JPS5985404A - Fuel flow-rate controller for combined type power generation apparatus - Google Patents

Fuel flow-rate controller for combined type power generation apparatus

Info

Publication number
JPS5985404A
JPS5985404A JP19243082A JP19243082A JPS5985404A JP S5985404 A JPS5985404 A JP S5985404A JP 19243082 A JP19243082 A JP 19243082A JP 19243082 A JP19243082 A JP 19243082A JP S5985404 A JPS5985404 A JP S5985404A
Authority
JP
Japan
Prior art keywords
signal
steam
pressure
selects
small value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19243082A
Other languages
Japanese (ja)
Inventor
Masae Takahashi
正衛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19243082A priority Critical patent/JPS5985404A/en
Publication of JPS5985404A publication Critical patent/JPS5985404A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve response performance and permit stress to be controlled, by controlling the flow-rate of combustion assisting fuel by selecting the smaller signal among the both signals supplied from a steam-pressure controlling means and a steam-pressure variation-rate controlling means, in a gas-steam turbine combined type generation set. CONSTITUTION:The sum of each output electric power of a gas turbine and a steam turbine is calculated in an adder 190, and is compared with a set value in a comparator 191, and the main steam pressure signal corresponding to the deviation is obtained through conversion in a converter 181, and an aimed control value A196 is obtained in an adder 192 from the actual steam pressure, and is input into a lower-value priority circuit 186. While, the steam pressure is sent into a comparator 194 through a differentiator 183, and selection is performed in load variation-rate selection devices 187-189, and the steam pressure signal is compared with the signal which is converted to a steam-pressure variation rate in a converter 185, and the output is input B into the circuit 186 through a PI calcuator. When a combustion assist control excluding apparatus 195 is made unavailable, the smaller signal among the both signals A and B is set as the valve opening degree signal 24 of a combustion assisting fuel flow-rate controlling valve. Thus, the improved response performance is obtained, and the proper stress control is permitted.

Description

【発明の詳細な説明】 本発明は、有用な燃料流量制御装置に関し、特に蒸気−
ガスタービン複合型発電設備のボイラの補助燃焼用の燃
料流量を制御する型式の燃料流量制御装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to useful fuel flow control devices, and more particularly to steam
The present invention relates to a fuel flow rate control device of a type that controls the fuel flow rate for auxiliary combustion in a boiler of a gas turbine combined power generation facility.

ガスタービンからの排気をボイラに導き発生蒸気により
蒸気タービンを駆動し、ガスタービン及び蒸気タービン
双方にて電力を発生する場合を蒸気−ガスタービン複合
型発電と呼ぶが、ガスタービンからの排気に加え、ボイ
ラを助燃しこれによって蒸気の発生を一層効果的にする
ことがある。
The case where the exhaust gas from the gas turbine is introduced into the boiler and the generated steam drives the steam turbine, and both the gas turbine and the steam turbine generate electric power is called steam-gas turbine combined power generation. , may assist the boiler with combustion, thereby making the generation of steam more effective.

助燃燃料流量の制御は手動又は半自動の場合が多いが、
いずれも運転員の経験による制御となるため、ボイラ及
び蒸気タービンに対し不適切な現象を発生させることが
ある。例えば、蒸気タービンの場合、急激に負荷を増加
すると厳しい機械的応力、熱応力、振動等を受けること
が知られている。さらに比較的運転操作が煩雑となシ、
発電所の自動化推進に遂行するという一点も指摘できる
Control of the auxiliary fuel flow rate is often manual or semi-automatic, but
In either case, control is based on the operator's experience, which may cause inappropriate phenomena to occur in the boiler and steam turbine. For example, it is known that a steam turbine is subjected to severe mechanical stress, thermal stress, vibration, etc. when the load is suddenly increased. Furthermore, the driving operation is relatively complicated.
One point that can be pointed out is that it will promote the automation of power plants.

以上から、助燃燃料流量を自動的に制御し、タービン応
力を最小にし動作性能を高めタービンの寿命を長くする
ことができる装置を提供することが望ましい。
In view of the foregoing, it would be desirable to provide an apparatus that can automatically control supplementary fuel flow to minimize turbine stress, improve operating performance, and extend turbine life.

コノタメの公知技術としてガスタービン出力電力と蒸気
タービン出力電力の和と出力電力の設定値を比較し、そ
の偏差に応じて助燃燃料流量を制御するという方式があ
る。上記公知技術の主要な問題点は下記と考えられる。
Konotame's known technology includes a method in which the sum of the gas turbine output power and the steam turbine output power is compared with a set value of the output power, and the auxiliary fuel flow rate is controlled according to the deviation. The main problems of the above-mentioned known techniques are considered to be as follows.

すなわち、ボイラ以降の帰還量はガスタービン出力電力
及び蒸気タービン出力電力のみであシ蒸気圧カ、蒸気流
量、蒸気温度などのプロセス量の監視及び助燃燃料制御
への組み込みを実施していないことである。この結果、
助燃燃料制御ループとしての応答性が悪くなるとともに
、プロセス量の変化を電力として監視してbるため種々
の変換誤差′を含むことになシ、適切な応力制御ができ
ない。
In other words, the amount of feedback after the boiler is only the gas turbine output power and the steam turbine output power, and process variables such as steam pressure, steam flow rate, and steam temperature are not monitored and incorporated into auxiliary fuel control. be. As a result,
Not only does the responsiveness of the auxiliary fuel control loop deteriorate, but since changes in the process amount are monitored as electric power, various conversion errors are included, and appropriate stress control cannot be performed.

本発明の目的は前述の問題点を克服した、応答性が高く
かつ最も適切な応力制御が可能な燃料流量制御装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel flow control device that overcomes the above-mentioned problems and is highly responsive and capable of controlling stress in the most appropriate manner.

以下添付図面によって説明する。第1図は、本発明によ
る蒸気−ガスタービン複合型発電設備を主なブロック図
で示したものである。ガスタービンは圧縮機1及びター
ビン2及び燃焼器3から構成されておシ、タービンに発
電機4が軸直結あるいは適切なギアを介して接続されて
いる。ガスタービンからの排気は廃熱ボイラに導かれる
。ガスタービンの燃焼器への船料は例えば重油などで、
機械的あるいは電気的に駆動される弁12を経由して行
われる。燃料は又、弁11を経由して廃熱ボイラの助燃
バーナに供給され、ガスタービンの排気を更に加熱し、
蒸発器6にて蒸気を発生させる。発生蒸気は弁132!
il−経由して蒸気タービン9に供給される。蒸気ター
ビンには、発電機1oが軸直結あるいはギアを介して接
続されている。
This will be explained below with reference to the attached drawings. FIG. 1 is a main block diagram showing a steam-gas turbine combined power generation facility according to the present invention. The gas turbine is composed of a compressor 1, a turbine 2, and a combustor 3, and a generator 4 is connected to the turbine either directly or through a suitable gear. Exhaust gas from the gas turbine is directed to a waste heat boiler. The shipping fee for the gas turbine combustor is, for example, heavy oil.
This is done via a mechanically or electrically driven valve 12. The fuel is also supplied via valve 11 to the auxiliary burner of the waste heat boiler to further heat the exhaust gas of the gas turbine;
Steam is generated in the evaporator 6. The generated steam is produced by valve 132!
It is supplied to the steam turbine 9 via il-. A generator 1o is connected to the steam turbine via a direct shaft connection or a gear.

蒸気タービンからの排気は復水器8、給水ポングアを経
由して蒸発器6にもどる。
Exhaust gas from the steam turbine returns to the evaporator 6 via a condenser 8 and a water supply pump.

弁14は、蒸気タービンを50%以下の部分負荷で運転
又は停止させる場合に開となるもので、高温の蒸気は減
温されて復水器へ導かれる。ガスタービンの出力は変換
器16を、蒸気タービンの出力は変換器15′f!:介
してそれぞれ負荷制御装置19へ導かれる。又負荷制御
装置には出力の設定値も入力される。負荷制御装置の出
力及びガスタービン、蒸気タービンの種々の制御量(例
えば、速度、圧力、流量、温度)が主制御装置17に導
かれる。主制御装置はこれらを演算し、弁駆動信号21
,22.23を弁11,12.13に供給し、蒸気ター
ビン、ガスタービンそれぞれの出力を制御する。負荷制
御装置の出力は蒸気圧力検出器20からの蒸気圧力とと
もに助燃燃料制御装置18にも送られる。本制御装置で
最適な燃料流量を決定し弁駆動信号24として弁11に
与える。
The valve 14 is opened when the steam turbine is operated or stopped at a partial load of 50% or less, and the high temperature steam is cooled and guided to the condenser. The output of the gas turbine is sent to the converter 16, and the output of the steam turbine is sent to the converter 15'f! : are respectively guided to the load control device 19 via. The output setting value is also input to the load control device. The output of the load control device and various control variables (for example, speed, pressure, flow rate, temperature) of the gas turbine and steam turbine are guided to the main control device 17. The main controller calculates these and uses the valve drive signal 21
, 22.23 are supplied to the valves 11, 12.13 to control the respective outputs of the steam turbine and gas turbine. The output of the load control device is also sent to the auxiliary fuel control device 18 along with the steam pressure from the steam pressure detector 20 . This control device determines the optimum fuel flow rate and provides it to the valve 11 as a valve drive signal 24.

さて、最適な助燃燃料流量を決める方法を第2図によっ
て説明する。まず、加算器190において、カスタービ
ン出力電力と蒸気タービン出力電力の和をとり、この値
と出力設定値の比較を比較器191で行ない、その偏差
を相当する主蒸気圧力信号に変換器181で変換する。
Now, a method for determining the optimum auxiliary fuel flow rate will be explained with reference to FIG. First, the adder 190 calculates the sum of the cast turbine output power and the steam turbine output power, and the comparator 191 compares this value with the output setting value.The converter 181 converts the deviation into a corresponding main steam pressure signal. Convert.

次にこの値と実測した蒸気圧力を加算器192で加算し
制御目標値A196を作る。制御目標値A196を低値
優先回路186に送る。一方、蒸気圧力を微分器183
で微分し比較器194に送る。負荷変化率選択器187
〜189で任意の負荷変化率を選択し、変換器185で
蒸気圧力の変化率に変換し前記微分器183の信号と比
較器194で比較する。
Next, this value and the actually measured steam pressure are added by an adder 192 to create a control target value A196. The control target value A196 is sent to the low value priority circuit 186. On the other hand, the differentiator 183
It is differentiated by and sent to the comparator 194. Load change rate selector 187
An arbitrary load change rate is selected in steps 189 to 189, converted into a steam pressure change rate in a converter 185, and compared with the signal from the differentiator 183 in a comparator 194.

この出力をPI演算器(P=比例、ニー積分)を経由し
て低値優先回路186に送る。この信号を制御目標値B
とする。助燃制御除外装置195の出力Cも同様に低値
優先回路に送る。ここからの出力が弁駆動信号24とな
る。低値優先回路は最小値のみを通す。したがって、助
燃制御除外装置が有効である場合、弁開度信号24は零
となる。
This output is sent to a low value priority circuit 186 via a PI calculator (P=proportionality, knee integral). This signal is controlled to the target value B
shall be. The output C of the auxiliary combustion control exclusion device 195 is similarly sent to the low value priority circuit. The output from this becomes the valve drive signal 24. A low value priority circuit passes only the lowest value. Therefore, when the auxiliary combustion control exclusion device is effective, the valve opening signal 24 becomes zero.

これは、助燃燃料制御弁が閉であることを示、す。This indicates that the auxiliary fuel control valve is closed.

さて、助燃制御除外装置を無効にした場合には、次のよ
うな動作となる。出力設定値がガスタービン及び蒸気タ
ービン両方の出力の総和より大きい場合、制御目標値A
はPs十ΔP (Ps :実測蒸気圧力、ΔP:出力出
力補償色なる。これに対し、制御目標値Bは 気圧力変化の絶対値) Ps十ΔP>Psであると制御目標値Bの方がAよシも
小さく、弁駆動信号は、制御目標値Bと等しくなる。助
燃により蒸気圧力がU P L、出力設定値と実負荷の
間に差がなくなると、制御目標値Bは、 となって、制御目標値Aよりも大きくなるから、弁駆動
信号は制御目標値Aと等しくなる。
Now, when the auxiliary combustion control exclusion device is disabled, the following operation occurs. If the output set value is larger than the sum of the outputs of both the gas turbine and the steam turbine, the control target value A
is Ps + ΔP (Ps: actual steam pressure, ΔP: output output compensation color. On the other hand, control target value B is the absolute value of air pressure change) If Ps + ΔP > Ps, control target value B is A is also smaller, and the valve drive signal becomes equal to the control target value B. When the steam pressure increases due to auxiliary combustion and there is no difference between the output set value and the actual load, the control target value B becomes and becomes larger than the control target value A, so the valve drive signal becomes the control target value. It becomes equal to A.

上記の意味は、出力設定値と実際の出力に偏差がある場
合、最初は圧力の変化率制御を実施し、偏差が零近辺に
なったところで圧力そのものの制御に移行することであ
る。
The meaning of the above is that when there is a deviation between the output setting value and the actual output, pressure change rate control is first performed, and when the deviation becomes close to zero, control of the pressure itself is started.

出力を下げる場合、出力設定値がガスタービン及び蒸気
タービンの出力総和よ)小さくなるが、前記説明と同様
に偏差が大きい場合は変化率制御となp1偏差が零近辺
になって圧力そのものの制御へ移行する。
When lowering the output, the output set value becomes smaller than the sum of the outputs of the gas turbine and steam turbine, but as explained above, if the deviation is large, rate of change control is used, and the p1 deviation becomes close to zero, and the pressure itself is controlled. Move to.

ところで、蒸気圧力の増減により、蒸気タービンの出力
を制御できる理由は下記である。まず、変圧運転を実施
している場合、前記主制御装置は弁13の開度を一定に
制御しているから、蒸気圧力を制御すれば蒸気タービン
の出力を調節できることになる。次に弁13の開度を制
御している場合、主制御装置は出力設定値の増減に応じ
、弁13の開度を増減する。助燃がない場合は、ガスタ
ービンの排気温度に応じた出力側aI]が可能で、ある
一定値をこえると、弁の開度を増加させても出力が増加
しなくなる。助燃がなされている場合は、出力制御可能
領域が増加することになる。
By the way, the reason why the output of the steam turbine can be controlled by increasing or decreasing the steam pressure is as follows. First, when variable pressure operation is being performed, the main control device controls the opening degree of the valve 13 to be constant, so the output of the steam turbine can be adjusted by controlling the steam pressure. Next, when controlling the opening degree of the valve 13, the main controller increases or decreases the opening degree of the valve 13 in accordance with an increase or decrease in the output setting value. When there is no auxiliary combustion, the output side aI] is possible in accordance with the exhaust gas temperature of the gas turbine, and when a certain value is exceeded, the output does not increase even if the opening degree of the valve is increased. When auxiliary combustion is performed, the output controllable range increases.

本発明はL記のように構成され、蒸気圧力によシ、助燃
燃料流量を制御するため、応答性の速い制御を実施でき
る。また、実測した蒸気圧力の変化率を演算しているの
で、ボイラ、蒸気タービンに対する最適な応力制御がで
きるなどの効果を有するものである。
The present invention is configured as shown in letter L, and since the flow rate of the auxiliary fuel is controlled based on the steam pressure, control with quick response can be performed. Furthermore, since the rate of change of the actually measured steam pressure is calculated, it has the advantage of being able to optimally control the stress on the boiler and steam turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の蒸気−ガスタービン複合型発電設備の
燃料流量制御装置の実施例の発電所ブロック図、第2図
は第1図の装置の助燃流量制御ブロック図、第3図(イ
)は出力電力のpeed backのみ、(ロ)は蒸気
圧力によるマイナーループをくんだ場合のそれぞれ第1
図の装置の応答性説明図である。 5・・・補助燃焼手段、12・・・計量された燃料流量
全供給する手段、19・・・負荷制御手段、181゜1
92・・・圧力制御手段、183,184,185゜1
94・・・圧力変化率制御手段、186・・・制御信号
発生手段。
FIG. 1 is a power plant block diagram of an embodiment of the fuel flow control device for a steam-gas turbine combined power generation facility of the present invention, FIG. 2 is a block diagram of auxiliary combustion flow control of the device in FIG. ) is the peed back of output power only, and (b) is the first one when including a minor loop due to steam pressure.
FIG. 3 is an explanatory diagram of responsiveness of the device shown in the figure. 5... Auxiliary combustion means, 12... Means for supplying the entire metered fuel flow rate, 19... Load control means, 181゜1
92...Pressure control means, 183, 184, 185°1
94...Pressure change rate control means, 186...Control signal generation means.

Claims (1)

【特許請求の範囲】[Claims] 1、補助燃焼用の燃料流量を制御する装置を含む複合型
ガスタービン発電設備に於て、該燃料流量制御装置が、
定められた割合で可燃性の燃料を受けとって該発電設備
のボイラを加熱する補助燃焼手段と、指令された計量信
号に応じて上記補助燃焼手段に計量された燃料流量を供
給する手段と、負荷に供給すべき電力の量を設定する手
段を含み、該負荷からの計測された電力信号を受けとっ
て上記電力設定値との差を発生する負荷制御手段と、該
負荷制御手段からの信号を相当する蒸気圧力信号に変換
する手段を含み、該蒸気圧力信号と計測された蒸気圧力
信号を加算する圧力制御手段と、前記計測された蒸気圧
力信号を微分する手段を含み、該微分信号と所望の圧力
変化率この差をとシこれを積分演算する圧力変化率制御
手段と、前記圧力制御手段と圧力変化率制御手段からの
信号を受けとって小さい値の信号を選択し、これ全前記
計量信号とする制御信号発生手段とを有することを特徴
とする複合型発電設備の燃料流量制御装置。
1. In a composite gas turbine power generation facility including a device for controlling the fuel flow rate for auxiliary combustion, the fuel flow rate control device:
an auxiliary combustion means for receiving flammable fuel at a predetermined rate to heat a boiler of the power generation equipment; a means for supplying a metered flow rate of fuel to the auxiliary combustion means in response to a commanded metering signal; and a load. load control means for receiving a measured power signal from the load and generating a difference from the power set value; pressure control means for adding the steam pressure signal and the measured steam pressure signal; and means for differentiating the measured steam pressure signal; Pressure change rate control means for calculating the difference in pressure change rate by integrating this difference; and receiving signals from the pressure control means and pressure change rate control means, selects a signal having a small value, and selects a signal having a small value, and selects a signal having a small value, and selects a signal having a small value, and selects a signal having a small value, and selects a signal having a small value, and selects a signal with a small value, and selects a signal of a small value from the pressure change rate control means. 1. A fuel flow rate control device for a combined power generation facility, characterized in that it has a control signal generating means for generating a control signal.
JP19243082A 1982-11-04 1982-11-04 Fuel flow-rate controller for combined type power generation apparatus Pending JPS5985404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19243082A JPS5985404A (en) 1982-11-04 1982-11-04 Fuel flow-rate controller for combined type power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19243082A JPS5985404A (en) 1982-11-04 1982-11-04 Fuel flow-rate controller for combined type power generation apparatus

Publications (1)

Publication Number Publication Date
JPS5985404A true JPS5985404A (en) 1984-05-17

Family

ID=16291176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19243082A Pending JPS5985404A (en) 1982-11-04 1982-11-04 Fuel flow-rate controller for combined type power generation apparatus

Country Status (1)

Country Link
JP (1) JPS5985404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150067185A (en) * 2012-10-11 2015-06-17 지멘스 악티엔게젤샤프트 Method for flexibly operating a nuclear power plant
JP2017180350A (en) * 2016-03-31 2017-10-05 一般財団法人電力中央研究所 Composite power generation facility
JP2021528590A (en) * 2018-06-22 2021-10-21 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft How to operate a power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150067185A (en) * 2012-10-11 2015-06-17 지멘스 악티엔게젤샤프트 Method for flexibly operating a nuclear power plant
US10487696B2 (en) 2012-10-11 2019-11-26 Siemens Aktiengesellschaft Method for the flexible operation of a power plant
JP2017180350A (en) * 2016-03-31 2017-10-05 一般財団法人電力中央研究所 Composite power generation facility
JP2021528590A (en) * 2018-06-22 2021-10-21 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft How to operate a power plant
US11591955B2 (en) 2018-06-22 2023-02-28 Siemens Energy Global GmbH & Co. KG Method for operating a power plant

Similar Documents

Publication Publication Date Title
KR101183505B1 (en) Control device for waste heat recovery system
CA1190304A (en) Hrsg damper control
US4550565A (en) Gas turbine control systems
JPS6158644B2 (en)
JPS5985404A (en) Fuel flow-rate controller for combined type power generation apparatus
JP2001295607A (en) Method and device for controlling load of thermal power plant
GB2176248A (en) Turbine control
JPH05340205A (en) Controller for combined power generation plant
JPH1047013A (en) Control device for exhaust heat utilization generating plant
JPS58124010A (en) Controller for gas turbine
JPH07301128A (en) Gas turbine exhaust gas temperature control device
JPS6239658B2 (en)
JP2000097403A (en) Controller for turbine-drive water supply pump
JPH0674401A (en) Pressurized fluidized bed boiler composite generating plant, load control method and device thereof
JPS59115406A (en) Load controller of composite cycle power generating plant
JP2023032523A (en) Start-up control device and start-up control method for combined cycle power generation plant
JPS60187702A (en) Turbine output control method and apparatus for power generation plant
JPH0339202B2 (en)
JPH0122521B2 (en)
JPH0322527B2 (en)
JPH02298609A (en) Automatic plant load control device
JPS637247B2 (en)
JPH10159505A (en) Combined cycle power plant controller
KR20010018743A (en) An apparatus for controlling the water level of drum in heat recovering
JPS6148879B2 (en)