JPS5984423A - Energy radiation equipment - Google Patents

Energy radiation equipment

Info

Publication number
JPS5984423A
JPS5984423A JP19411582A JP19411582A JPS5984423A JP S5984423 A JPS5984423 A JP S5984423A JP 19411582 A JP19411582 A JP 19411582A JP 19411582 A JP19411582 A JP 19411582A JP S5984423 A JPS5984423 A JP S5984423A
Authority
JP
Japan
Prior art keywords
lens
light
center
passing
output light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19411582A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Shigenobu Akiyama
秋山 重信
Shigeji Yoshii
吉井 成次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19411582A priority Critical patent/JPS5984423A/en
Publication of JPS5984423A publication Critical patent/JPS5984423A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an energy radiation equipment with a wide light beam by a method wherein a concave or a convex is provided at the center of an optical lens and among the lights passing through the lens, the lights near the center are refracted out of the lens relatively to the lights passing through the circumference and the passing light is made to illuminate the target through a Quonset hut shape lens. CONSTITUTION:A concave 12 or a convex 13 is formed at the center of an optical lens 11 and the light 14 passing through the central part is given relatively large refraction toward the outside of the lens 11. Thus the energy intensity condensed at the center is dispersed to the circumference and the lights passing the lens are gathered at the focus 19 by a conventional convexed lens group or the like to obtain output light with a ring shape output light energy distribution. Moreover, a Quonset hut shape lens 15 is combined with the lens 11 and an oval shape, compressed to one direction, and flat output light energy distribution 17 is obtained near the synthesized focus 16 instead of the conventional Gaussian distribution. With this configuration, an irradiation equipment which does not give thermal damage to the substrate without reducing the output of the laser is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表面層の改質等に用いる高エネルギビーム照射
、特に半導体基板の単結晶化処理に用いる装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high-energy beam irradiation used for modifying a surface layer, and particularly to an apparatus used for single crystallization of a semiconductor substrate.

従来例の構成とその問題点 金属表面の改質例えば焼入、その他、半導体装置におい
ては、薄膜多結晶体の単結晶化などへ適用するためのレ
ーザ照射装置がある。
Conventional Structures and Problems There are laser irradiation devices used for modification of metal surfaces, such as hardening, and for semiconductor devices, such as single crystallization of thin film polycrystals.

このようなレーザ照射装置では、レーザ光を光学系に導
き、出力光を絞って試料表面に照射するが、そのエネル
ギ 分布1は一般に第1図(IL)に示すようにガウス
分布をしている。このような出力光で、試料を照射する
と、当然、そのピーク位置20部分のみが深くしかも高
温に加熱され、その周囲3の部分は余り加熱されない。
In such a laser irradiation device, the laser beam is guided through an optical system, and the output light is focused and irradiated onto the sample surface, but the energy distribution 1 generally has a Gaussian distribution as shown in Figure 1 (IL). . When a sample is irradiated with such output light, naturally only the peak position 20 is heated deeply and to a high temperature, and the surrounding area 3 is not heated much.

従って、第1図の形状のビームではビームの高温部分の
11」が狭くなシ、ある面を均等に熱処理しようとする
と、非常に重なりを大きくし、かなシの数の走査を行わ
なければならない。例えば、半導体などのレーザアニー
ルという極端な例では、出力光の径が50μm以上ある
のに、10〜20μm毎にずらして、即ち、60〜80
%の重なりをもって照射しなければならないという欠点
がある。しかも、ピークが大きいため、基板深くまで瞬
時に加熱され、熱歪や欠陥を誘起することが指摘されて
いるしたがって、第2図に示すいわゆる輪状ないしはド
ーナツ状の出力光エネルギ 分布4は、この点で優れて
いることが想像される。すなわち第2図では温度の比較
的高い部分(斜線部分)が広くなシ、広範囲に均一な加
熱を行うことができる、このような第2図に示すエネル
ギ 分布は、レーザ光をガウス分布をもつ多モードから
、単モードにし、TEMo+やT E M+oにすれば
得られることがわかっているが、調整が非常に難しい上
にレーザ出力が大[1〕に低下し、たとえば1//F5
〜1/1oになるという欠点がある。
Therefore, in a beam with the shape shown in Figure 1, the high-temperature part of the beam is narrow (11"), and in order to uniformly heat treat a certain surface, the overlap must be made extremely large and a number of scans must be performed. . For example, in an extreme example of laser annealing for semiconductors, the diameter of the output light is 50 μm or more, but the diameter is shifted by 10 to 20 μm, that is, 60 to 80 μm.
The disadvantage is that the irradiation must be done with a % overlap. Moreover, because the peak is large, it has been pointed out that the substrate is instantaneously heated deep into the substrate, inducing thermal distortion and defects. Therefore, the so-called ring-shaped or donut-shaped output light energy distribution 4 shown in Fig. 2 is caused by this point. It is imagined that it will be excellent. In other words, in Figure 2, the area where the temperature is relatively high (the shaded area) is wide, and uniform heating can be performed over a wide range.The energy distribution shown in Figure 2 causes the laser beam to have a Gaussian distribution. It is known that it can be obtained by changing from multimode to single mode and changing to TEMo+ or TE M+o, but it is very difficult to adjust and the laser output drops to a large [1], for example, 1//F5
It has the disadvantage that it becomes ~1/1o.

発明の目的 本発明は、レーザ等の照射エネルギ 出力の低下をきた
さず、即ち、多モードレーザ等においても、IJ広い、
エネルギ分布の均等な出力光を実現し、基板深くに熱歪
を加えず、巾広い照射を行わしめる光エネルギ 照射装
置を提供するものである。
Purpose of the Invention The present invention does not cause a decrease in the irradiation energy output of a laser etc., that is, even in a multi-mode laser etc., the IJ is wide.
The present invention provides a light energy irradiation device that realizes output light with uniform energy distribution and irradiates over a wide range without causing thermal distortion deep into the substrate.

発明の構成 本発明は、中心部に凹部ないしは凸部を設けた光学レン
ズを用い、この光学レンズを通過する光のうち、中心部
附近を通過する光を周辺を通過する光よりも相対的にレ
ンズ外側へ大きく屈折させて、いわば光学系を出る光束
の中心部のエネルギ密度を低下させて、目的物に光学レ
ンズの通過光を照射するもので、さらにカマボコ型レン
ズを通過させて光エネルギ 分布を一方向に圧縮し長円
状にするものである。
Structure of the Invention The present invention uses an optical lens having a concave or convex portion in the center, and out of the light passing through this optical lens, the light passing near the center is relatively smaller than the light passing around the periphery. The light that passes through the optical lens is irradiated onto the object by greatly refracting the light to the outside of the lens, reducing the energy density at the center of the light beam exiting the optical system, and then passing through the semi-cylindrical lens to improve the light energy distribution. is compressed in one direction to make it into an ellipse.

実施例の説明 本発明は、光学系の途中に特殊な光学レンズを設けるこ
とによって達成される。すなわち、本発明に用いる光学
レンズは、たとえば第3図又は第4図に示すごとく光学
レンズ11中の中心部に凹部12ないし凸部13を設け
、中心部分を通過する光14を相対的にレンズ外側へよ
シ大きく屈折させることによって、中心部に集中してい
るエネルギー強度を周辺に分散させ、こうしたレンズ1
1を通過した光を通常の凸レンズ(群)などで焦点にあ
つめることによって、第2図に示すような輪状の出力光
エネルギ分布を有した出力光を得る。
DESCRIPTION OF THE EMBODIMENTS The present invention is achieved by providing a special optical lens in the middle of the optical system. That is, the optical lens used in the present invention has a concave portion 12 or a convex portion 13 in the center of the optical lens 11, as shown in FIG. 3 or 4, so that the light 14 passing through the center is relatively By refracting a large amount outward, the energy intensity concentrated in the center is dispersed to the periphery.
By concentrating the light that has passed through the lens 1 to a focal point using a normal convex lens (group), output light having a ring-shaped output light energy distribution as shown in FIG. 2 is obtained.

この特殊な光学レンズ14は、第3,4図に示すもの以
外に第5図に示すように両面とも円錐状になっていても
よく、又、第6図に示すように弧状に円錐のすそが引い
ていてもよい。要はレンズ中心部の光が通常の凹又は凸
レンズ等に、比べてより外側へ屈折されるようになって
おり、焦点を結ばなければ良い。又、曲面でなくとも、
五角錐などのように平面で構成されても同様の効果があ
る。
In addition to what is shown in FIGS. 3 and 4, this special optical lens 14 may have a conical shape on both sides as shown in FIG. 5, or may have an arcuate conical base as shown in FIG. may be subtracted. The point is that the light at the center of the lens is refracted to the outside more than with a normal concave or convex lens, so it does not need to be focused. Also, even if it is not a curved surface,
A similar effect can be obtained even if the structure is made of a flat surface such as a pentagonal pyramid.

又、第7図に示すような特殊な凸レンズであれば(凹部
は極端に強調しである)、一枚で、その焦点附近に第2
図で示すような光エネルギ分布を有した出力光を得られ
る。
Also, if it is a special convex lens like the one shown in Figure 7 (the concave part is extremely emphasized), a second lens will be placed near the focal point with one lens.
Output light having a light energy distribution as shown in the figure can be obtained.

さらに、第5,6図に例示した特殊な光学レンズ11に
、カマボコ型のレンズ15を第8図に示すように組み合
わせれば、その合成焦点16の近傍には、第1図に示す
ようなガウス分布ではなく一方向に圧縮された長円状で
しかも平旦な第9図に示すような熱処理に好ましい出力
光エネルギ分布17を実現できる。すなわち、このよう
な長円状でしかも比較的均一なエネルギ 分布を有する
レーザー光で矢印18の方向に走査すれば効率よくエネ
ルギー照射を目的物に行うことができる。
Furthermore, if the special optical lens 11 illustrated in FIGS. 5 and 6 is combined with the semi-cylindrical lens 15 as shown in FIG. It is possible to realize an output light energy distribution 17 which is not a Gaussian distribution but is compressed in one direction, has an oval shape, and is flat, as shown in FIG. 9, which is preferable for heat treatment. That is, by scanning in the direction of the arrow 18 with such an elliptical laser beam having a relatively uniform energy distribution, the target object can be efficiently irradiated with energy.

なお、第8図に示す合成焦点16はレンズ11を凹部1
2のないものとしたときの破線の通過光による元の焦点
19の近傍にある方が望ましい。なお、第8図のレンズ
15の右側の図は側面を示したものでカマボコ状である
ことを示している。
Note that the composite focal point 16 shown in FIG.
It is preferable that the focal point 19 be located near the original focal point 19 of the transmitted light indicated by the broken line when there is no 2. The right side view of the lens 15 in FIG. 8 shows the side surface and shows that it has a semicylindrical shape.

本発明の効果を、条件の厳しい半導体素子に適用した結
果でもって説明する。
The effects of the present invention will be explained using the results of application to a semiconductor element under severe conditions.

シリコン基板の上に非常に厚い熱酸化膜2μmを形成し
、さらにその上にLP(減圧)CVD法によって多結晶
シリコンを0.5μm形成した。
A very thick thermal oxide film of 2 μm was formed on a silicon substrate, and a polycrystalline silicon film of 0.5 μm was further formed thereon by LP (low pressure) CVD.

通常この多結晶シリコンを第10図に示す従来のレーザ
ー光照射装置にてアニールして単結晶化あるいは大結晶
粒化する。第10図において、レーザ発生装置21のレ
ーザ光22は、拡大器23で10倍に拡げられ、鏡24
で直角に曲げ、最終レンズ(焦点距離5Qmの通常の凸
レンズ)25で絞り、試料(前記多結晶シリコンの形成
された基板)26上にあてる。
Usually, this polycrystalline silicon is annealed using a conventional laser beam irradiation device shown in FIG. 10 to form a single crystal or a large crystal grain. In FIG. 10, a laser beam 22 from a laser generator 21 is expanded ten times by a magnifier 23, and a mirror 24
The sample is bent at a right angle, apertured with a final lens (a normal convex lens with a focal length of 5 Qm) 25, and applied onto a sample (the substrate on which the polycrystalline silicon is formed) 26.

この従来の装置を用い、レーザ出力sW、走査速度1o
owtr、/S、基板温度300°Cで、約20μm巾
の多結晶シリコンが融解し、大結晶化した。
Using this conventional device, the laser output sW and the scanning speed 1o
At owtr, /S and a substrate temperature of 300°C, polycrystalline silicon with a width of about 20 μm melted and became a large crystal.

全面をさらに大結晶粒化するためには、走査の重ねを大
きくし、横方向へ6μmの小さなピッチで送らなければ
ならなかった。次にレーザ照射後の基板を割った所、通
常の臂開が生ぜず、貝から状に割れ、大きな歪があるこ
とが分った。断面を研磨し、蝕刻した所、無数の欠陥が
、レーザ光のピークに対応して、深さ5μmにまで及ん
でいるのズ11を第10図の一点鎖線部分に挿入した所
、同条件でありながら融解巾は約80μmと増加した。
In order to further increase the grain size over the entire surface, it was necessary to increase the overlap of scans and send them in the lateral direction at a small pitch of 6 μm. Next, when the substrate was cracked after laser irradiation, it was found that the normal arm opening did not occur, but instead it cracked into shell-shaped pieces and was severely distorted. When the cross section was polished and etched, there were countless defects up to a depth of 5 μm, corresponding to the peak of the laser beam. When the hole 11 was inserted into the dot-dash line in Fig. 10, under the same conditions. However, the melting width increased to about 80 μm.

従って、ピッチも40μmと非電に大きくとれ、従来法
に比べて走査能率が4〜8倍改善され  4だ。しかも
、基板には熱歪が見られず、前述のような欠陥は全く認
められなかった。
Therefore, the pitch can be set to 40 μm, which is a large non-electromagnetic method, and the scanning efficiency is improved by 4 to 8 times compared to the conventional method. Moreover, no thermal strain was observed on the substrate, and no defects such as those described above were observed.

次に第11図に示すように特殊レンズ11とカマボコ型
レンズ15を凸レンズ25のあとに組み入れ、長円状の
強度を有する第9図の出力光を形成した。この第11図
の構成を用いて同様の実験をした所、融解巾は約170
μmとさらに広くでき、従ってピッチも約100μmと
非常に改善された。そして基板に対する熱影響は全く認
められなかった。さらにカマボコ型のレンズを二枚直角
に組み合わせることによって、出力光の巾や長さを自由
に調整できることも明らかとなった。
Next, as shown in FIG. 11, a special lens 11 and a semi-cylindrical lens 15 were installed after the convex lens 25 to form the output light shown in FIG. 9 having an oval intensity. When a similar experiment was conducted using the configuration shown in Figure 11, the melting width was approximately 170 mm.
The pitch can be further increased to 100 μm, which is a great improvement. No thermal effect on the substrate was observed. It was also revealed that by combining two semi-cylindrical lenses at right angles, the width and length of the output light could be adjusted freely.

発明の効果 以上の説明でも明らかなように、本発明によればレーザ
出力の低下を招くことなく、又、基板に熱損傷を形成す
ることのないビーム巾の広いエネルギ照射装置を得るこ
とができる。なお、本発明はシリコンに限らず、全ての
表面処理に適用し得ることは明白である。
Effects of the Invention As is clear from the above explanation, according to the present invention, it is possible to obtain an energy irradiation device with a wide beam width without causing a decrease in laser output or causing thermal damage to the substrate. . It is clear that the present invention is applicable not only to silicon but also to all surface treatments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、  bはレーザ出力光エネルギ分布の正面分
布図、平面分布図、第2図a・ bは本発明のレンズに
より作成されるエネルギ 分布の正面分布。+ ”l’
 ml 5’f 、−W’y A町。エア□1カ、ヵ、
6特殊光学レンズを示す図、第8図はカマポコ型レンズ
を用いた時のレーザ光路及びその出力光の照射状態を示
す図、第9図a、  bはカマボコ型レンズを用いた時
のエネルギ 分布の正面分布図、平面分布図、第10図
は従来のレーザ照射装置の概略図、第11図は本発明を
適用したレーザ照射装置の部分概略図である。 4.17・・・・・エネルギ 分布、11・・・・・特
殊レンズ、14・・・・・・中心部分の通過光、15・
・・・・・カマボコ型レンズ、26・・・・・試料。 代即人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図     第2図 第3図    第4図 第5図     第6図 第7図 第8図
Figures 1a and 1b are frontal distribution diagrams and planar distribution diagrams of the laser output light energy distribution, and Figures 2a and 2b are frontal distribution diagrams of the energy distribution created by the lens of the present invention. + ``l'
ml 5'f, -W'y A town. Air □1 ka, ka,
6. A diagram showing the special optical lens. Figure 8 is a diagram showing the laser optical path and the irradiation state of the output light when using a semi-cylindrical lens. Figures 9 a and b are energy distribution when using a semi-cylindrical lens. FIG. 10 is a schematic diagram of a conventional laser irradiation device, and FIG. 11 is a partial schematic diagram of a laser irradiation device to which the present invention is applied. 4.17...Energy distribution, 11...Special lens, 14...Light passing through the center, 15.
...Horse-shaped lens, 26...Sample. Name of representative Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)光学レンズ中心部に凹部ないしは凸部を設け、前
記光学レンズを通過する光のうち前記中心部附近の光を
周辺の光に対して相対的にレンズ外側へよ多大きく屈折
させて前記光学レンズの通過光を目的物に照射すること
を特徴とするエネルギ照射装置。
(1) A concave or convex portion is provided in the center of the optical lens, and among the light passing through the optical lens, light near the center is refracted to the outside of the lens to a large extent relative to surrounding light. An energy irradiation device characterized by irradiating a target object with light passing through an optical lens.
(2)光学レンズ中心部に凹部ないしは凸部を設け、前
記中心部附近の光を周辺の光に対して相対的にレンズ外
側へより大きく屈折させ、さらにカマボコ型レンズを通
すことにより、光エネルギ分布を一方向に圧縮し長円状
にすることを特徴とする光エネルギ照射装置。
(2) By providing a concave or convex portion in the center of the optical lens, the light near the center is refracted to the outside of the lens to a greater extent relative to the surrounding light, and the light is further passed through the semi-cylindrical lens to generate light energy. A light energy irradiation device characterized by compressing the distribution in one direction into an elliptical shape.
JP19411582A 1982-11-04 1982-11-04 Energy radiation equipment Pending JPS5984423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19411582A JPS5984423A (en) 1982-11-04 1982-11-04 Energy radiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19411582A JPS5984423A (en) 1982-11-04 1982-11-04 Energy radiation equipment

Publications (1)

Publication Number Publication Date
JPS5984423A true JPS5984423A (en) 1984-05-16

Family

ID=16319167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19411582A Pending JPS5984423A (en) 1982-11-04 1982-11-04 Energy radiation equipment

Country Status (1)

Country Link
JP (1) JPS5984423A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151421A (en) * 1983-02-17 1984-08-29 Agency Of Ind Science & Technol Laser annealing device
JPS6199323A (en) * 1984-10-19 1986-05-17 Sharp Corp Apparatus for manufacturing monocrystalline thin film
JPS6247115A (en) * 1985-08-26 1987-02-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6266617A (en) * 1985-09-19 1987-03-26 Agency Of Ind Science & Technol Laser light emitting device
EP0987577A2 (en) * 1998-09-14 2000-03-22 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
JP2013162010A (en) * 2012-02-07 2013-08-19 Dainippon Screen Mfg Co Ltd Heat treatment equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151421A (en) * 1983-02-17 1984-08-29 Agency Of Ind Science & Technol Laser annealing device
JPS6199323A (en) * 1984-10-19 1986-05-17 Sharp Corp Apparatus for manufacturing monocrystalline thin film
JPS6247115A (en) * 1985-08-26 1987-02-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6266617A (en) * 1985-09-19 1987-03-26 Agency Of Ind Science & Technol Laser light emitting device
EP0987577A2 (en) * 1998-09-14 2000-03-22 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
EP0987577A3 (en) * 1998-09-14 2001-07-04 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
EP1321795A2 (en) * 1998-09-14 2003-06-25 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
EP1321795A3 (en) * 1998-09-14 2004-01-07 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
EP1569024A1 (en) * 1998-09-14 2005-08-31 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
JP2013162010A (en) * 2012-02-07 2013-08-19 Dainippon Screen Mfg Co Ltd Heat treatment equipment

Similar Documents

Publication Publication Date Title
CN109641315A (en) Laser processing and a kind of system cut using Multi sectional condenser lens or cut wafer
JPS5891422A (en) Light beam equalizer
JPS5891423A (en) Light beam concentrating apparatus
JP2007141995A (en) Manufacturing method of semiconductor chip
TW200405046A (en) Method of severing an optical fiber using a laser beam
JP2669884B2 (en) Mirror furnace
JPS5984423A (en) Energy radiation equipment
JPS61116820A (en) Annealing method for semiconductor
JPS6319809A (en) Laserr beam annealing equipment
JPH04142030A (en) Manufacture of semiconductor film
JPH0420254B2 (en)
JPS62126630A (en) Laser processing device
JPS5680138A (en) Manufacture of semiconductor device
JPS63260018A (en) Lamp annealer
JP4257411B2 (en) Glass material having refractive index distribution and manufacturing method thereof
JPH1177344A (en) Optical machining device
JPS62216216A (en) Crescent beam homogenizer
JPS5890723A (en) Physical property changing method by laser beam irradiation
JPH0353771B2 (en)
JPS6124226A (en) Laser annealing device
JPS59121913A (en) Manufacture of semiconductor device
JPH0135798B2 (en)
JPS6089915A (en) Preparation of semiconductor thin film
JPS58176928A (en) Light annealing
JPS60261126A (en) Manufacture of single crystal semiconductor film