測定に適さ
なくなる。一般に気泡をトレーサとして使用りる場合、
流れへの追随v1不良による誤差及4− びI”l J)にJ、る誤差を名慮りれぽ、可視化に、
1、る最適イヱ気泡直径はO1○G〜Q、2mmの範囲
であることが好ましく、更に気泡4の水中への溶1ノ込
みが〒明に起こらない」、うな条件を鑑みれば0.11
1 nl i?i tuが最もり了まlノい。イこで、
Aリフイス9の径と発(1:気泡4の粒径割合との関係
を求めた本発明名等の実験結果(第3図)によると、1
ilT?¥3mmのΔリフrス9では可視化に最適イ【
直径Q、2mm以−Fの気泡4が70%程度を占めその
平均直f〒4.10.113mmであつ′C概ね均質な
−bのであるが、直径4mmのAリフイス9になると直
径Q、2mm以下の気泡が30%程磨と低く不均質とな
る。この実験結果から好ましいAリフイス径は、φ1,
5fflll+以下であり、最も好ましくはφQ、8n
v以下φ0.5mm以上である。自在0.5mm未満の
Aリノrス9を除いたのは流体中の塵で目詰りを起こし
却って気泡発生が不安定どなるからであり、上流に効果
的なノCルタを設置]ノて塵を完全に除去できるのであ
れば0.5mm未満の直「でし良い。第3図の実験結果
にJ、るど、Aリフイス径0.8nvで9kq/c口1
2のn−力を加λた場合、1(1t¥0.0781〜0
.2106mmの範囲の気泡4が発生していることが拡
人写貞をマイク[]ス]−プで8111定することにJ
、り確認された。イして、イのどぎの気泡の平均的径は
ほぼQ、1mmで可視化昼間の中で最も好ましい気泡径
どいえる。ここで、流量を増加する場合には、Aリフイ
ス9の小孔をふやして発生気泡を増♀りることにJ、り
流イホ中に含まれる気泡の金石率を一定にできる。
A-rinse 9 has a small number of small holes with a diameter of 3 + nm 1x. 1/I
If the diameter of the small pore exceeds 3IIl111, the generated bubbles 4 become extremely heterogeneous and unsuitable for precise measurement or quantitative measurement. Generally, when using air bubbles as a tracer,
Errors due to poor tracking of the flow and errors caused by I"l J) are reported and visualized.
1. The optimum bubble diameter is preferably in the range of 2 mm, and furthermore, considering the following conditions, the bubble diameter is preferably in the range of 2 mm. 11
1 nl i? i tu is the best. Right here,
According to the experimental results (Fig. 3) of the present invention, which determined the relationship between the diameter of the A-rifice 9 and the ratio of particle size of bubbles 4 to 1.
ilT? ¥3mm ΔRefs 9 is ideal for visualization [
About 70% of the bubbles 4 have a diameter Q of 2 mm or more, and their average diameter is 4.10.113 mm. Air bubbles of 2 mm or less are polished by about 30%, resulting in low and non-uniformity. From this experimental result, the preferable diameter of the A recess is φ1,
5ffllll+, most preferably φQ, 8n
v or less and φ0.5 mm or more. The reason why A-linos 9 with a diameter of less than 0.5 mm was excluded is that dust in the fluid can cause clogging and cause unstable bubble generation, so an effective no-C filter was installed upstream. If it can be completely removed, a straight cut of less than 0.5 mm is fine.The experimental results in Figure 3 show that J, Rudo, and A have a diameter of 0.8 nv and a 9 kq/c opening.
When applying λ of 2 n-forces, 1 (1t¥0.0781~0
.. J
, was confirmed. Therefore, the average diameter of the bubbles in the throat is approximately Q, 1 mm, which is the most preferable bubble diameter during the daytime visualization. Here, when increasing the flow rate, by increasing the number of bubbles generated by increasing the number of small holes in the A refill 9, the proportion of bubbles contained in the flow rate can be kept constant.

まlこ、水槽1は、本実施例の場合、アクリル樹脂やガ
ラス等の透光fl祠利にJ、って横断面方形の角筒形に
形成されて45す、上方にill水口6を底面に水流噴
出[17を有する1、この水槽1は、ノズルV)バーブ
等の水流モデルの場合に(J、流れ場を形成!1゛るた
めの容器に過ぎないが、ファーネス内の流体の流れを1
+J視化づる場合雪にはでれ自体が℃ア′ルの一部とし
て使用される1、シたがって、水槽1の形状は図示さ1
1ているものに限ら11づ゛、円筒V〉エルボ管形等の
必要に応じた種々の形状を採り得る。まIJ、水槽底面
の水流噴出「17には観察しようどする流れ場を再現づ
゛るモデル例ンばノズル■−デルやバーナモデル10等
が一般に取イ・1【プ1うれる5゜もっども、[デルを
水流噴出ロアから頗して水(f111内にm置し、水流
噴出ロアにおいては流れにfitら変化をtiえない揚
台もある。本実施例の場名、バーナノズルモデル10と
バーナモデル10“ル゛11どが段「1され、燃¥11
と空気の混合状態、ぞのi!i’1合などを測定する!
こめ、バーナノズルモデル10から1;1気泡4が混入
された流体(燃111に相当覆る)を噴出させるどJξ
にその周囲からは気泡がi[11人(\れでいない流体
(二次空気に相当7」る)を噴出さイj 1jでバーナタイルモデル9内で両省を混合1g1iる
ように設けられている。勿論、この水流噴出117の個
数及び位]6は図示のものに限られ4rい63例λば、
フッ・−ネスに複数のバーナをiiQ 1ffll 7
する場合の水流モア゛ルのとぎにはバーノーの配jII
位買が熱分/liにうえる影響を水流モデルを使用し了
観寮りる場合があるからである。尚、本実施1!’II
の水槽1は周に♀全面を透光↑II +J P+で形成
]ノていることから、観察者ないし観察機器に対向する
而がIQ察窓に相当 7− し、スリット光源3に対向りる而が入射光窓に相当する
。しかし、水槽1は全周壁面を透光性月利で形成1jる
必要はなく、少なくとも観察窓と入射光窓がイうであれ
ば足りる。この観察窓と入q・I光窓は、スリット光5
の入射方向と90〜1/15度の角度の位「1で最適の
乱反射が1!Jられることからでの範囲に位(nさせて
お(Jば良く、水槽1を円筒型に形成覆る場合には周壁
の90〜145度の範囲を透孔材料で形成することにに
り代えることができる。尚、観察窓と入射光窓を除く他
の周壁面(底面を含む)を光吸収体で形成づれば、観察
室内の照明を落とさずとも気泡のみが散乱光によって目
立つので観察が容易である。ここで、光吸収体とは水槽
1の内面のみを黒色に名色したものでも良い1、史に、
流れ場の状態を流れ方向と直交する面部ら輪切りに()
てWl察づる揚台には、流れ場を横切るスリット光5に
対して90〜145度の範囲とは水槽1の天1[・上方
と4Tる。したがって、この場合には水槽1の上方に観
察?′iない(〕観察(幾器を設置Flする。
In the case of this embodiment, the water tank 1 is made of a transparent material such as acrylic resin or glass and is formed into a rectangular cylinder shape with a square cross section. This water tank 1 has a water jet [17] on the bottom surface, and is only a container for forming a flow field in the case of a water flow model such as a nozzle V) barb. flow 1
+J In the case of visualization, the snow flakes themselves are used as part of the temperature chamber 1, so the shape of the water tank 1 is as shown in the figure.
It can take various shapes depending on needs, such as 11mm, cylindrical V, elbow shape, etc. IJ, water jet on the bottom of the aquarium ``17'' is a model that reproduces the flow field to be observed. Hello, there is also a platform where the water jet is placed in the water (f111) from the water jet lower, and in the water jet lower, it is not possible to change the flow. 10 and burner model 10" Ru 11 is stage 1, fuel ¥11
The mixture of air and air, Zono i! Measure i'1 go etc.!
Then, from the burner nozzle model 10, fluid mixed with 1;1 air bubbles 4 (corresponding to the fuel 111) is ejected.
Air bubbles spew out from the surrounding area (equivalent to secondary air). Of course, the number and order of the water jets 117 are limited to those shown in the figure.
Multiple burners in the fu-ness iiQ 1ffll 7
In case of water flow mower, use Burno's arrangement
This is because a water flow model may be used to evaluate the effect of heat exchange on heat/li. In addition, this implementation 1! 'II
Since the entire surface of the aquarium 1 is formed of transparent ↑II +JP+, the part facing the observer or observation equipment corresponds to the IQ observation window, and faces the slit light source 3. This corresponds to the incident light window. However, the entire circumference of the water tank 1 does not need to be made of transparent material, and it is sufficient if at least the observation window and the incident light window are clear. This observation window and the input q/I light window are slit light 5.
The angle between 90 and 1/15 degrees from the direction of incidence is set at an angle of 90 to 1/15 degrees. In some cases, the 90 to 145 degree range of the peripheral wall can be replaced with a transparent material.In addition, the other peripheral wall surfaces (including the bottom surface) other than the observation window and the incident light window can be made of light absorbing material. If formed in this way, it is easy to observe the bubbles because only the bubbles stand out due to the scattered light without turning off the lighting in the observation room.Here, the light absorber may be one in which only the inner surface of the aquarium 1 is painted black. In history,
Slice the flow field state from the plane perpendicular to the flow direction ()
At the lifting platform, it can be seen that the range of 90 to 145 degrees with respect to the slit light 5 that crosses the flow field is 4T above and above the water tank 1. Therefore, in this case, observe above the aquarium 1? 'I don't have it (] Observation (I set up some equipment Fl.

8− 史に水槽1内にスリット>1’、 !5を照射づるスー
ツ1〜光源3は、公知のいかなる手段でもにい、1例λ
ぽ、スライド映写機にスリン1〜を入れた板を届し込み
スリン1〜光を得る」、うにしてt)良い。この場合、
スリットの切込み方向を変えた幾枚かのスリブl−板を
用意覆ることにより流れの任忌の断面を透過り°るスリ
ット・光5を青ることがでざる。スリット光5は気泡1
に当たって乱反0’l =Jるが、での散乱光は光が入
q・lした方向から90・〜1’15磨の範囲で最もJ
、<検出される1、5↑(1を有している。尚、気泡4
の径が充分微細かっ一様であるとすれば散乱光の強度は
ili位休槓体の気泡個数即ち気泡数密度に比例すると
肖えられ、ぞれは散乱光の強度が濃度に対応りることを
意味刀る。
8- Slit >1' in water tank 1, ! The suit 1 to the light source 3 for irradiating the light 5 may be provided by any known means, for example λ
``Put the board containing Surin 1~ into the slide projector and get Surin 1~ light.''That's good. in this case,
By preparing and covering several slit plates with different cutting directions of the slits, the slits and the light 5 that pass through an arbitrary cross section of the flow can be made blue. Slit light 5 is bubble 1
0'l=J, but the scattered light at
, <detected 1, 5↑(1. Note that the bubble 4
If the diameter of the bubble is sufficiently fine and uniform, the intensity of the scattered light can be said to be proportional to the number of bubbles in the resting body, that is, the bubble number density, and the intensity of the scattered light corresponds to the concentration. It means sword.

てこで、゛まず、圧力水供給源から水槽1に向(−1で
流体を圧送づる際に、オリフィス9【こilJ I“J
る局所的減圧作用に伴なうIQ気現象によって流体内に
固溶されている空気を可視化に最適な微細かつ均質な気
泡として流体中に密に出現ざ1Lる。1イしC1この微
細かつ均質4T気泡を密に含んだ流体で水槽1内に所望
の流れ場を再現りる。てこへ、スリット・光5を照0・
1づると、スリブ1−光5が気泡4にJ:つて乱反則し
1)(乱するのC1水流中にお(づる気泡4の存在が第
4図に示1゛J:うに火の粉の如く明瞭に表われ流れを
可視化づる。このとき、散乱光の強度は111位体積中
の気泡II!it数即気泡密1身数に比例づると考えら
41、でれは散乱光の強度が濃度に比例覆ることを意味
づることから、気泡の流体中における粗V+7状fぷ即
′a度を散乱光の強度という観点から目視観察できる。
With a lever, first, when pumping fluid from the pressure water supply source to the water tank 1 (-1), press the orifice 9 [oil J
Due to the IQ gas phenomenon accompanying the local decompression effect, the air solidly dissolved in the fluid appears densely in the fluid as fine and homogeneous bubbles that are ideal for visualization. 1 and C1 A desired flow field is reproduced in the water tank 1 with this fluid densely containing fine and homogeneous 4T bubbles. To the lever, illuminate the slit light 5 and 0.
Figure 4 shows the presence of bubble 4 in the water flow. The intensity of the scattered light is clearly expressed and the flow is visualized.At this time, the intensity of the scattered light is considered to be proportional to the number of bubbles in the volume, which is equivalent to the number of bubbles in the volume. This means that the rough V+7 shape fp'a of bubbles in the fluid can be visually observed from the viewpoint of the intensity of scattered light.

更に、この水槽1内の流れは、第2図に示Jように、水
槽仝而のTVカメラ20で撮影されてモニタテレビ21
のブラウン管に映し出される。イして、ブラウン管上の
(f意の点にお(ノる1ii11度の変化即ら散乱光の
変化がブラウン管上のフΔl−L−ンザ22にJ、って
測定され電気的信号例えば電圧の変化どして検出さねる
。この測定電圧は、フィルタ23を通してモニタテレビ
21の画面のスキャン信号が除去された後、1〜ランジ
Tン1へ1ノ]−ダ2/1か1うAシロスコープ25又
はXYレコーダ26へ出力され、測定点にお()る散乱
光の変化[111)5濃度変化が測定4丁いし記録され
る。ここで、流体の1li11度は、散乱光の強度が単
位体相中の気泡個故即l)気泡密度数に比例りるど化λ
られ目つイの中位体積中の気泡個数が混合状態にある一
流体に占める気泡を含む流体の割合い即ら濃度が低下り
るにつれて低減Jることから、気泡を含む流体が他の流
体ど混わる前の流体噴出口にお()る散乱光の明るさを
↓マ準にして陣出づることができる。つ21:す、任意
の点における′a度はその点におりる測定電圧を基準電
圧で除づ゛ることにより求められる。1測定位置の変更
は、モニタ7−レビ21のブラウン管上のフォトレンサ
22を移動ざ1」ることに、1、っても行ない1qるが
、ブラウン管の中央が周辺、1゜りも安定かつ明るい輝
度を得ることができるので、フオl−tレザ22の位1
6を固定()た:1、)11丁Vカメラ20を[・ラバ
ース(図示省略)にて微動させることにJ、り撮影個所
を変更りる方が好ま1ノい。尚、ブラウン管上における
散乱光の胛皮測定に際しては、測定領域中もっともIl
t’iい部分でも微小出力例−11− えば3mV1’i!Uを承りように、またもっとし明る
い部分が1lll+定レンジの最大値近くになるにうに
モニタの調整を行なう必要がある。
Furthermore, as shown in FIG.
projected on a cathode ray tube. Then, the change of 11 degrees, that is, the change of the scattered light, is measured at a point (f) on the cathode ray tube, and an electrical signal such as a voltage After the scan signal from the screen of the monitor television 21 is removed through the filter 23, this measured voltage is applied to the range T to 1 from 1 to 2/1 or from 1 to A. It is output to the oscilloscope 25 or the XY recorder 26, and the change in the scattered light at the measurement point [111) 5 concentration change is recorded from the measurement point.Here, 1li11 degrees of the fluid is the intensity of the scattered light. is the number of bubbles in the unit phase, so l) The rounding λ is proportional to the number of bubbles.
The number of bubbles in the medium volume of the fluid in the mixed state decreases as the proportion of the fluid containing bubbles in the mixed fluid, that is, the concentration decreases. You can set the brightness of the scattered light at the fluid spout before it mixes with ↓ as standard. 21: The degree 'a' at any point can be found by dividing the measured voltage at that point by the reference voltage. 1. The measurement position can be changed by moving the photolenser 22 on the cathode ray tube of the monitor 7-revision 21. Since it is possible to obtain bright brightness, it is possible to obtain bright brightness, so it is possible to obtain
6 is fixed (): 1,) It is preferable to move the 11 V camera 20 slightly with a rubber (not shown), or to change the shooting location. In addition, when measuring the scattering of light on a cathode ray tube, it is necessary to
Example of a small output even in a small part -11- For example, 3mV1'i! In order to accept U, it is necessary to adjust the monitor so that the brightest part is close to the maximum value of 1llll + constant range.

まl、二、散乱光の測定は、水槽1内に流れ場を再現で
るのと同ILll進行さVる必要はない。水槽1内に再
現された流れ場をTVカメラ20で撮影して図示1ノ4
」−いビフ゛A装謂に録画1ノでおぎ、これをモニタテ
レビ21に映し出づことにより何1mも測定ができる。
First, second, it is not necessary to measure the scattered light in the same way as the flow field in the water tank 1 can be reproduced. The flow field reproduced in the water tank 1 was photographed with the TV camera 20 and is shown in Figure 1-4.
By making a recording on a new BIF A equipment and displaying it on the monitor television 21, measurements can be made over many meters.

しかも、狭く複雑な流れ舅であってセン+J゛を設問す
ることが従来不可能な処でも、撮影゛する際にズームア
ラプリ゛ることににリファIt−tンリ22の相対的小
形化を図れば測定が可能どなる。
Moreover, even in narrow and complicated areas where it is impossible to ask questions about Sen + J, it is possible to reduce the relative size of the Ref. Measurement possible.

ここて、フA1〜レンij−22は、光学的信号を電気
的信号に変換する乙ので、本実施例の場合フォトダイア
1−ドが使用されているがこれに限られない。
Here, since the lenses A1 to ij-22 convert optical signals into electrical signals, photodiodes 1-2 are used in this embodiment, but the invention is not limited to this.

モニタテレビ21のブラウン管の輝度変化からフォトレ
ン→ノ22を通して1qられた各測定点における濃度か
らは、−1ンビユータを利用しである燃焼モデルに対応
さけることにより燃料と空気の混合割合を弾出すれば、
燃焼部I身やCO出、02 m= 12= 等の分布状態をヨ次元し1ル化できる。
From the concentration at each measurement point obtained from the change in the brightness of the cathode ray tube of the monitor television 21 through the photo lens 22, it is possible to calculate the mixing ratio of fuel and air by using a -1 viewer and applying a combustion model. Ba,
The distribution state of combustion part I, CO output, 02 m= 12=, etc. can be transformed into one dimension.

以J−の説明J、り明らかなにうに、本発明の濃度測定
方法は、微細かつ均質な気泡を密に含む水流で再現され
た流れ揚(こスリン1〜光を当てて気1qで乱反則させ
ることにより任意断面におりる流れを可視化でる一方、
その散乱光をTVカメラで1最彰してモニタテレビのブ
ラウン管に映し出すと」(に任意のIj、口こJ3ける
散乱光の強さをブラウン管」−のフォトヒンサで電気的
信号に変換して測定(]、単イO体積中にお【′Jる気
泡数即ら濃度と散乱光の強度との間の相似関係に基づい
て111度を求めるので、非接触状態下に瞬間的濃度を
測定で・きる。つまり、本測定方法によれば、流れを変
えることなく精確に濃度測定ができる。しかも、本測定
方法は、気泡を含む流体で流れ場を形成し、これにスリ
ブ1−光を当て、て任意断面における流れの可視化を図
っているので、濃度測定と同時に定性的測定ら可能であ
る()、散乱光の強弱にJ、つて流れ全域に1131J
る濃度変化が一目で観察できる。また、本測定方法は、
流れ場をTVカメラで撮影し、tニタ71ノビにIl’
J! シ出してからフォトセンザで測定覆るようにして
いるので、流れ場の任意の場所を任意の大ぎさに拡大し
て測定できると共にビデオ装置に録画しておけば実際の
水流実験を行なわずどもいつでも測定できる。
Explanation of the following: As is clear, the concentration measurement method of the present invention is based on the method of measuring the concentration of water that is reproduced by a water flow densely containing fine and homogeneous air bubbles. While it is possible to visualize the flow that falls on an arbitrary cross section by making it contrarian,
When the scattered light is captured by a TV camera and projected onto the CRT of a monitor TV, the intensity of the scattered light can be measured by converting it into an electrical signal using the CRT's photo sensor. (), 111 degrees is determined based on the similarity between the number of bubbles (i.e., the concentration) in a single O volume and the intensity of scattered light, so the instantaneous concentration can be measured in a non-contact state.・In other words, according to this measurement method, concentration can be measured accurately without changing the flow.Furthermore, this measurement method forms a flow field with a fluid containing bubbles, and shines the light onto this. Since the flow is visualized in an arbitrary cross section, it is possible to perform qualitative measurements at the same time as concentration measurements ().
Changes in concentration can be observed at a glance. In addition, this measurement method is
The flow field was photographed with a TV camera and posted on tnita71novi.
J! Since the water is taken out and then measured using a photo sensor, it is possible to enlarge any part of the flow field to any size and measure it, and if it is recorded on a video device, it can be measured at any time without having to conduct an actual water flow experiment. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水流モデルにおける濃度測定方法
を実施する装置のうノ5可視化装置部分の概略図、第2
図は同じ<i度測定装置部分の概略図、第3図はオリフ
ィス径と気泡粒径割合との関係を求めた実験結架を示づ
グラフ、第4図は可視化されlζ流れ場を示す説明図で
ある。 1・・・水槽、 3・・・スリット・光源、 4・・・
気泡、5・・・スリン1−・光、 8・・・管路、 9
・・・オリフィス、20・・・T Vカメラ、 21・
・・モニタテレビ、22・・・フオトレンサ。 特訂出願人 日本フフ・−ネス■業株式会礼15− 第3図 くt;で′I艷生甲し乍すノイ又ft (mmφ)第4
Fig. 1 is a schematic diagram of the Uno 5 visualization device part of the apparatus for implementing the concentration measurement method in the water flow model according to the present invention;
The figure is a schematic diagram of the same < i degree measuring device part, Figure 3 is a graph showing the experimental results for determining the relationship between the orifice diameter and the bubble particle size ratio, and Figure 4 is an explanation showing the visualized lζ flow field. It is a diagram. 1...Aquarium, 3...Slit/light source, 4...
Bubbles, 5...Surin 1-・Light, 8... Pipeline, 9
...orifice, 20...TV camera, 21.
・・Monitor TV, 22・・Phototrancer. Special Applicant Nippon Fufu - Ness ■ Industry Co., Ltd. 15 - Fig. 3 (mmφ) No. 4
figure

Claims (1)

【特許請求の範囲】[Claims] モデル水槽ど圧力水供給源とを繋ぐ管路に直径3mm以
下の小孔を少なくとも1つ穿孔したオリフィスを設四し
てオリフィス通過11の局所的圧力低下に伴う脱気現象
ににつて微細かつ均質を丁気泡を水流中に大量に出現さ
V、この微細かつ均穎な気泡を密に含む水流で水槽内に
流れ場を再現1ノ、この流れ場にスリット光を当てて気
泡での乱反射にJ、す+f息断面におりる流れを可視化
Jる一方、散乱光をTVカメラで撮影しこれをモニタテ
1ノどのブラウン管に映し出すと共に任意の点にお(J
る散乱光の強さを前記ブラウン管上の)A!〜レン°す
″(゛測定して電気的信号に変換し、これを前記水槽の
水流噴出口+1近の散乱光から得られた基準電気信号と
比較演算し測定点における濃度を求めることをfi徴と
する水流モデルにお1プる製電測定り法。
An orifice with at least one small hole with a diameter of 3 mm or less is installed in the pipe line connecting the model water tank and the pressure water supply source, so that the degassing phenomenon caused by the local pressure drop passing through the orifice 11 is fine and homogeneous. A large number of air bubbles appear in the water flow, and a flow field is reproduced in the aquarium using a water flow densely containing these fine and uniform air bubbles. 1. A slit light is applied to this flow field to create diffuse reflections from the air bubbles. While visualizing the flow down to the cross section, the scattered light is photographed with a TV camera, projected onto any cathode ray tube on the monitor, and placed at an arbitrary point (J).
The intensity of the scattered light on the cathode ray tube) 〜Ren゛(゛Measure and convert into an electrical signal, compare and calculate this with a reference electrical signal obtained from scattered light near the water jet outlet +1 of the water tank, and calculate the concentration at the measurement point.) Electricity measurement method based on water flow model.
JP57196096A 1982-11-10 1982-11-10 Method of measurement of concentration in water current model Granted JPS5987340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57196096A JPS5987340A (en) 1982-11-10 1982-11-10 Method of measurement of concentration in water current model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196096A JPS5987340A (en) 1982-11-10 1982-11-10 Method of measurement of concentration in water current model

Publications (2)

Publication Number Publication Date
JPS5987340A true JPS5987340A (en) 1984-05-19
JPH0327861B2 JPH0327861B2 (en) 1991-04-17

Family

ID=16352143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196096A Granted JPS5987340A (en) 1982-11-10 1982-11-10 Method of measurement of concentration in water current model

Country Status (1)

Country Link
JP (1) JPS5987340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263876A (en) * 2006-03-29 2007-10-11 Miyazaki Prefecture Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid
JP2010281814A (en) * 2009-05-26 2010-12-16 Krones Ag Foam density determination method and foam density determination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263876A (en) * 2006-03-29 2007-10-11 Miyazaki Prefecture Calibration method in laser diffraction/scattering type particle size distribution measurement method, and measuring method of volume concentration of bubble in liquid
JP2010281814A (en) * 2009-05-26 2010-12-16 Krones Ag Foam density determination method and foam density determination device

Also Published As

Publication number Publication date
JPH0327861B2 (en) 1991-04-17

Similar Documents

Publication Publication Date Title
US4554832A (en) Simulator of fluid flow in field of flow entailing combustion or reaction
US4543834A (en) Measurement of velocity in water flow model
Nishino et al. Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow
Riva et al. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries
Durrett et al. Radial and axial turbulent flow measurements with an LDV in an axisymmetric sudden expansion air flow
Hansen Surface tension by image analysis: fast and automatic measurements of pendant and sessile drops and bubbles
JP5517000B2 (en) Particle size measuring device and particle size measuring method
Thomas et al. Diffusion measurements in liquids by the Gouy method
JPS5987340A (en) Method of measurement of concentration in water current model
CN208109380U (en) A kind of double light path schlieren photograph devices of wind-tunnel
CN109297554B (en) Method for measuring liquid phase flow in T-shaped pipe
Abbaszadeh et al. A new bubbly flow detection and quantification procedure based on optical laser-beam scattering behavior
CN103487352B (en) A kind of intelligence of dope viscosity analyzer is cleaned inspection control system and detecting and control method thereof
EP0157964B1 (en) Apparatus for visually displaying fluid density in fluid flow model
JPS59132340A (en) Device for making density viewable in water stream model
Papps Merging buoyant jets in stationary and flowing ambient fluids
Delhaye Optical methods in two-phase flow
Matsushita et al. Calibration scheme for three-dimensional particle tracking with a prismatic light
JPS63103941A (en) Detecting method for rotary motion of flow
JPS5987344A (en) Apparatus for making flow visible
Christensen et al. Experimental Determination of Bubble Size Distribution in a Water Column by Interferometric Particle Imaging and Telecentric Direct Image Method
CN104964930B (en) A kind of decision method of liquid fuel corrosivity monitor result
JPS63103940A (en) Detecting method for visualized information of flow
JPS625145A (en) Simultaneous visualization of multiple sections for flow
RU2240536C1 (en) Method and device for determining characteristics of fuel jet