JPS5987304A - Measuring head for robot adopting optical cutting method - Google Patents

Measuring head for robot adopting optical cutting method

Info

Publication number
JPS5987304A
JPS5987304A JP19679582A JP19679582A JPS5987304A JP S5987304 A JPS5987304 A JP S5987304A JP 19679582 A JP19679582 A JP 19679582A JP 19679582 A JP19679582 A JP 19679582A JP S5987304 A JPS5987304 A JP S5987304A
Authority
JP
Japan
Prior art keywords
light
light receiving
line
fan
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19679582A
Other languages
Japanese (ja)
Other versions
JPH0117524B2 (en
Inventor
Giichi Ito
義一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TSUSHIN GIJUTSU KK
Original Assignee
NIPPON TSUSHIN GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TSUSHIN GIJUTSU KK filed Critical NIPPON TSUSHIN GIJUTSU KK
Priority to JP19679582A priority Critical patent/JPS5987304A/en
Publication of JPS5987304A publication Critical patent/JPS5987304A/en
Publication of JPH0117524B2 publication Critical patent/JPH0117524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/127Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using non-mechanical sensing
    • B23Q35/128Sensing by using optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To perform detection of a weld line and the welding work automatically in accordance with measured data, by providing a light projector and a photodetector at two points a part in a certain distance from each other on the axis of a measuring head for robot so that they face each other. CONSTITUTION:An oscillator I has about 100MHz oscillation frequency, and its output omegaL is amplified by an amplifier AMP1, and the light modulated by a frequency omegaL/2pi is radiated from a light projector L, and the reflected light (where a signal light and a noise light are superposed) from the surface of an object G to be measured is received by a photodetector R. In this case, the light projector L and the photodetector R are provided at two points apart in a certain distance from each other on the axis of the measuring head for robot so that they face each other. By this constitution, the detection of the weld line and the welding work are performed automatically in accordance with measured data.

Description

【発明の詳細な説明】 豐 本発明は、アーク浴−接用ロボットにおいて、作業対象
と、ロボットとの関係位置を正しく保つための計測を行
なう計測ヘッドに関するものであって、以下の説明はア
ーク浴接用の場合を対象として行なうが、この独の計測
ヘッドはアーク浴接の場合の4ならず、一般の作業用ロ
ボットにおいても有効に活用できるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring head that performs measurements to maintain the correct relative position between a work object and the robot in an arc bath contact robot. Although this study will be conducted for bath contact applications, this unique measurement head can be effectively utilized not only for arc bath contact applications, but also for general work robots.

従来のアーク浴接用ロボットで浴接を行なう場合の例?
:i/図(イ)、(ロー、(−)に示す。図において、
Gl * G1は被浴接板(Gt 、Gtを区別する必
要のない場合は単にGで示す)、J1+J2はその表面
(Jl、Jtを区別する必要のない場合は単にJで示す
)、W(+は溶接すべき線すなわち溶接線、Tは浴接ト
ーチである。
An example of bath welding using a conventional arc bath welding robot?
:i/shown in the figure (a), (low, (-)).In the figure,
Gl * G1 is the bathed plate (Gt, simply denoted by G when there is no need to distinguish between Gt), J1+J2 is its surface (simply denoted by J when there is no need to distinguish between Jl and Jt), W ( + is the line to be welded, ie welding line, and T is the bath torch.

第1図(イ)は溶接トーチTの両側の磁気センサ各。Figure 1 (a) shows the magnetic sensors on both sides of the welding torch T.

ぬによって、 J、 、 J、との関係位置を検出し。Detect the relative position of J, , and J by

TV正しい作業位置に保とうとするものである。The purpose is to keep the TV in the correct working position.

−〇    − 図(ロ)は浴接トーチTを左右に定振巾だけ振って左右
の位置で、溶接電流が等しくなるよ51CTの位置を調
整して作業を進めろものである。図(・)はレーザビー
ム投6イ攪七嘩のように左右に振って、Gの表面を照射
し、G上の光の当った点すなわち輝点の軌跡をテレビカ
メラlに結像させ、その画像を処理して、溶接線W。を
求めて溶接作業を行なうものであり、この時、得られる
画像を図の右側に示した。
-〇- Figure (b) shows how to proceed with the work by swinging the bath welding torch T left and right by a constant vibration width and adjusting the position of 51CT so that the welding current is equal at the left and right positions. In the figure (), the laser beam is projected by swinging it from side to side like a stirrer, irradiating the surface of G, and imaging the locus of the bright spot on G on the TV camera. The image is processed to create a welding line W. The image obtained at this time is shown on the right side of the figure.

これらの溶接ロボットで図(イ)、(0)は簡単な場合
の自動化にしか適せず、また、図(ハ)は、得られた画
像の処理が面倒である等のことがあった。
With these welding robots, Figures (A) and (0) are suitable only for automation in simple cases, and Figure (C) requires troublesome processing of the obtained images.

本発明は、比較的簡単な方法で、マイクロコンピュータ
の助けをかりて、計測データから、溶接線の検出および
溶接作業を全自動的に行なうことを可能にする計測ヘッ
ドに関するものである。
The present invention relates to a measurement head that allows welding line detection and welding work to be performed fully automatically from measurement data in a relatively simple manner with the aid of a microcomputer.

一般に厚い鉄板の溶接ではG、、G、は平板であり、表
面は平面で構成されていることが多く、また曲面といえ
ども、その曲率は小さく局部的には平面として取扱うこ
とができることが多く、たとえ、平面とみなせなくとも
ゆるい曲率であるので52次曲面で近似して取扱うこと
ができる。
In general, when welding thick steel plates, G, G, is a flat plate, and the surface is often composed of a flat surface, and even if it is a curved surface, its curvature is small and it can often be treated as a flat surface locally. Even if it cannot be regarded as a plane, it has a gentle curvature, so it can be approximated and handled by a 52-dimensional curved surface.

本発明のロボットの計測原理を第2図についで説明する
。図において、Bはロボットの計測ヘッドで、支持部に
より支持され軸ξ、η、、(L の廻りに回転できるも
のとし、支持部は空間座標X。
The measurement principle of the robot of the present invention will be explained with reference to FIG. In the figure, B is the measurement head of the robot, which is supported by a support part and can rotate around the axes ξ, η, , (L), and the support part has a spatial coordinate of X.

y+ 1方向に平行移動できるものとする。つまり、B
は上6己の平行移動と回転運動により、任意の姿勢をと
ることが可能であり、計測ヘッドBと浴接トーチTとは
一定の関係で結合されており、Bを溶接線Woに対して
所定の位置におけば溶接トーチTは溶接可能の位置を占
めるようになっている。
It is assumed that parallel movement is possible in the y+1 direction. In other words, B
can assume any posture by parallel movement and rotation of the upper body, and the measurement head B and the bath welding torch T are connected in a fixed relationship, and B is aligned with the welding line Wo. When placed in a predetermined position, the welding torch T occupies a position where welding is possible.

また溶接トーチTに付設された遮光板りは溶接アークの
輝線部分・\の入射量を少くするためのものである。
Further, the light shielding plate attached to the welding torch T is used to reduce the amount of incident light from the bright line portion of the welding arc.

ここでは、座標系として空間座標X+y+Z  および
計測ヘッドBに固定されて移動する座標軸ξ1η、Cを
用いるが、他の座標系を用いても原理に変りはない。
Here, the spatial coordinates X+y+Z and the coordinate axes ξ1η, C which are fixed to the measurement head B and move are used as the coordinate systems, but the principle remains the same even if other coordinate systems are used.

計測ヘッドBの両端には図示のように一定距離dを一\
だてたコ点0,0Rにそれぞれ投光器札と受光器BRを
相対して設けである。B1は変調された光ビームf(t
lを発射し、f(【)は扇形平面φ内で、ξ、η、ζ軸
の原点OI、?:中心として図のように291の巾で変
動する。さらに扇形平面Φとξ軸とのなす角θxJを変
えることができる。このような光の面φをここでは扇形
光(以下、扇形光小)と称することとする。
A certain distance d is placed between both ends of the measurement head B as shown in the figure.
A light projector plate and a light receiver BR are provided facing each other at the raised points 0 and 0R, respectively. B1 is the modulated light beam f(t
l, and f([) is in the fan-shaped plane φ, the origin OI of the ξ, η, and ζ axes, ? : It fluctuates with a width of 291 as shown in the figure with the center as the center. Furthermore, the angle θxJ between the fan-shaped plane Φ and the ξ axis can be changed. Such a light surface φ is herein referred to as a fan-shaped light (hereinafter referred to as a small fan-shaped light).

扇形光歪を物体Gに投射すると、物体G上の輝線は明ら
かに、物体Gを扇形光Φで切断した時の断面形状を示す
ことになる。また受光器BRへ入射される光ビーム’a
: P(1)とする。
When the fan-shaped light distortion is projected onto the object G, the bright line on the object G clearly shows the cross-sectional shape when the object G is cut by the fan-shaped light Φ. Also, the light beam 'a incident on the receiver BR
: P(1).

受光器BRは第3図のように、2n個の受光素子を隙間
な(等間隔に、直線上に配置した受光アレーI’Lと、
第弘図に示す外部の像を受光アレー凡の位置に結ばせる
だめのレンズ系lとよりなっている。受光アレー几はt
軸に平行であり、この受光器はレンズの中心を通りη軸
に平行な軸η、のまわりに回転して、すなわち第弘図の
受光器BRの方向角θRを変えることによって、受光方
向を変−9− えることができる。
As shown in Fig. 3, the light receiver BR has a light receiving array I'L in which 2n light receiving elements are arranged at regular intervals on a straight line,
It consists of a lens system l that focuses an external image on the light receiving array as shown in FIG. The light receiving array is t
The light receiving direction can be changed by rotating around the axis η, which passes through the center of the lens and is parallel to the η axis, that is, by changing the direction angle θR of the light receiver BR in Fig. Change -9- Can be changed.

計測ヘッドBおよび投光器BI、、受光器BRは、ξ軸
を通る中心面に対して左右対称に構成されている。
The measurement head B, the light projector BI, and the light receiver BR are configured symmetrically with respect to a central plane passing through the ξ axis.

物体Gの表面の形を測定するには、投光器BI。To measure the shape of the surface of object G, use projector BI.

により扇形光モをGの表面に投射し、生ずる輝線を受光
器BRで受けると受光アレー几近傍に輝線の像を生ずる
。この像と受光アレーRとの交点にある受光素子が励起
されて、この素子から、入射光の強さに比例した出力が
得られる。
When a fan-shaped beam of light is projected onto the surface of G and the resulting bright line is received by the light receiver BR, an image of the bright line is generated near the light receiving array. A light-receiving element located at the intersection of this image and the light-receiving array R is excited, and an output proportional to the intensity of the incident light is obtained from this element.

物体上の輝線A、AMと受光器BRのレンズt、受光ア
レー几の関係を第5図(イ)に示す。図において、A、
 AMは扇形光計が物体表面につ(る輝線、00RAM
は糸の中心面、Fはレンズの焦点、00RはA、 AM
(i’)像とレンズ1との距離、0−まA1の像、[は
比の中点からC5までの長さで、受光素子の配列位置順
位に対応している。受光アレーと輝線像との関係は、同
図(ロ)に示すようであって、輝線像0゜lCi * 
C;−+ Ck と受光アレー几との交点にある受光素
子01.C・から電気出力が得られる。
The relationship between the bright lines A and AM on the object, the lens t of the light receiver BR, and the light receiving array is shown in FIG. 5(A). In the figure, A,
AM is the emission line that the fan-shaped light meter connects to the object surface, 00RAM
is the center plane of the thread, F is the focal point of the lens, 00R is A, AM
(i') The distance between the image and the lens 1, 0 - the image of A1, [ is the length from the midpoint of the ratio to C5, which corresponds to the arrangement position order of the light receiving elements. The relationship between the light-receiving array and the bright line image is as shown in the same figure (b), and the bright line image 0゜lCi *
C; -+ Light receiving element 01 at the intersection of Ck and the light receiving array. Electrical output is obtained from C.

ム    r −10− 受光器の方向角0R7i11′変えると、結像面では、
図の受光アレー几にたいして、OoO・COkが上下方
1( 向にθ、に応じて平行移動する。そしてたとえば像が上
方に移動すると、受光アレー凡の励起される素子0.C
ンが漸次接近し、図のように0(において2点が重なる
。この点は、丁度物体の最高点に相等している。(映像
が反転されているものとした)。したがって、受光アレ
ー几上で励起される受光素子の順位の変化の様子から、
輝線像の形、したがって物体表面の形状を知ることがで
きる。
When the direction angle 0R7i11' of the photoreceiver is changed, at the imaging plane,
With respect to the light-receiving array shown in the figure, OoO・COk moves in parallel in the vertical direction 1 ( ) according to θ.For example, when the image moves upward, the excited element 0.C of the light-receiving array
As the image gradually approaches, the two points overlap at 0 (as shown in the figure). This point is exactly equivalent to the highest point of the object (assuming that the image is inverted). From the changes in the order of the excited light receiving elements above,
The shape of the emission line image and therefore the shape of the object surface can be known.

測定上必聾な基本式はつぎのとおりである。The basic formula necessary for measurement is as follows.

(1ン  第5図(イ)について、輝点像の位置から9
Rを求めるには次式を用いる の中心軸とのなす角 1+:):輝点像を受光アレー几と同じ面に結ばせるた
めの調整値より求められる −   11   = (2)  第6図は被測定物に対する計測系全体の各部
の距離を求めるための説明図であって、これの基本式は
っぎのとおりである。ξ軸上のコ点o1..uR,,2
点間OL、ORの距離d、[形元予、輝線、9に、、(
fR等は第2図と同じである。
(1) Regarding Figure 5 (A), 9 from the position of the bright spot image
To find R, use the following formula: Angle 1+:) with the central axis: Calculated from the adjustment value to align the bright spot image on the same plane as the light-receiving array - 11 = (2) Figure 6 is This is an explanatory diagram for determining the distance of each part of the entire measurement system to the object to be measured, and the basic formula is as shown below. Point o1 on the ξ axis. .. uR,,2
Distance d between points OL and OR, [form origin, bright line, 9, , (
fR etc. are the same as in FIG.

OLAMは扇形光中の中心線、A、 A’、上0LA(
、A1′H上0LOR,AlHLoLoR,UL−乙0
RoLAr、θ□−ど0LORA′1、 Q RAL、
は受光軸に一致する。
OLAM is the center line in the fan-shaped light, A, A', upper 0LA (
, A1′H 0LOR, AlHLoLoR, UL-Otsu 0
RoLAr, θ□-do0LORA′1, Q RAL,
coincides with the receiving axis.

(21) θ□、θh、 dが測定されると次の財が求
められる。
(21) When θ□, θh, and d are measured, the next good is found.

Xr= 、 、]−dtan(/htan#x  ・・
・・・・・・・山川・・・・・・・・・・ (2JLJ
IIIOL +IantJH 1′L= A’、 OL=□ ・・ ・・・・・・・・
・ (3)部Ob (tanOh+jan0B) dtanθL tp=x、oR=□・・・曲・山・・・・・ (4)(
在θR(−〇h+jan0B) (,2,,2) (lL、θL、 ’R,dが測定され
ると次の量が求められる。
Xr= , ,]-dtan(/htan#x...
・・・・・・Yamakawa・・・・・・・・・ (2JLJ
IIIOL +IantJH 1'L= A', OL=□ ・・・・・・・・・・・・
・ (3) Part Ob (tanOh+jan0B) dtanθL tp=x, oR=□...Song/Mountain... (4)(
Existing θR(-〇h+jan0B) (,2,,2) (lL, θL, 'R, d are measured, the following quantities are found.

(zg 9x、θ8.θ1.dが測定されると、次の量
が求められる。
(When zg 9x, θ8.θ1.d are measured, the following quantities are found.

−18− (,2,弘)  9L、9R,θ1.θ、が測定された
場合は前項<2./)、<2.2)、<2.3)の諸式
(2)〜(5)、 (61〜(9) 、 H−(13)
の倒れでも都合よろしいものを用いればよい。また、 ハA10ROLとΔに10ROLの2面のなす角をφと
すれば また、次の関係が成立っている 次に、σL、 UR,9b、 ’7a、 dについて述
べる。
-18- (,2, Hiroshi) 9L, 9R, θ1. If θ is measured, the previous paragraph <2. /), <2.2), <2.3) formulas (2) to (5), (61 to (9), H-(13)
You can use whatever is convenient even if you fall down. Furthermore, if the angle formed by the two surfaces of A10ROL and Δ is φ, then the following relationship holds.Next, we will discuss σL, UR, 9b, '7a, and d.

dは計測ヘッド固有の定数で構造からきめられる。d is a constant specific to the measurement head and is determined from the structure.

θ1は計測器についてあらかじめ定めておく定数で、こ
こでは、説明の都合上次の値θ1とθlL をとるよ−
14− うにしておく、測定の便宜上θtくθL=iにとると都
合がよい。
θ1 is a constant determined in advance for the measuring instrument, and here, for convenience of explanation, we will take the following values θ1 and θlL.
14- For convenience of measurement, it is convenient to take θt and θL=i.

ORは扇形光が物体上につくる輝線をとらえるに都合の
よい値に設定する。
OR is set to a value convenient for capturing the bright line formed on the object by the fan-shaped light.

θR−ORO十〇R6(t) 輻、(tl はOを中心に変化させ時間【を与えればき
まる値である。6RoはOLの値に対応してきめられろ
値であるが、(/R,乞若干太き(とればor、、UL
の両方に対応させることもできる。
θR-ORO 10R6(t) Radiation, (tl is a value that can be determined by changing O as the center and giving time [.6Ro is a value that can be determined corresponding to the value of OL, but (/R, It's slightly thicker (or, if it's thicker, UL
It is also possible to make it compatible with both.

包は扇形光重の中心線OLAMの両側に光ビームの方向
?変える時の角を示し、時間の関数f、= 9(tlな
る形で与えられる。9)Rは元ビームの反射光と受光器
の中心軸とのなす角であるから、9□(1) に対応し
てきまる値であって、受光アレー几上の受光素子の位置
「から式(1)により算出される。
Is the direction of the light beam on both sides of the center line OLAM of the fan-shaped light beam? Indicates the angle when changing the angle, and is given as a time function f, = 9 (tl).9) Since R is the angle between the reflected light of the original beam and the central axis of the receiver, 9□(1) It is a value corresponding to the position of the light receiving element on the light receiving array, and is calculated by equation (1) from the position of the light receiving element on the light receiving array.

受光アレーR上の受光素子が輝点像を感知した時間tを
知れば、この時間tからテL(t)を求めることができ
る。
If the time t at which the light-receiving elements on the light-receiving array R sense the bright spot image is known, teL(t) can be determined from this time t.

前に示したC2.2>、C2,3>項の各式かられかる
ように物体の表面形状乞求めるには、舛か粋の何れか一
方とUL、#R’a’知ればよいので、その何れを用い
るかは測定上の便宜あるいは精度等の関係を考慮してき
めればよい。
As can be seen from the equations C2.2> and C2.3> shown above, in order to determine the surface shape of an object, it is only necessary to know either the masu or the shape, UL, and #R'a'. , which one to use may be determined in consideration of convenience in measurement, accuracy, etc.

次に1つの例について説明する。計測ヘッドの諸元を次
のようにとる。
Next, one example will be explained. The specifications of the measurement head are as follows.

測定法l: 受光アレー几上での輝点像がコ「0内にあるとすれば、
輝点像のR上での速度はω5aro 以下であるので、
輝点像がl受光素子に入力している時間は1/。ω 以
上となる。l/rlωrの時間内に受光アレーブ 几をlわたりスキャンニングすれば、輝点像を見落すこ
とはない。したがって平均l素子当りスイッチング時間
は′TA−14♂ω、以下であればよい。
Measurement method 1: If the bright spot image on the light receiving array is within 0,
Since the velocity of the bright spot image on R is less than ω5aro,
The time that the bright spot image is input to the l light receiving element is 1/. ω or more. If the light receiving array is scanned over l within the time l/rlωr, the bright spot image will not be overlooked. Therefore, it is sufficient that the average switching time per l element is equal to or less than 'TA-14♂ω.

上記の測定回路の概要は第7図の如く受光アレーR、レ
ンズl、元フィルタFILTE几7、光ビーム0LAI
、スキャニングスイッチS1増巾器AMP 、フィルタ
F I LTETE10出回路ω、で構成されている。
The outline of the above measurement circuit is shown in Fig. 7: light receiving array R, lens L, original filter FILTE 7, and light beam 0LAI.
, scanning switch S1 amplifier AMP, and filter FI LTETE10 output circuit ω.

光ビームOL、A、:の輝点鼾の像は受光系の受光アレ
ー几上で受光素子B・を励起し、その出力がスキャンニ
ングスイッチSのスキャニングで検知され、受光素子B
・ の位置すなわちSのスキャニング位置布からもが求
められ、また、その時刻における ’fL(t)ff:
読みとることができる。
The image of the bright spot of the light beam OL, A, excites the light receiving element B on the light receiving array of the light receiving system, and its output is detected by the scanning of the scanning switch S.
・The position of , that is, the scanning position cloth of S, is also obtained, and 'fL(t)ff at that time:
I can read it.

いま、2n=200.ωLf/2π=30H2,とすれ
ばTs + 0.2μ、sec  OR(1)の振動は
ωR/、2π−FH2程度でよ(、また、光ビームの強
さの変調周波数ωL/2π−/ 00 MH,程度にと
ればLの間に含まれる変調波の波数は20程度となり、
ω、の検出に−lり  − 充分な波数となる。
Now, 2n=200. If ωLf/2π=30H2, then Ts + 0.2μ, sec The vibration of OR(1) is about ωR/, 2π-FH2 (also, the modulation frequency of the light beam intensity ωL/2π-/ 00 MH, the wave number of the modulated wave included between L is about 20,
This is a sufficient wave number for the detection of ω.

測定法2: 上述の測定法lでは輝点像がl受光素子に入射している
時間内にスキャニングスイッチSが全受光素子の端子A
L (L ”” −11+ −n+1+ −1+ 1+
 2+ ”・+ n )をlわたりスキャニングするよ
うにして輝点像の検知を行なったが、別の方法として次
のようにしてもよい。
Measuring method 2: In the above-mentioned measuring method 1, the scanning switch S is set to the terminal A of all the light receiving elements during the time when the bright spot image is incident on the light receiving element 1.
L (L ”” -11+ -n+1+ -1+ 1+
Although the bright spot image was detected by scanning over 2+ ''·+ n ), the following method may be used as an alternative method.

スキャニングスイッチSによって受光素子の端子杏を順
次スキャニングする場合、8が1つの受光素子の端子A
に留まる(接続している)時間でイな十分長(とり、時
1lf37.7の間に元ビームが少くとも1回以上輝線
のl端から他端までスキャニングする。すなわち(l 
L(tlが少(とも7回以上、その変化領域をスキャニ
ングするようにすれば、輝線像と受光アレーとの交点に
ある受光素子の端子では、輝点像がその受光素子を通る
時に電気信号出力を出力し、その出力信号を用いて、そ
の出力時刻におけるf 1.(tL #1(tl、 (
lR(tlを知ることができる。
When scanning the terminals of the light-receiving element sequentially using the scanning switch S, 8 is the terminal A of one light-receiving element.
The time it stays in (connects to) is long enough (i.e., the original beam scans from the l end of the emission line to the other end at least once during the time 1lf37.7. That is, (l
If L(tl is small (at least 7 times) and the changing area is scanned, the terminal of the light receiving element located at the intersection of the bright line image and the light receiving array will receive an electrical signal when the bright spot image passes through the light receiving element. Output the output and use the output signal to calculate f 1.(tL #1(tl, (
lR(tl can be known.

また受光素子の端子否の位置、すなわち、/から=  
 18  − 9・R(t)を知ることができる。スキャニングスイッ
チが輝線像と受光アレーとの交点でない受光素子の端子
上にある時は信号出力は得られない。例えば式(16)
において、τ<=0.00/秒とすれば、スキャニング
スイッチSが全部の受光素子の端子A、、−y、わたり
スキャニングするに要する時間は、おおよそ0.2秒程
度となり、光ビームを層形平面内で変化させる周波数ω
、/2π÷/ 000 H2となる。ωR/2πは浴接
進行速度を考えろと、2H2程度にとれば充分である。
Also, the position of the terminal of the light receiving element, that is, / to =
18-9・R(t) can be known. When the scanning switch is placed on a terminal of the light receiving element that is not at the intersection of the bright line image and the light receiving array, no signal output is obtained. For example, formula (16)
If τ<=0.00/sec, the time required for the scanning switch S to scan across terminals A, -y of all the light receiving elements is approximately 0.2 seconds, and the light beam is layered. Frequency ω to change within the shape plane
, /2π÷/000 H2. Considering the bath contact progress speed, it is sufficient to set ωR/2π to about 2H2.

また、光ビームの強さの変調周波数な約/ OMB2に
とれば、受光素子の端子に輝点信号が検出される場合、
/信号中に含まれる変調波の波数は約/Jとなり、ω1
の検出には充分な波数となる。
Also, if the modulation frequency of the intensity of the light beam is approximately /OMB2, when a bright spot signal is detected at the terminal of the light receiving element,
/ The wave number of the modulated wave included in the signal is approximately /J, and ω1
The wave number is sufficient for detection.

上記の測定法lと2の何れを用いるかは測定機器の便宜
、測定精度1価格等を考慮してきめればよい。
Which of the above measurement methods 1 and 2 should be used may be determined by considering the convenience of the measuring instrument, measurement accuracy, cost, etc.

次に、本発明の計測ヘッドを用いて測定を行なうための
準備として計測ヘッドの姿勢とy4[線、受光アレーに
入る物体上の線、すなわち視野線との関係を、物体表面
か平面の場合につき説明する。
Next, as a preparation for performing measurements using the measurement head of the present invention, the relationship between the posture of the measurement head and the y4[ line, the line on the object that enters the light receiving array, that is, the field of view line, is determined in the case of an object surface or a plane. I will explain about it.

(1)計測ヘッドのη1軸と物体表面とが平行である場
合 第を図において、η、軸とη□軸が平行であるから、両
軸共に表面Jに平行である。今、(lL”=π/2とし
、OR馨変化すると、−14,線、視野線は互に平行で
その間隔が変化し、あるθ6で全く重なる。この重なり
に対応して、受尤アレー几上の受光素子が同時に励起さ
れて電気信号出力を生ずる。計測ヘッドBが正面方向に
対して左右対称の構造をもっておれば、当然第g図でt
Ll = ”L2である。
(1) When the η1 axis of the measurement head is parallel to the object surface In the figure, since the η axis and the η□ axis are parallel, both axes are parallel to the surface J. Now, if we set (lL"=π/2 and change the OR value, the -14 line and the field of view line are parallel to each other and their spacing changes, and they completely overlap at a certain θ6. Corresponding to this overlap, the receiving array The large number of light receiving elements are simultaneously excited and produce an electrical signal output.If the measurement head B has a symmetrical structure with respect to the front direction, it is natural that t in Fig.
Ll=”L2.

さらにξ軸か平面Jに平行であれば、OLをπ/2から
θtに変えると輝線A I M A tはA’1M’A
4にうつり、M′からξ軸・\の垂線の長さM’H−1
(U!L)はMからξ軸・\の垂線の長さMOX、−〃
′(π/2)に等しい。このん’(OL)を計測ヘッド
と平面Jとの距離(あるいは高さ)という。I’<牲)
へイ′(π/2)なる場合は、ξ軸と平面とのなす傾き
角は ζL ここにζ、=OLHは式(5)から求められる。
Furthermore, if the ξ-axis is parallel to the plane J, when OL is changed from π/2 to θt, the emission line A I M A t becomes A'1M'A
4, the length of the perpendicular from M' to the ξ axis/\ is M'H-1
(U!L) is the length of the perpendicular from M to the ξ axis/\ MOX, -〃
'(π/2). Kon' (OL) is called the distance (or height) between the measurement head and the plane J. I'< sacrifice)
In the case of H'(π/2), the angle of inclination between the ξ axis and the plane is ζL, where ζ,=OLH can be found from equation (5).

(2)計測ヘッドのη1軸が物体表面Jに傾斜している
場合 第2図に示すように輝線(直線) At A2  と視
野線(直線)0+Otとは平行ではな(互に交わる。そ
の交点な工・とする。受光アレー几上では輝点工・ に
対応する受光素子B・ のみが励起され、電気出力を生
ずる。受光素子B、は第5図(イ)の「あるいは第7図
のB・に対応しており、このf3 、rの電気出力の存
在を検知することにより元および9ti  を知ること
ができる。
(2) When the η1 axis of the measurement head is inclined to the object surface J, as shown in Fig. 2, the bright line (straight line) At A2 and the field of view line (straight line) 0 + Ot are not parallel (they intersect with each other. On the light receiving array, only the light receiving element B corresponding to the bright spot is excited and produces an electrical output.The light receiving element B is shown in Figure 5 (A) or in Figure 7. B., and by detecting the presence of the electrical outputs of f3 and r, the element and 9ti can be known.

(3)  計測ヘッドの姿勢と平面との関係計測ヘッド
が平面に正対しておれば、 −21= したがって、傾斜位置にある計測ヘッドを平面Jに正対
せしめるには、 (1)計測ヘッドBをξ軸のまわりに回転してtL□=
t1.にする。
(3) Relationship between the posture of the measurement head and the plane If the measurement head is directly facing the plane, -21= Therefore, in order to make the measurement head in the inclined position directly face the plane J, (1) Measurement head B Rotate around the ξ axis to obtain tL□=
t1. Make it.

(11)計測ヘッドなη5軸のまわりに回転してル゛(
(/L)= /j’(ui)にする。
(11) The measurement head rotates around the η5 axis.
(/L) = /j'(ui).

を行えばよい。All you have to do is

矢に平面J1と平面J2との交線Wの検出法を第1O図
にもとづいて述べる。
A method for detecting the intersection line W between the plane J1 and the plane J2 will be described based on FIG. 1O.

計測ヘッドBが最初Jl側にあるものとする。It is assumed that the measurement head B is initially on the Jl side.

まづ前述の方法によりBとJlとを正対させ、所定の高
さ4′を保ったまま、BをJlに平行に移動して、Jl
とJ2との交線Wにさしかかる場合を考えると、Jl上
で弐〇が成立っていたのが。
First, make B and Jl face each other directly using the method described above, move B parallel to Jl while maintaining the predetermined height 4', and set Jl.
If we consider the case where we approach the intersection line W between and J2, 20 holds on Jl.

交線Wを通過すると、成立しな(なり、面の交線Wの存
在が検出される。この場合次の(iHiilのλつの場
合がある。
If it passes through the intersection line W, it does not hold (and the existence of the intersection line W of the surfaces is detected. In this case, there are the following λ cases of (iHiil).

(1)  η、軸が交線Wに平行の場合は、第1O図(
イ)に示すとと(で、式(I71でtLl = tL2
 ’ tRL””tRQは成立つが、 ン′(OL)キ
I′(0L)となる。そして図−22− から明らかなように、 !、’((jI、) >  <’(ui) ナラハA形
交叉輝線ハillfMん’(al、)<  <’<o’
、、)ならばV形交叉 輝線は直線(11)  η、軸
が交線Wvc平行でない場合は第1O図(ロ)に示すよ
うに、式(L7)でまづtLl”eLuとなり、つづい
て、さらに に′(θL、)キ<’(b′i、)  に
なってくる。この場合は1図から明らかなように、tL
□く4.ならば△形交叉 輝線は△形に折れるtLI 
> Lbzならば 形交又輝線はV形に折れるこの場合
の輝線の折れ曲り位置はURをかえた時のR上の励起さ
れる受光累子の位置から容易に求められる。
(1) When the axis η is parallel to the intersection line W, Figure 1O (
A) is shown in
``tRL''''tRQ holds true, but ``(OL)''(0L) occurs. And as is clear from Figure 22, ! ,'((jI,) ><'(ui) Naraha A-type chiasm emission line highllfM'(al,)<<'<o'
, , ), then the emission line is a straight line (11) η, and if the axes are not parallel to the intersection line Wvc, as shown in Figure 1O (b), the formula (L7) first becomes tLl”eLu, and then , further becomes ′(θL,)ki<′(b′i,).In this case, as is clear from Figure 1, tL
□ 4. Then, △-shaped intersection, the emission line is tLI that is folded into △-shaped
>Lbz, the intersection or emission line is bent into a V shape.The bending position of the emission line in this case can be easily determined from the position of the excited light-receiving element on R when UR is changed.

上記(i)Oi)により、平面と平面との交線および面
交叉の形がわかる。
From (i) Oi) above, the intersection line between two planes and the shape of the plane intersection can be determined.

次に、これまでに述べた計測ヘッドの諸性質を用いて、
溶接作業を行なう場合の計測ヘッドの姿勢制御を行なう
ことについて述べる。アーク溶接で接合される面の交叉
はV形であることが多いので、ここでは浴接線は形交叉
として取扱う。
Next, using the various properties of the measurement head described so far,
This section describes how to control the posture of the measurement head when performing welding work. Since the intersection of surfaces joined by arc welding is often V-shaped, the bath tangent is treated here as a shape intersection.

(1)計測ヘッドBか而J1に正対して走行していると
き、輝線が直線で、左右対称であったのか、急にtL□
−t、8.  <’(θ1.)〈に′(OL)になった
場合は、面J、[交わる面J2があり、かつ面交叉はV
形で、浴接線W。が存在すると判断し、計測ヘッドBを
ξ軸のまわりに−だけ回転して、η1軸の方向をかえ、
次の(11)と同様の処置を行なう。
(1) When the measuring head B was running directly opposite J1, the bright line was straight and symmetrical, and suddenly tL□
-t, 8. <'(θ1.)<If '(OL), there is a plane J, [an intersecting plane J2, and the plane intersection is V
In the form, the bath tangent W. is determined to exist, and the measurement head B is rotated by - around the ξ axis to change the direction of the η1 axis,
Perform the same procedure as in (11) below.

(11)計測ヘッドが走行中、4□” lszになれば
、面交叉′fJ)あるのでtL□とtT、2の大小比較
から面交叉の形を識別、形交叉であれば溶接線と判断し
、it計測ヘッド更に進めて、輝線の折れ曲り点が丁度
Rの中点に重なったとき、計測ヘッドの移動を止める。
(11) While the measuring head is running, if it reaches 4□"lsz, there is a plane intersection 'fJ), so identify the shape of the plane intersection by comparing the size of tL□ and tT, 2. If it is a shape intersection, it is determined that it is a weld line. Then, the IT measurement head is moved further and when the bending point of the bright line exactly overlaps with the midpoint of R, the movement of the measurement head is stopped.

この輝線の折れ曲り点と凡の中点の重なりは、同時に励
起される受九アレー凡の累子数が几の中点の片側だけに
なることから知ることができる。第1/図はこの状態を
示し、この時計測ヘッドBの(1,軸は丁度交線Wを通
り、(軸工J7面となっている。ついで次のOilの処
理を行なう。
The overlap between the bending point of this emission line and the midpoint of the curve can be seen from the fact that the number of cucumbers of the curved array that is excited at the same time is only on one side of the midpoint of the curve. Figure 1 shows this state; at this time, the (1, axis) of the measuring head B just passes through the intersection line W, and is on the (shaft J7 side).Then, the next oil treatment is performed.

011)  アーク溶接では溶接トーチは例えば第2図
に示したように、溶接されるコ物体の表面J、、J。
011) In arc welding, the welding torch is used, for example, as shown in FIG.

のなす角の2等分面上において行なわれることが多いの
で、計測ヘッドもJ、と52のなす角の2等分面上にお
いてその方向を交線Wに正対させ、交線からの距離を所
定の値にとって溶接作業を進めることになる。計測ヘッ
ドのこの位置を交線Wに対する正対位置と称することに
する。
Since the measurement is often carried out on the bisector of the angle formed by The welding work will proceed by setting the value to a predetermined value. This position of the measurement head will be referred to as the position facing the intersection line W.

前の(11)の処置により第11図のOX、の位置を占
めている計測ヘッドBを交線Wに正対する位置に移すこ
とについて考える。
Consider moving the measuring head B, which occupies the position OX in FIG. 11, to a position directly facing the intersection line W by the procedure (11) above.

第1/図においてB1測ヘッドの61を6t に変える
と、輝線は図のA? A’M A’tのような位置を占
める。そこで、AMλMを交線Wに重ねるために、イ。
In Fig. 1, if 61 of the B1 measurement head is changed to 6t, the bright line is A in the figure? It occupies a position like A'M A't. Therefore, in order to overlap AMλM with the intersection line W,

軸のまわりに、計測ヘッドを回転(点線矢印)して、A
M九をWに重ねる。この重なりは受光アレーRの中点が
交線W上に(ることにより容易にわかる。
Rotate the measuring head around the axis (dotted arrow) and
Stack M9 on W. This overlap can be easily seen because the center point of the light-receiving array R is on the intersection line W.

次に、計測ヘッドをξ軸のまわりに回転して、而J2に
正対させる。この回転角をθξとすると、−25− 第12図に示すように、θξはJ、とJ2どのなす角に
等しい。図の、4:J、Wl2の2等分面i Wl)、
とす平行(点線矢印)に移動すればOLはOL□の位置
にうつり、面J、と面J、のなす角の2等分面上に位置
する。次に、計測ヘッドな交線Wに正対させる。このた
めには、受光アレー几上に結ぷ輝緋像が第13図のAI
、AOI、A、Lのように輝線像の折れ点が凡の中点に
くるように計測ヘッドBをξ軸のまわり1τ)回転して
その方向を調整する。
Next, the measurement head is rotated around the ξ axis to face J2 directly. If this rotation angle is θξ, then θξ is equal to the angle between J and J2, etc., as shown in FIG. In the figure, 4: J, bisector i Wl of Wl2),
If it moves parallel to (dotted line arrow), OL will move to the position of OL□, and will be located on the bisector of the angle formed by plane J and plane J. Next, the measurement head is made to directly face the intersection line W. For this purpose, the bright scarlet image formed on the light receiving array is the AI shown in Figure 13.
, AOI, A, L, the measurement head B is rotated by 1τ) around the ξ axis to adjust its direction so that the bending point of the bright line image is at the midpoint of the equation.

次に計測ヘッドBと交線Wとの距離を所定の値るに調整
1−る。これによって計測ヘッドBはOL、にうつる。
Next, the distance between the measurement head B and the intersection line W is adjusted to a predetermined value. As a result, the measurement head B is transferred to the office worker.

以上の操作によって計測ヘッドは溶接に適した位置にお
かれる。
By the above operations, the measuring head is placed in a position suitable for welding.

計測ヘッドが平面と平面の交線を検知して、溶接作業に
適した位置を占めるには、上述のようにやや面倒な操作
を要するが、一度溶接作業に適した位置を占めた後、溶
接作業を進めてい(場合の−26− 姿勢制御は、次のような比較的簡単な姿勢制御で充分で
ある。
The measurement head detects the intersection line of two planes and takes a position suitable for welding work, which requires a somewhat troublesome operation as described above, but once it has taken the position suitable for welding work, the welding While the work is progressing (-26-), the following relatively simple attitude control is sufficient.

(1)輝線の折れ点が、受光アレーHの中心線上にあり
、かつtL□=61.である。
(1) The bending point of the bright line is on the center line of the light receiving array H, and tL□=61. It is.

(11)計測ヘッドBと交線Wとの距離が所定の値九に
等しい。
(11) The distance between the measuring head B and the intersection line W is equal to a predetermined value of nine.

011)上記(i)(ii)がoL、θZに対して成立
つ。
011) The above (i) and (ii) hold for oL and θZ.

上記は平面と平面との交線Wの部分な耐液する場合につ
いて述べたが、平面と曲面の交線、あるいは曲面と曲面
との交線を浴接する場合でも同様にして、その交線近傍
の面交叉の特徴をとらえて操作を進めることができる。
The above describes the case where the part of the intersection line W between two planes is liquid resistant, but even when the intersection line between a plane and a curved surface or the intersection line between two curved surfaces is in contact with liquid, the same method can be applied to the vicinity of the intersection line. You can proceed with the operation by grasping the characteristics of the plane intersection.

また、物体表面に複雑な凹凸がある場合でも、輝線像と
受光アレー几との関係は、例えば第1≠図のようになる
ので、交点A、 A、、 A、、・・・の動きから、物
体表面の山谷の位置と高さを計算できる。
Furthermore, even if the object surface has complex irregularities, the relationship between the emission line image and the light-receiving array is as shown in Figure 1. , the position and height of peaks and valleys on the surface of an object can be calculated.

次に輝点の測定における雑音の除去について述べる。Next, we will discuss the removal of noise in the measurement of bright spots.

溶接作業で溶接アークから強い光が放射され、この光が
前述の輝線の位置・\入射して雑音光になる。この雑音
光の妨害を防止することが望ましい。
Intense light is emitted from the welding arc during welding work, and this light enters the aforementioned bright line position and becomes noise light. It is desirable to prevent interference with this optical noise.

ここでは雑音光の妨害を除くため矢の手段な講する。Here, we will discuss some methods to remove interference from noise light.

(1)溶接アーク光のスペクトル強度の弱い波長の光、
あるいは、溶接アーク光のスペクトルに含まれない波長
の光を扇形光(1百号元)の光として用い、受光アレー
の前に扇形光の波長付近だけを通す元フィルタを設置す
る。さらにまた、入射光の強さと受光素子出力の線形性
を保持するため、例えば写真機の絞りのような機構を設
けて、入射光量の調整を行なうことも必要である。
(1) Light of a wavelength with a weak spectrum intensity of welding arc light,
Alternatively, light with a wavelength that is not included in the spectrum of the welding arc light is used as the fan-shaped light (100 yuan), and an original filter that only passes around the wavelength of the fan-shaped light is installed in front of the light receiving array. Furthermore, in order to maintain the linearity of the intensity of the incident light and the output of the light-receiving element, it is necessary to provide a mechanism, such as a diaphragm in a camera, to adjust the amount of incident light.

(11)扇形光を形成する光ビームを時間的にパルスま
たは正弦波等で変調し、受光器の出力側回路で復調し、
変調波の存否により信号光の存否を判定するようにし、
雑音妨害の除去をはかる。
(11) A light beam forming a fan-shaped light is temporally modulated by a pulse or a sine wave, etc., and demodulated by the output side circuit of the light receiver,
The presence or absence of signal light is determined based on the presence or absence of modulated waves,
Eliminate noise interference.

θ11)遮光板を用いて溶接アーク光の輝線部分・\の
入射量をなるべ(少(する。
θ11) Use a light shielding plate to reduce the incident amount of the bright line portion of the welding arc light.

上述のことを実現するためには測定系としては、おおよ
そ第7図のような回路を用い、測定ヘッドの光ビームの
強さの変調、扇形平面の方向角θ5、受光器の方向角θ
、受光アレー几の受光素子出力端子のスキャニング等は
前に述べた例のような考え方によって決定すればよい。
In order to realize the above, the measurement system uses a circuit roughly as shown in Figure 7, which modulates the intensity of the light beam of the measurement head, the direction angle θ5 of the fan-shaped plane, and the direction angle θ of the light receiver.
, scanning of the light-receiving element output terminals of the light-receiving array, etc. may be determined using the same concept as in the example described above.

本発明の測定系全体の構成例を第1J’図に示す。An example of the overall configuration of the measurement system of the present invention is shown in FIG. 1J'.

図において、発振器■は100MH2程度の発振器で、
その出力ω1は増巾器AMP、で増巾された出力により
、投光器りより、ωr、/2πなる周波数で変調された
光を発射し、被測定物体表面Gからの反射光(この光は
信号光と雑音光の重畳されたもの)を受光器Rにうける
。信号光の方向は前に説明したようにその方向角が(L
6)式のにpL(t) = 礼sJnωデ【(ここにω
?/liπは約30C/8程度でよい)で変動して扇形
光を形成している。この(7L(t)の駆動は発振器H
の出力によって行なわれ、かつ’;L(t)の値は9L
検出回路により検出するとともに位相調整を行なって出
力される。びわの値はUL駆動検出回路によって01ま
たはθlに調整され、その値を出力される。
In the figure, oscillator ■ is an oscillator of about 100MH2,
The output ω1 is amplified by the amplifier AMP, and the light emitter emits light modulated at a frequency of ωr, /2π, and the reflected light from the surface G of the measured object (this light is a signal (a combination of light and noise light) is received by a photoreceiver R. As explained earlier, the direction of the signal light is determined by its direction angle (L
6) In the expression pL(t) = sJnωde [(ω here
? /liπ may be approximately 30C/8) to form a fan-shaped light. This (7L(t) is driven by the oscillator H
and the value of L(t) is 9L
It is detected by a detection circuit and output after phase adjustment. The loquat value is adjusted to 01 or θl by the UL drive detection circuit, and that value is output.

受光器の方向角θR(t)は発振器■の出力により−2
9− 数H2程度の低い周波数で駆動され、輝線を捕捉するに
十分な範囲に変化する。このθR(【)の値はθ、検出
回路により検出され、位相調整された上で出力される。
The direction angle θR(t) of the receiver is -2 due to the output of the oscillator ■.
9- It is driven at a frequency as low as several H2 and changes over a range sufficient to capture the bright line. The value of θR([) is detected by a detection circuit, and output after phase adjustment.

輝線像と受尤アレー几との交点の受光素子bLの出力は
スキャニングスイッチSYCよってスキャニングされス
イッチ2.から受光素子bLの出力を取出して増巾器A
M p2で増巾され、ωL/2π近傍の周波数だけを通
すバンドパスフィルタ十”ILTERを通して恢ωL検
出回路で検出されて、その出力eは比測定回路OFt[
入力される。一方発振器■の出力は基準値作成回路8B
を通じて基準値eAを出力し、比測定回路OEに入る。
The output of the light receiving element bL at the intersection of the bright line image and the receiving array box is scanned by the scanning switch SYC and is sent to switch 2. The output of the light receiving element bL is extracted from the amplifier A.
It is amplified by Mp2 and is detected by the ωL detection circuit through a band-pass filter 1"ILTER that passes only frequencies around ωL/2π, and its output e is sent to the ratio measurement circuit OFt[
is input. On the other hand, the output of the oscillator ■ is the reference value creation circuit 8B.
The reference value eA is outputted through the ratio measuring circuit OE.

この比測定回路はe/ e  なる比を求め、その出力
は差回路DEに入力され、e/e4  とある定値にと
の差を求め、e/eJ>[の場合はパルス出力を生ずる
。このパルスitl力はDR,fly、 (fI、、M
よびスキャニング位置信号を読取るタイミング信号とし
て用いられる。
This ratio measuring circuit determines the ratio e/e, and its output is input to the difference circuit DE, which determines the difference between e/e4 and a certain constant value, and produces a pulse output if e/eJ>[. This pulse itl force is DR,fly, (fI,,M
and is used as a timing signal for reading scanning position signals.

スキャニング回路S。はスキャニングスイッチSの駆動
を行なうとともに、受光アレー几上での−80− スキャニング位w、を示す信号として用いられる。
Scanning circuit S. is used as a signal to drive the scanning switch S and to indicate the -80- scanning position w on the light receiving array.

θ□、θL 、 9L、スキャニング位置は同時刻にお
ける値を読みとることが必要であるので、これらに関す
る信号の通る回路は適切に位置調整を行ってお(。図の
ゲート(Gate)回路は何れも、差回路DEの出力信
号でゲートされ、その時刻における各値ヲケートパルス
でサンプリングして、その犬ぎさ馨ディジタル数値に変
換したる後マイコンμ−CONに入力される。θ8.θ
L、?Jスキャニング位置は次々と適切なタイミングで
μm0ON  に入って(るので、これらの値を用いて
、前に求めた関係式(1)〜04)を用いて、所要の値
を算出することができる。
It is necessary to read the values of θ□, θL, 9L, and scanning position at the same time, so the circuits through which these signals pass should be properly adjusted in position (the gate circuit in the figure is , is gated by the output signal of the difference circuit DE, samples each value at that time with a count pulse, converts it into a digital value, and inputs it to the microcomputer μ-CON.θ8.θ
L,? Since the J scanning positions enter μm0ON one after another at the appropriate timing, the required value can be calculated using these values and the relational expressions (1) to 04 found previously. .

上述の測定によって各種の値を知れば、その値を用いて
、前に説明した方法により、あらかじめ作成しておいた
プログラミングにより、計測ヘッドの自動制御を行なう
ことができる。
Once the various values are known through the measurements described above, the measurement head can be automatically controlled using the values and programming created in advance using the method described above.

計測ヘッドBのXIYIZ方向の平行移動および、ξ軸
、η軸、C軸のまわりの回転は、μm0ONの出力によ
って行なわれるが、ここでは省略した。
Translation of the measurement head B in the XIYIZ directions and rotation around the ξ-axis, η-axis, and C-axis are performed by the output of μm0ON, but are omitted here.

さらにまた、これまでの例においては、?L(山f(t
l 、OR(tlは正弦波の変動をするものとしたが、
例えばf(t)vcパルス変調波を、(f、It)に回
転ミラを用いて元ビームを一方向・\走らせる形式の元
ビームを用いる等のことを行っても類似の方法で取扱え
る。元ビームの変調形式は、雑音光に含まれない形式の
ものを用いれば、信号と雑音との分離が可能であるので
、便利で各易な変調形式を用いればよい。
Furthermore, in the previous examples? L(mountain f(t
l , OR (tl is assumed to fluctuate in a sine wave, but
For example, the f(t)vc pulse modulated wave can be handled in a similar way by using a rotating mirror for (f, It) and using an original beam that runs in one direction. . If the modulation format of the original beam is one that is not included in the noise light, it is possible to separate the signal from the noise, so any convenient and easy modulation format may be used.

これまで述べたところでは、θ1−一と、Ol  の2
値とし、ORを連続的に変えて輝点像と受光アレーとの
交点の受光素子出力を観測する形をとってきたが、元の
投射と受光器の視野の方向とは互に対称的形になってい
る。これは、前にあげた式(2)〜aωにおいて、サフ
ィックスLと几とを交換しても成立つことから容易にわ
かる。したがって、例えば、OR−一と、θにのλ値と
し、θ1 を連続的に変えて、輝線を視野に入れて、受
光アレーと輝線と交点の受光素子の出力を観測するよう
にしても全く同様の計測を行なうことができる。
In what has been said so far, θ1-1 and Ol's 2
The method used has been to observe the output of the light receiving element at the intersection of the bright spot image and the light receiving array by continuously changing the OR value, but the original projection direction and the direction of the field of view of the light receiver are symmetrical to each other. It has become. This can be easily seen from the fact that it holds true even if the suffix L and 几 are exchanged in the equations (2) to aω given above. Therefore, for example, if you set OR-1 and the λ value for θ, change θ1 continuously, put the bright line in the field of view, and observe the output of the light receiving element at the intersection of the light receiving array and the bright line, it will not work at all. Similar measurements can be made.

上記計測ヘッドはアーク浴接を目的として述べたが、溶
接以外の用途にも有効に利用できる。また、平面板と平
面板との溶接を例にとったが、曲面板の場合でも、複雑
にはなるが、有効に利用できる。
Although the above measurement head has been described for the purpose of arc bath welding, it can also be effectively used for purposes other than welding. Moreover, although welding of two flat plates has been taken as an example, it can be effectively used in the case of curved plates as well, although it is more complicated.

以上の説明で明らかになったように、本発明の計測ヘッ
ドには次のような著しい特徴がある。
As has become clear from the above description, the measurement head of the present invention has the following remarkable features.

(1)  溶接線の検出および溶接作業を、全自動的に
行なうことができる。
(1) Weld line detection and welding work can be performed fully automatically.

(11)元ビームの変調により、溶接作業では避けられ
ない、アーク光(雑音光)の妨害を著しく軽減すること
ができる。したがって溶接精度が向上する。
(11) By modulating the original beam, it is possible to significantly reduce the interference of arc light (noise light) that is unavoidable in welding work. Therefore, welding accuracy is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアーク溶接のセンシング例を示す図で(
イ)は磁気センシング、←)はアーク電流形センシング
、(ハ)はテレビカメラ形センシングを示す。 第2図は本発明の一実施例による計測ヘッドの構成図、
第3図は受光アレーの構造の一例図、第5図は本発明計
測ヘッドの光学系の略図、第5図は−88− 受光系の略図で、(イ)は受光糸の像と輝点の関係位1
kを示す図、tF:1)は受光アレー几と輝線像との関
係を示す図、第6図は被測定物体に対する計測系全体の
各種の寸法を示す図、第7図は計測回路の几侶号通過系
の概要図、第r図及び第7図は計測−\ラドの姿勢と平
面との関係により生する輝線または輝点の様子を示す図
で、第g図はη1軸II平面Jの場合、第り図はη1軸
が平面Jと平行でない場合を示す、第1O図は計測ヘッ
ドが平面と平面の交縁にさしかかった時の様子を示す図
で、(イ)は平面の交IVv’かη軸に平行の場合、←
)は平行でない場合を示す。第11図、及び第12図は
計測ヘッドを溶接作業位置にお(ための過程を示す図、
第13図は受光アレー上にむすぶ平面の交わりの輝線像
、第1≠図は凹凸物体上の輝線像を示す図、第1j図測
定回路の構成例を示す図である。 B:ロボットの計測ヘッド、ξ、η、ζ:ロボット計測
ヘッドの軸、BL:投光器、BR:受光器、d:BLと
BRの距離、T:浴接トーチ、冑。: 溶接線、D:遮
光板、Gl + ()1 :被溶接板、J、 、 J。 −84− : G、 l G、の表面、W;交線、虱:扇形冗(B
Lからの元ビームf(t))、屹:元ビームの扇形平面
の方向角、θR:受元受光方向角、♀5: 光ビームの
扇形平面内でその中心線となす角、(1〕R:物体表面
上の輝点と点ORとを結、g−線と受光器BRの中心軸
とのなす角、fL:受光アレー、 BL:  受光素子
、刀:写像用レンズ、So:スキャニンク回路、Sニス
キャニングスイッチ、Δ、:受元受子素子力端子、I、
:4線と視野線の交点、ωL:ω1検出回路、SE:基
準値作成回路、OE:比測定回路、DE:差回路、μm
0ON :マイコン。 −8%    − 6 第1囚 冨2図 第3可 ■ 粟4V 冨5圀 稟乙区 r漿 θF(をン 第7区 円I 穿6区 ′l 竿9 ぼ 菓/θ図 vl1図 DM    又 \     1 ′1fI/2閃
Figure 1 shows an example of conventional arc welding sensing (
A) shows magnetic sensing, ←) shows arc current type sensing, and (c) shows TV camera type sensing. FIG. 2 is a configuration diagram of a measurement head according to an embodiment of the present invention;
Figure 3 is an example of the structure of the light receiving array, Figure 5 is a schematic diagram of the optical system of the measurement head of the present invention, Figure 5 is a schematic diagram of the -88- light receiving system, and (a) shows the image of the light receiving thread and the bright spot. relation position 1
tF:1) is a diagram showing the relationship between the light receiving array structure and the bright line image, FIG. 6 is a diagram showing various dimensions of the entire measurement system for the object to be measured, and FIG. 7 is a diagram showing the measurement circuit diagram. A schematic diagram of the passage system, Figures R and 7 are diagrams showing the appearance of bright lines or bright spots generated by the relationship between the attitude of measurement and the plane, and Figure G is the η1 axis II plane J. In this case, Figure 1 shows the case where the η1 axis is not parallel to the plane J. Figure 1O shows the situation when the measuring head approaches the intersection of the planes, and (A) shows the situation when the measuring head approaches the intersection of the planes. If parallel to IVv' or η axis, ←
) indicates that they are not parallel. Figures 11 and 12 are diagrams showing the process of moving the measuring head to the welding work position.
FIG. 13 shows a bright line image of the intersection of planes connected to the light-receiving array, FIG. 1 is a diagram showing a bright line image on an uneven object, and FIG. B: Measuring head of the robot, ξ, η, ζ: Axis of the robot measuring head, BL: Emitter, BR: Light receiver, d: Distance between BL and BR, T: Bath torch, helmet. : Welding line, D: Light shielding plate, Gl + ()1: Welded plate, J, , J. -84-: G, l Surface of G, W: line of intersection, lice: fan-shaped redundancy (B
Original beam f(t)) from L, 屹: Direction angle of the fan-shaped plane of the original beam, θR: Receiving direction angle, ♀5: Angle formed within the fan-shaped plane of the light beam with its center line, (1) R: Angle between the g-line and the central axis of the light receiver BR, connecting the bright spot on the object surface and the point OR, fL: Light receiving array, BL: Light receiving element, Sword: Mapping lens, So: Scanning circuit , S-scanning switch, Δ,: receiving element power terminal, I,
: Intersection of 4 lines and field of view line, ωL: ω1 detection circuit, SE: Reference value creation circuit, OE: Ratio measurement circuit, DE: Difference circuit, μm
0ON: Microcomputer. -8% - 6 1st Prisoner Tomi 2nd Figure 3 Possible ■ Millet 4V Tomi 5 Kuniren Otsu Ward r Serum θF \ 1 ′1fI/2 flash

Claims (1)

【特許請求の範囲】 (IJ  ロボット用計測ヘッドの中心軸ξ上で、一定
距離をへだてた2点0L−J6よびORにそれぞれ投光
器、受光器を相対して設け、投光器はOn、を頂点とし
、ξ軸と角OL(元ビームの扇5形千mlの方向角)を
なす廟形平面内で、細い元ビームを点OLを9心とする
放射状方向に射出するようにし、扇形平面の方向角θ、
および光ビームの扇形平面中心線となす角9Lを変化で
きるように構成し、受光器は点ORにレンズの中心をも
つ写像用レンズと、元ビームの扇形平面の回転軸に平行
で、写像用レンズの写像位置を占める直線上に受光素子
を稠密に配列した受光アレーを備え、かつ受光アレーと
レンズの中心点ORを含む平面と、ξ軸とのなす角θR
(すなわち受光器の方向角)を変化できるように構成す
ることにより、投光器の元ビームを物体表面に投射して
生ずる輝点の軌跡(すなわち輝線)を受光器で捕捉し、
その写像と受光アレーとの交点にある受光素子の電気信
号出力を検知し、その信号出力によって01.θ8,9
□を求め、あるいは01、、θ、ならびに信号出力を生
じた受光素子の位置情報を用いて、その受光素子上に写
像された物体表面上の輝点と点ORとを結ぶ線と受光器
の中心軸とのなす角9Rを求めるようにし、これらの測
定値fax、 、 OR,9p 、  9R(1)うち
OL、、θ、とeI、、 +Rの何れか一方を用いるか
、あるいはσ1.θR,9J f、xRを用いて被測定
物体の表面形状と計測ヘッドとの相対位置あるいは被測
定物体の表面形状を算出するようにしたことを特徴とす
る光切断法によるロボット用計測ヘッド。 (2)前記特許請求の範囲第1項において、光ビームの
強さに正弦波変調、パルス変調9周波数変調等の変調を
加え、受光器の電気信号出力回路で復調して変調波の存
否を判別することによって、受光器内の輝線像と受光ア
レーとの交点を識別するようにして、雑音光の妨害の軽
減をはかるようにしたことを特徴とする光切断法による
ロボット用計測ヘッド。 (3)  前記%許請求の範囲第1項、第2項において
、元ビームの扇形平曲の方向角θLを任意個の定位とし
、元ビームの扇形平面中心線となす角9□4および受光
器の方向角ORをそれぞれ%(t) +θR(t)なる
時間の周期関数にしたがって変化するようにして、受光
器内におけろ被測定物体表面の輝線像と受光アレーとの
相対位置が周期的に移動を繰返すようにし、両者の交点
で得られる電気信号出力を生ずる素子の位置の変化の様
子から、被測定物体の形状、及び被測定物体と計測ヘッ
ドとの相対位置を求めるようにしたことを特徴とする光
切断法によるロボット用計測ヘッド。 (4) 前記特許請求の範囲第1項、第2項において、
受光器の方向角θ□は任意個の定値をとるようにし、元
ビームの扇形平曲の方向角υ、および扇形平面内におけ
る元ビームの扇形平面中心線となす角ケT、をそれぞれ
0L(t) + 9. (t)なる時間の周期関数にし
たがって変化するようにして、受光器内における被測定
物体表面の輝線の像と、受光アレーとの相対位置が周期
的に移動を繰返すようにし、両者の交点で得られる電気
信号出力を生ずる素子の位置の変化の様子から被測定物
体の形状、被測定物体と計画ヘッドとの相対位置を求め
るようにしたことを特徴とする光切断法によるロボット
用計4111ヘッド。 (5)  前記t¥j許精求の範囲第3項%44項にお
いて、受光アレーの受光素子端子を順次スキャニングス
イッチで切換えて、その端子における輝点信号の有無を
識別するようにした場合、各受光素子端子にスキャニン
グスイッチが接続されている時間υイの間に、元ビーム
の方向角91.(t)がその全振巾にわたって少(とも
1回以上変化するようにし、任意の1つの受光素子端子
にスイッチ接続されでいる時間−の間で、輝点信号が検
出された時は、その検出信号を時間信号として用いて、
その時刻におけ6 %(tl + 0R(t) Sよび
気(1) ;h ルイtt (?*(t)の何れか1つ
、または、0L(tlr輸(tl + 9L(tl +
97R(t)請求めるようにしたことを特徴とする光切
断法によるロボット用計測ヘッド。 (6)前記特許請求の範囲第3項、第φ項において、受
光アレーの受光素子端子を順次スキャニングスイッチで
切換えて、その端子における輝点信号の有無を識別する
ようにした場合、7個の受光素子の入力面を輝点像が通
過するに要スる時間も 内に、スキャニングスイッチが
全受光素子端子を少(とも1回以上スキャニングするよ
うにし、受光素子端子から得られた輝点信号の出力信号
を時間信号として用い、その時刻におけるθL(tl 
、θR(tl、および(−fL(t)あるいは’?R(
tl の倒れか1つ、または、01(tl、θH(tl
 + 9 L(tl + 9 R(t)  を求めるよ
うにしたことを特徴とする光切断法によるロボット用−
5− 計測ヘッド。
[Claims] (IJ On the central axis ξ of the robot measurement head, a light emitter and a light receiver are provided facing each other at two points 0L-J6 and OR separated by a certain distance, and the light emitter is turned on with the apex being , within a mausoleum-shaped plane that forms an angle OL with the ξ-axis (direction angle of 5-shaped fan of the original beam, 1,000 ml), the thin original beam is emitted in a radial direction with the point OL as the 9th center, and the direction of the fan-shaped plane is Angle θ,
and the angle 9L formed with the center line of the fan-shaped plane of the light beam can be changed, and the light receiver has a mapping lens whose center is at the point OR, and a mapping lens parallel to the rotation axis of the fan-shaped plane of the original beam. An angle θR formed by a plane containing the center point OR of the light receiving array and the lens and the ξ axis, which includes a light receiving array in which light receiving elements are densely arranged on a straight line that occupies the mapping position of the lens.
(i.e., the direction angle of the light receiver) can be changed, so that the receiver can capture the locus of the bright spot (i.e., the bright line) that is generated by projecting the original beam of the projector onto the object surface, and
The electrical signal output of the light-receiving element at the intersection of the mapping and the light-receiving array is detected, and 01. θ8,9
Find □, or use 01, , θ, and the position information of the light-receiving element that generated the signal output to find the line connecting the bright spot on the object surface mapped onto the light-receiving element and the point OR, and the line between the light receiver and the point OR. The angle 9R with the central axis is determined, and either one of these measured values OL, , θ, and eI, , +R is used, or σ1. A measuring head for a robot using an optical cutting method, characterized in that the relative position between the surface shape of the object to be measured and the measurement head or the surface shape of the object to be measured is calculated using θR, 9J f, and xR. (2) In claim 1, modulation such as sine wave modulation, pulse modulation, and 9-frequency modulation is applied to the intensity of the light beam, and the presence or absence of the modulated wave is determined by demodulating with the electrical signal output circuit of the optical receiver. A measuring head for a robot using a light cutting method, characterized in that the intersection point between a bright line image in a light receiver and a light receiving array is identified by discrimination, thereby reducing interference by noise light. (3) In claims 1 and 2, the direction angle θL of the fan-shaped flat curve of the original beam is set to an arbitrary localization, and the angle 9□4 formed with the center line of the fan-shaped plane of the original beam and the light reception The relative position between the bright line image on the surface of the object to be measured and the light-receiving array within the light receiver changes with a periodicity of % (t) + θR (t), respectively, according to a periodic function of time. The shape of the object to be measured and the relative position of the object to be measured and the measurement head are determined from the changes in the position of the element that generates the electrical signal output obtained at the intersection of the two. A measuring head for robots using the optical cutting method, which is characterized by: (4) In claims 1 and 2,
The direction angle θ□ of the receiver is set to an arbitrary fixed value, and the direction angle υ of the fan-shaped flattening of the original beam and the angle T formed with the center line of the fan-shaped plane of the original beam in the fan-shaped plane are respectively 0L( t) +9. (t), so that the image of the bright line on the surface of the object to be measured in the light receiver and the relative position of the light receiving array repeatedly move periodically, and at the intersection of the two. A total of 4111 heads for robots using an optical cutting method, characterized in that the shape of the object to be measured and the relative position of the object to be measured and the planning head are determined from the state of change in the position of the element that produces the obtained electrical signal output. . (5) In the range of t\j permission request, item 3, item %44, if the light receiving element terminals of the light receiving array are sequentially switched with a scanning switch to identify the presence or absence of a bright spot signal at that terminal, each light receiving During the time υi when the scanning switch is connected to the element terminal, the direction angle 91. of the original beam is changed. When a bright spot signal is detected during the time when (t) changes at least once over its entire amplitude and is connected to any one light receiving element terminal by a switch, Using the detection signal as a time signal,
At that time, any one of 6% (tl + 0R(t) S and Qi (1) ;h Louistt (?*(t), or 0L(tlr import(tl + 9L(tl +
97R(t) A measuring head for a robot using an optical cutting method. (6) In claim 3 and item φ, if the light-receiving element terminals of the light-receiving array are sequentially switched by a scanning switch to identify the presence or absence of a bright spot signal at that terminal, seven The scanning switch scans all the light receiving element terminals at least once (at least once) within the time required for the bright spot image to pass through the input surface of the light receiving element, and the bright spot signal obtained from the light receiving element terminal is The output signal of θL(tl
, θR(tl, and (-fL(t) or '?R(
One collapse of tl, or 01(tl, θH(tl
+ 9 L(tl + 9 R(t)) for robots using optical cutting method.
5- Measuring head.
JP19679582A 1982-11-11 1982-11-11 Measuring head for robot adopting optical cutting method Granted JPS5987304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19679582A JPS5987304A (en) 1982-11-11 1982-11-11 Measuring head for robot adopting optical cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19679582A JPS5987304A (en) 1982-11-11 1982-11-11 Measuring head for robot adopting optical cutting method

Publications (2)

Publication Number Publication Date
JPS5987304A true JPS5987304A (en) 1984-05-19
JPH0117524B2 JPH0117524B2 (en) 1989-03-30

Family

ID=16363770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19679582A Granted JPS5987304A (en) 1982-11-11 1982-11-11 Measuring head for robot adopting optical cutting method

Country Status (1)

Country Link
JP (1) JPS5987304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067087A (en) * 1983-09-20 1985-04-17 トキコ株式会社 Industrial robot
JPS61128109A (en) * 1984-11-28 1986-06-16 Nippon Tsushin Gijutsu Kk Robot sensor by irregular trianglulation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390981A (en) * 1977-01-20 1978-08-10 Yokohama Rubber Co Ltd Tension testing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390981A (en) * 1977-01-20 1978-08-10 Yokohama Rubber Co Ltd Tension testing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067087A (en) * 1983-09-20 1985-04-17 トキコ株式会社 Industrial robot
JPH0425118B2 (en) * 1983-09-20 1992-04-28 Tokico Ltd
JPS61128109A (en) * 1984-11-28 1986-06-16 Nippon Tsushin Gijutsu Kk Robot sensor by irregular trianglulation method

Also Published As

Publication number Publication date
JPH0117524B2 (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JPS60128304A (en) Measuring head of welding machine
JPH0426042B2 (en)
JPS5987304A (en) Measuring head for robot adopting optical cutting method
JPS588444B2 (en) displacement measuring device
JPH02500615A (en) Straightness interferometer systems and optics
JP2874795B2 (en) Orientation flat detector
JPS60774B2 (en) Pattern inspection method
JPH071165B2 (en) Visual sensor using optical beam
JPS6266111A (en) Optical distance detecting device
JPS63222202A (en) Apparatus for measuring distance and angle of inclination
JPS62287107A (en) Center position measuring instrument
JPS6120849B2 (en)
JPH06102030A (en) Planarity measuring apparatus
JPH0331367B2 (en)
JPS6071903A (en) Device for inspecting optical disc
JPS6127178A (en) Detection of beveling edge
JPH0425611Y2 (en)
JPS60111906A (en) Angle measuring method
JPS633212A (en) Measuring instrument
JPH07294537A (en) Speed and distance detector
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPH0288913A (en) Angle measuring instrument
JPH07120217A (en) Distance measurement method and device
JPH07201721A (en) Focussing device
JPS58137738A (en) Detector for surface defect