JPS5984231A - Flash device - Google Patents

Flash device

Info

Publication number
JPS5984231A
JPS5984231A JP57195061A JP19506182A JPS5984231A JP S5984231 A JPS5984231 A JP S5984231A JP 57195061 A JP57195061 A JP 57195061A JP 19506182 A JP19506182 A JP 19506182A JP S5984231 A JPS5984231 A JP S5984231A
Authority
JP
Japan
Prior art keywords
capacitor
flash
main
light emitting
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57195061A
Other languages
Japanese (ja)
Inventor
Koichi Omori
大森 功一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57195061A priority Critical patent/JPS5984231A/en
Publication of JPS5984231A publication Critical patent/JPS5984231A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stroboscope Apparatuses (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE:To perform photography with proper exposure while holding the charging level of a capacitor for preliminary light emitting equal to or lower than the charging level of a capacitor for main light emitting by discharging the capacitor for preliminary capacitor during main light emitting. CONSTITUTION:When main light emitting is performed by a high-level signal from a terminal t3 of a timer circuit T2, the high-level signal from the terminal t3 is transmitted to a trigger circuit 16 through a diode 100 to perform preliminary light emitting synchronously with the main light emitting. The charging of the main capacitor 41 is started after the main light emitting almost at the zero level when the light emitting is performed fully or at a specific voltage level when not. On the other hand, the charging of the capacitor 13 for preliminary light emitting also starts synchronizing with the capacitor 41, but the capacitor 13 is discharged fully all the time and its charging starts at the zero level all the time, so its charging level is equal to or lower than that of the capacitor 41.

Description

【発明の詳細な説明】 本発明は、カメラ撮影用の電子閃光装置で、特にプリ発
光により絞り値を決定し、該絞り値に対応して主発光の
調光レベルを設定する電子閃光装置の改良に関するもの
である。なお、ここで調光レベルとは、主発光を停止さ
せる受光量の所定値を言う。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic flash device for camera photography, and in particular to an electronic flash device that determines an aperture value through pre-flash and sets the main flash light control level in accordance with the aperture value. It is about improvement. Note that the dimming level here refers to a predetermined value of the amount of light received at which the main light emission is stopped.

プリ発光による反射光の受光量に対応して、撮影レンズ
の絞りを決定し、その絞り値に対応した調光レベルで主
発光制御を行う電子閃光装置は既に提案されている。
Electronic flash devices have already been proposed that determine the aperture of a photographic lens in response to the amount of reflected light received by pre-flash and perform main flash control at a dimming level corresponding to the aperture value.

ところで該従来装置においては、ブリ発光用キャパシタ
と主発光用キャパシタは別々の充電路によって充電され
、捷だ主発光用キャパシタの放電時にブリ発光用キャパ
シタは充電され続ける為に主発光完了後の両キャパシタ
の充電過程においてはブリ発光用キャパシタの充電電圧
が主発光用のそれよりもかなり高い電圧となる。
By the way, in the conventional device, the capacitor for flash light emission and the capacitor for main light emission are charged by separate charging paths, and since the capacitor for flash light continues to be charged while the broken main light emission capacitor is being discharged, the capacitor for flash light emission continues to be charged. In the process of charging the capacitor, the charging voltage of the capacitor for flash lighting becomes considerably higher than that for main lighting.

この様な状況下で次回のフラッシュ撮影が行われると、
プリ発光によって得られる絞り信号は、主キャパシタの
充電電圧に対応した総発光光量に相応しない値となり適
正露光量を得るために必要な絞り値よりも大きな値(小
絞り)となり、例えば、被写体が総発光光量の発光を行
なった時に適正露光となる様な被写体距離の限界に位置
している様な場合、本来ならば該閃光装置にて適正露光
の撮影を行なえるにもかかわらず不適正露光となる欠点
がある。
The next time you take a flash photo under these conditions,
The aperture signal obtained by pre-flash is a value that does not correspond to the total amount of light emitted corresponding to the charging voltage of the main capacitor, and becomes a value larger (small aperture) than the aperture value required to obtain the appropriate exposure amount. If the subject is located at the limit of the distance that would result in proper exposure when the total amount of light is emitted, incorrect exposure may occur even though the flash device would normally be able to take pictures with proper exposure. There is a drawback.

即ち、上記型式の閃光装置はプリ発光に際しプリ発光用
キャパシターの充電電圧をフル発光して、絞り値を決定
する。従って、該プリ発光用キャパシターの充電電荷に
よる発光が主キャパシターの総見光光量に相応した値と
なっていないとすると、該閃光装置の本来のGNOに基
づく絞り値とはならない。よって、上記の如くプリ発光
用キャパシターの充電電圧が主キャパシターの充電電圧
よシも高い状態でプリ発光を行ない、その時のプリ発光
用キャパシターの充電電圧を、この閃光装置のGNOと
みなして絞り値を決定し、その後直ちに主発光を行なわ
せると上記の不都合を生ずる。
That is, the above type of flash device determines the aperture value by fully emitting the charged voltage of the pre-flash capacitor during pre-flash. Therefore, if the light emitted by the charge charged in the pre-flash capacitor does not have a value corresponding to the total amount of light seen by the main capacitor, the aperture value will not be based on the original GNO of the flash device. Therefore, as mentioned above, pre-flash is performed when the charging voltage of the pre-flash capacitor is higher than the charging voltage of the main capacitor, and the aperture value is determined by considering the charging voltage of the pre-flash capacitor at that time as the GNO of this flash device. If the main light emission is performed immediately after determining this, the above-mentioned inconvenience will occur.

例えば主キャパシターのフル充電の時(例えば300■
まで充電された時)にGNOが20に相応する閃光能力
がある閃光装置の場合、上記の如くしてプリ発光用キャ
パシターが300■“ まで充電され一方主キャパシタ
ーは100Vまでしか充電がなされてい々い状態でプリ
発光を行なうと、GNO20相当のプリ発光が行なわれ
、この時被写体が5mの位置に存在していたとするとG
NO=FxD(F:絞り値、D:距離値)なる式に基づ
きF4が適正露光を得るのに必要な限界絞り値となるた
め、該閃光装置はF4よシも小さな値のFNO(例えば
F’3.5)をプリ発光によって選択する。しかしなが
らこの時点における主キャパシターの充電電圧Fi、3
0QVではなく100Vであるため、この時点の該閃光
装置の実際の閃光能力はGNO20よりも低い値(例え
ばGNOIO)である。このため、この時点で直ちに主
発光がなされた時には5mの被写体に対しては実際には
上記F3.5よりも絞り値の小さな値のF2が限界絞り
値であるため、上記F3.5にて閃光撮影を行なったの
では上記限界距離5mに位置する被写体に対しては適正
露光を得ることが出来ない。
For example, when the main capacitor is fully charged (for example, 300
In the case of a flash device that has a flash capacity corresponding to a GNO of 20 (when charged to 20V), the pre-flash capacitor is charged to 300V as described above, while the main capacitor is charged only to 100V. If you perform a pre-flash in a state where the subject is not in the same position, the pre-flash will be equivalent to GNO20, and if the subject is at a distance of 5m at this time, the G
Based on the formula NO=FxD (F: aperture value, D: distance value), F4 is the limit aperture value necessary to obtain proper exposure, so the flash device uses a smaller value of FNO than F4 (for example, F4). '3.5) is selected by pre-emission. However, the charging voltage of the main capacitor at this point, Fi,3
Since it is not 0QV but 100V, the actual flash capability of the flash device at this point is a value lower than GNO20 (for example, GNOIO). Therefore, if the main flash is fired immediately at this point, the limit aperture for a subject at 5 m is actually F2, which is a smaller aperture value than the above F3.5, so the above F3.5 is used. If flash photography is performed, proper exposure cannot be obtained for a subject located within the above-mentioned limit distance of 5 m.

本発明は上記事項に鑑みなされたもので、ブパシターの
充電電圧の方をプリ発光用のキャパシターよりも高い状
態でプリ発光がなされる様なし上記の欠点を解消するこ
とを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to solve the above-mentioned drawback that pre-emission is not likely to occur when the charging voltage of the passacitor is higher than that of the capacitor for pre-emission.

本発明は上記目的を達成するだめの構成として上記型式
の閃光装置において、主発光がなされた際にプリ発光用
キャパシターに対する放電路を形成し該キャパシターの
電荷を放電させる放電制御回路を設はプリ発光用と主発
光用キャパシターの閃光発光後における充電動作の開始
時点を一致する様なし、閃光発光後における主発光用キ
ャパシターの充電電圧がプリ発光用キャパシターの充電
電圧よりも低い状態となることを防止したものである。
In order to achieve the above object, the present invention provides a flash device of the above type with a discharge control circuit that forms a discharge path for the pre-flash capacitor and discharges the charge of the capacitor when the main light is emitted. It seems that the charging operation start point of the flash and main flash capacitors after the flash is not the same, and the charging voltage of the main flash capacitor after the flash is lower than the charging voltage of the pre-flash capacitor. This was prevented.

前記放電制御回路としては後述の実施例の如く、プリ発
光用閃光放電管及び、該放電管のトリガー回路をシンク
ロスイッチのオンにて作動させる様構成するのみならず
、プリ発光用キャパシターに並列にサイリスターやトラ
ンジスター等から成る半導体スイッチング素子を接続し
、該素子の制御電極サイリスターの場合はゲート、トラ
ンジスターの場合はペースをシンクロスイッチに直接又
は、ワンショット回路等を介して接続しシンクロスイッ
チのオン信号にて上記スイッチング素子を導通させ、プ
リ発光用キャパシターに対する放電路を形成させる様な
しても良いO 又、上記の放電路を形成させるだめの信号手段として、
実施例においては、シンクロスイッチのオン信号により
パルスを出力するワンショット回路を使用しているが、
シンクロスイッチのオフにより上記ワンショット回路を
トリガーしても良い。尚、この場合はシンクロスイッチ
の構成をシャッター先幕の走行に連動してオフとなる様
シンクロスイッチを構成する必要があるO 又、上記信号手段としてはシンクロスイッチのオン又は
オフ信号以外にも、例えば主発光用の放電管に受光素子
を配設し、主発光がなされた時にこれを受光素子にて検
知し、該受光素子出力の変化信号にて上記放電路を形成
させたシ、主発光用放電管をトリガーするトリガー回路
からの信号(例えばトリガーコンデンサーの放電路中に
抵抗を設け、該抵抗出力にて上記放電路を形成させたシ
、主発光用放電管に流れる電流を検知して上記放電路を
形成させたりしても良い。
As in the embodiment described later, the discharge control circuit is not only constructed so that the flash discharge tube for pre-flash and the trigger circuit of the discharge tube is activated when a synchronizer switch is turned on, but also a circuit connected in parallel to the capacitor for pre-flash. A semiconductor switching element consisting of a thyristor, a transistor, etc. is connected, and the control electrode of the element is connected to the gate in the case of a thyristor and the pace in the case of a transistor to the synchro switch directly or through a one-shot circuit, etc., to generate an on signal for the synchro switch. The above-mentioned switching element may be made conductive to form a discharge path for the pre-emission capacitor.Also, as a signal means for forming the above-mentioned discharge path,
In the example, a one-shot circuit is used that outputs a pulse based on the on signal of the synchro switch.
The one-shot circuit may be triggered by turning off the synchro switch. In this case, it is necessary to configure the synchro switch so that it is turned off in conjunction with the movement of the front curtain of the shutter.In addition to the on/off signal of the synchro switch, the above-mentioned signal means may include: For example, a light-receiving element is disposed in a discharge tube for main light emission, the light-receiving element detects this when the main light emission occurs, and the discharge path is formed using a change signal of the output of the light-receiving element. A signal from a trigger circuit that triggers a discharge tube for main light emitting (for example, a resistor is provided in the discharge path of a trigger capacitor, and the discharge path is formed by the output of the resistor), and the current flowing through the discharge tube for main light emission is detected. The above discharge path may also be formed.

以下、本発明を図示の実施例に基づいて詳細に説明する
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図は、本発明の一実施例である電子閃光装置の電気
回路図で、8は電池、9は電源スィッチ、10は直流電
圧を昇圧するI)0.−、IJOコンバータ、11は主
発光用キャパシター41のための充電路を形成する整流
用ダイオード、12はプリ発光用キャパシター13のた
めの充電路を形成する整流用ダイオード、13はプリ発
光用閃光放電管14に光エネルギーを供給するためのプ
リ発光用キャパシター、16は抵抗17とトリガートラ
ンス18とトリガーキャパシター19とトリガーサイリ
スタ20と抵抗21で形成された公知のトリガ回路、2
2は主発光用閃光放電管23をトリガーさせるだめの抵
抗24とトリガーキャパシター25とトリガートランス
26とトリガーサイリスタ27と抵抗28とから形成さ
れた公知のトリガー回路、29は主発光用閃光放電管2
3に逆方向に直列接続され、且つインダクタ30に並列
接続されたダイオード、31.32は転流キャパシター
33の充電抵抗、34は抵抗25を介して主サイリスタ
36のゲートに接続されたキャパシター、37は副サイ
リスタ、38.39は抵抗、40は光量制御回路、41
は撮影用の主発光用閃光放電管23を発光させるための
主キヤパシタ−,42は不図示のシャッターレリーズボ
タンの第1段抑圧によりオンするスイッチ、43はカメ
ラのシャッター先番の走行に連動してオンするシンクロ
スイッチ、該スイッチは実際にはカメラ側に設けられて
いるが説明を簡単にするために閃光装置内に図示してい
る。T1はプリ発光用タイマ回路で例えばワンショット
回路にて構成される。
FIG. 1 is an electrical circuit diagram of an electronic flash device which is an embodiment of the present invention, in which 8 is a battery, 9 is a power switch, and 10 is a voltage increasing DC voltage. -, IJO converter; 11 is a rectifying diode that forms a charging path for the main light emission capacitor 41; 12 is a rectification diode that forms a charging path for the pre-light emission capacitor 13; 13 is a flash discharge for pre-light emission; A pre-emission capacitor for supplying light energy to the tube 14; 16 is a known trigger circuit formed by a resistor 17, a trigger transformer 18, a trigger capacitor 19, a trigger thyristor 20, and a resistor 21;
2 is a known trigger circuit formed from a resistor 24 for triggering the main flash discharge tube 23, a trigger capacitor 25, a trigger transformer 26, a trigger thyristor 27, and a resistor 28; 29 is the main flash discharge tube 2;
3 is a diode connected in series in the reverse direction and connected in parallel to the inductor 30; 31.32 is a charging resistor for the commutating capacitor 33; 34 is a capacitor connected to the gate of the main thyristor 36 via a resistor 25; is a sub-thyristor, 38.39 is a resistor, 40 is a light amount control circuit, 41
Reference numeral 42 is a main capacitor for causing the flash discharge tube 23 for main light emission for photographing to emit light; 42 is a switch that is turned on by pressing the first stage of a shutter release button (not shown); and 43 is a switch that is linked to the movement of the shutter number of the camera. The synchro switch that is turned on when the camera is turned on is actually provided on the camera side, but is shown inside the flash device for ease of explanation. T1 is a timer circuit for pre-light emission, and is constituted by, for example, a one-shot circuit.

T、は主発光用タイマ回路で、該回路も例えばワンショ
ット回路にて構成される。G、は−タイマ回路T、又は
T、よりハイレベルの信号が入力することによりトラン
ジスタ44をオフとするゲート回路、45は被写体から
の反射光を受光する受光素子、46は受光素子45から
の光電流にょ9充電される積分キャパシター、47〜5
1は分圧抵抗、52〜54はコンパレータ、Mは記憶回
路、55〜57はトランジスタ、58−6゜は積分キャ
パシター、G、はゲート回路、61はケート回路G、の
出力によシ開閉するトランジスタ、62.63は分圧抵
抗、64は副サイリスタ37をオンにするコンパレータ
、OPは公知の絞シ制御信号発生回路、64は絞り制御
信号をカメラ側に出力する端子、100,101は上記
タイマー回路T、 、 T、の出力端t3を前記サイリ
スター20のゲートに接続するダイオードである。
T is a timer circuit for main light emission, and this circuit is also constituted by, for example, a one-shot circuit. G is a timer circuit T or a gate circuit that turns off the transistor 44 when a higher level signal than T is input; 45 is a light receiving element that receives reflected light from the subject; 46 is a gate circuit that turns off the transistor 44 when a signal of a higher level than T is input; Integral capacitor charged by photocurrent 9, 47-5
1 is a voltage dividing resistor, 52 to 54 are comparators, M is a memory circuit, 55 to 57 are transistors, 58-6° is an integral capacitor, G is a gate circuit, and 61 is a gate circuit G, which is opened and closed by the output. transistor, 62 and 63 are voltage dividing resistors, 64 is a comparator that turns on the sub-thyristor 37, OP is a known aperture control signal generation circuit, 64 is a terminal that outputs an aperture control signal to the camera side, 100 and 101 are the above-mentioned This is a diode that connects the output end t3 of the timer circuit T, , T, to the gate of the thyristor 20.

次に動作について説明する。電源スィッチ9をオンする
と、Do−DCコンバータloにょシプリ発光用キャパ
シター13にはプリ発光用閃光放電管14が発光するに
充分な電圧が充電される。次にスイッチ42をオンする
と、タイマ回路TIの各端子”t + ”Rが一定時間
ハイVペルとなる・端子t3がハイレベルとなると、公
知のトリガー回路16が動作し、プリ発光用閃光放電管
14は発光を開始する。一方、端子t、からハイレベル
の信号がゲート回路G、の端子t1へ入力すると、端子
t、がローレベルとなシ、トランジスタ44はオフとな
って、積分キャパシタ46の充電を可能にする。受光素
子45は被写体からの反射光を電流に変換して、積分キ
ャパシター46を充電させる0積分キャパシター46の
充電電圧は被写体からの反射光を積算した値に比例した
ものとなる0分圧抵抗47〜51の分圧点a”−cの電
位は、被写体距離の近距離、中距離、遠距離に対応して
それぞれ定められている。例えば、遠距離であれば、積
分キャパシター46の充電電圧はプリ発光が終った時点
で、分圧点Cの電位よシ高く、分圧点すの電位より低い
値となる。したがって、コンパレータ54のみがハイレ
ベルの信号を出力する。また、中距離であれば、コンパ
レータ53,54がハイレベルの信号を出力し、近距離
であれば、コンパレータ52〜54のすべてがハイレベ
ルの信号を出力する。一定時間の後、プリ発光用タイマ
回路T、の端子t2から記憶回路Mの端子t7への入力
がハイレベルからローレベルに反転すると、記憶回路M
はその時の端子t1〜t、の入力レベルを記憶し、その
入力レベルに基づいてトランジスタ55〜57の一つを
オンさせる。例えば、コンパレータ52〜54の出力が
すべてハイレベルであれば、トランジスタ55をオンさ
せ、近距離用の積分キャパシター58を選択する。
Next, the operation will be explained. When the power switch 9 is turned on, the Do-DC converter is charged with sufficient voltage to cause the flash discharge tube 14 for pre-emission to emit light in the pre-emission capacitor 13. Next, when the switch 42 is turned on, each terminal "t + "R of the timer circuit TI becomes a high Vpel for a certain period of time. When the terminal t3 becomes a high level, the known trigger circuit 16 is activated and a flash discharge for pre-emission is started. The tube 14 starts emitting light. On the other hand, when a high level signal is input from terminal t to terminal t1 of gate circuit G, terminal t becomes low level, transistor 44 is turned off, and integration capacitor 46 can be charged. The light receiving element 45 converts the reflected light from the object into a current and charges the integrating capacitor 46. The charging voltage of the integrating capacitor 46 is proportional to the integrated value of the reflected light from the object. The potentials at the voltage dividing points a"-c of ~51 are determined depending on the short, middle, and long distances of the subject. For example, if the subject is far, the charging voltage of the integrating capacitor 46 is At the end of the pre-emission, the potential is higher than the voltage at the voltage dividing point C and lower than the voltage at the voltage dividing point S. Therefore, only the comparator 54 outputs a high level signal. For example, the comparators 53 and 54 output high-level signals, and if the distance is short, all the comparators 52 to 54 output high-level signals.After a certain period of time, the terminal of the pre-emission timer circuit T, When the input to the terminal t7 of the memory circuit M is reversed from high level to low level from t2, the memory circuit M
stores the input level of the terminals t1 to t at that time, and turns on one of the transistors 55 to 57 based on the input level. For example, if the outputs of the comparators 52 to 54 are all at high level, the transistor 55 is turned on and the short distance integrating capacitor 58 is selected.

同時に、トランジスタ55〜57のいずれか一つのオン
に応じて、絞り制御信号発生回路OPは絞多制御信号を
発生し、端子65からカメラ側に送シ、レンズの絞りを
被写体距離に応じて変えさせる。
At the same time, in response to one of the transistors 55 to 57 being turned on, the aperture control signal generation circuit OP generates an aperture control signal and sends it from the terminal 65 to the camera side, changing the aperture of the lens according to the subject distance. let

次にレリーズボタンの第2段押下によシ、カメラのシャ
ッターレリーズを行なわせ、その結果シャッター先幕の
走行にてシンクロスイッチ43がオンになると、主発光
用タイマ回路T2の端子”t+”3が一定時間ハイレベ
ルとなる。端子t3がハイレベルになると、公知のトリ
ガー回路22が動作し、主発光用閃光放電管23は発光
を開始する。−刃端子t2から−・イレベルの信号がゲ
ート回路G、の端子t、へ入力すると、端子t8はロー
レベルとなり、トランジスタ61をオフとする。これに
よって、記憶回路Mによって選択された積分キャパシタ
ー58〜60の一つの充電が可能となる。主発光用閃光
放電管23の閃光が被写体に反射して、受光素子45に
受光されると、電流に変換され、記憶回路Mによって選
択された積分キャパシター58〜60の一つに充電され
る。積分キャパシター58〜60の一つの充電電圧が分
圧抵抗62 、、630分圧点電圧(基準電圧)より高
くなると、コンパレータ64がハイレベルの信号を副サ
イリスタ37へ出力するため、副サイリスタ37がオン
し、転流キャパシター33の充電電荷により、主サイリ
スタ36を逆バイヤスして、主サイリスタ36をオフに
し、主発光用閃光放電管230発光を停止させる。
Next, by pressing the second stage of the release button, the shutter of the camera is released, and as a result, when the synchro switch 43 is turned on by the movement of the shutter front curtain, the terminal "t+" 3 of the main flash timer circuit T2 remains at a high level for a certain period of time. When the terminal t3 becomes high level, the known trigger circuit 22 is activated and the main flash discharge tube 23 starts emitting light. When a high level signal is input from the -blade terminal t2 to the terminal t of the gate circuit G, the terminal t8 becomes low level and the transistor 61 is turned off. This allows charging of one of the integrating capacitors 58-60 selected by the memory circuit M. When the flash light from the main light emitting flash discharge tube 23 is reflected by the subject and received by the light receiving element 45, it is converted into a current, and one of the integrating capacitors 58 to 60 selected by the memory circuit M is charged. When the charging voltage of one of the integrating capacitors 58 to 60 becomes higher than the voltage dividing point voltage (reference voltage) of the voltage dividing resistors 62, 630, the comparator 64 outputs a high level signal to the sub thyristor 37, so that the sub thyristor 37 The main thyristor 36 is reverse biased by the charge in the commutation capacitor 33, and the main thyristor 36 is turned off, causing the main light emitting flash discharge tube 230 to stop emitting light.

なお、主発光用タイマ回路T、の端子t2からのハイレ
ベルの信号がゲート回路G、に入力することによシ、ト
ランジスタ44がオフし、積分キャパシター46が受光
素子45を流れる電流により充電されるが、積分キャパ
シター46の容量は積分キャパシター58〜60の容量
に比べて相当小さいので、積分キャパシター46の充電
によるロスを無視することができる。
Note that when a high-level signal from the terminal t2 of the main light emission timer circuit T is input to the gate circuit G, the transistor 44 is turned off, and the integral capacitor 46 is charged by the current flowing through the light receiving element 45. However, since the capacitance of the integral capacitor 46 is considerably smaller than that of the integral capacitors 58 to 60, the loss due to charging of the integral capacitor 46 can be ignored.

又、上記の如くしてタイマー回路T、の端子t3からの
ハイレベルの信号にて主発光がなされる際に、該端子t
、からのハイレベルの信号がダイオード100を介して
トリガー回路16に伝わる。よって、主発光と同期して
プリ発光が行なわれコンテンサー13の電荷は主発光と
同期して放電される。尚、プリ発光による被写体からゾ の反射光量はプリ発光用キャパシターの容量輌主発光用
のキャパシターの容量に比して極めて小さな値に設定さ
れているため、主発光による反射光量に対して無視出来
るものであシ、主発光とプリ発光が同時に行なわれても
問題はない。
Further, when main light emission is performed by a high level signal from the terminal t3 of the timer circuit T as described above, the terminal t3
, is transmitted to the trigger circuit 16 via the diode 100. Therefore, the pre-light emission is performed in synchronization with the main light emission, and the charge in the capacitor 13 is discharged in synchronization with the main light emission. Note that the amount of light reflected from the subject by the pre-flash is set to an extremely small value compared to the capacitance of the capacitor for the pre-flash and the capacitance of the capacitor for the main flash, so it can be ignored compared to the amount of light reflected by the main flash. However, there is no problem even if the main light emission and pre-light emission are performed at the same time.

上記の如くして主発光が行なわれた後に主キヤパシタ−
41への充電が開始されるのであるが、該主キヤパシタ
−41の充電開始時点における電圧はフル発光がなされ
た際にはほぼゼロレベルから開始されそれ以外は所定の
電圧レベルから開始される。一方、上記プリ発光用キャ
パシター13も主発光と同期して放電された後に充電を
開始するのであるが、該キャパシターは常にフル放電さ
れるので充電開始時点の電圧は常にほぼゼロレベルとな
る。
After the main light emission is performed as described above, the main capacitor
41, the voltage at the start of charging of the main capacitor 41 starts from almost zero level when full light is emitted, and otherwise starts from a predetermined voltage level. On the other hand, the pre-light emission capacitor 13 also starts charging after being discharged in synchronization with the main light emission, but since the capacitor is always fully discharged, the voltage at the start of charging is always at almost zero level.

今、上記主発光によって主キヤパシタ−41の残量電圧
が100vであるとする。この状態では、プリ発光用キ
ャパシター13がゼロレベルから100■まで充電され
た後に主キヤパシタ−41への充電が行なわれる。
Now, assume that the remaining voltage of the main capacitor 41 is 100V due to the main light emission. In this state, the main capacitor 41 is charged after the pre-emission capacitor 13 has been charged from zero level to 100 cm.

又、主発光によって主キヤパシタ−41の残i′a圧が
ゼロノベルとなった場合は主発光後の充電にて主キャパ
シター及びプリ発光用キャパシターが共に充電されるの
で、この場合は主キャパシター及びプリ発光用キャパシ
ターの充電レベルは常に一致している。
Furthermore, if the residual i'a pressure in the main capacitor 41 reaches zero level due to the main light emission, both the main capacitor and the pre-light emission capacitor are charged during charging after the main light emission. The charge level of the luminescent capacitor is always the same.

以上の如くして主発光後常にプリ発光用キャパシターの
充電レベルよシも主キャパシターの充電レベルの方が高
い状態又は一致している状態となる。従って、主発光後
、プリ発光を行なわせだ時のプリ発光時のGNOと、そ
の時の実際の閃光装置のGNOとは一致もしくは実際の
閃光装置のGNOの方が畠くなジ、上述の様な欠点を防
止出来る。
As described above, after the main light emission, the charge level of the main capacitor is always higher than or equal to the charge level of the pre-light emission capacitor. Therefore, the GNO at the time of the pre-flash when pre-flash is started after the main flash and the GNO of the actual flash device at that time may be the same or the GNO of the actual flash device may be different, as mentioned above. It is possible to prevent defects.

即ち、プリ発光時のGNOと実際のGNOとが一致して
いる時には、実質的に主発光がなされた時のGNOに基
づいて絞pが決定されることになるので、被写体がGN
O二DXF (決定されたFNO)にて決定される限界
距離に位置している場合にあっても、常に適正なる露光
がなされる。又、プリ発光時のGNOの方がその時の閃
光装置のGNOよりも低い時にあってもGNO(プリ発
光時のGNO)=D(限界距離)xp(プリ発光により
決められたFN O)なる式に基づく限界距離よりもG
NO(実際の閃光能力を表わすGNO) =I) (限
界距離)×F(プリ発光により決められたFNO)にて
決定される限界距離の方が長くなるため、たとえプリ発
光時のGNOに基づく限界距離に被写体が位置していた
としても、適正露光が得られるものである。
In other words, when the GNO at the time of pre-flash and the actual GNO match, the aperture p is determined based on the GNO at the time of the main flash, so if the subject is GN
Even when the object is located at the limit distance determined by O2DXF (determined FNO), proper exposure is always performed. Also, even if the GNO at the pre-flash is lower than the GNO of the flash device at that time, the formula GNO (GNO at the pre-flash) = D (limit distance) xp (FNO determined by the pre-flash). G than the critical distance based on
NO (GNO representing actual flash ability) = I) (Limit distance) x F (FNO determined by pre-flash) The limit distance determined by FNO is longer, so even if it is based on GNO at pre-flash Even if the subject is located at the critical distance, proper exposure can be obtained.

以上の如く本発明によれば、プリ発光用キャパシターを
主発光時において放電する様なしているので、常にプリ
発光用キャパシターと主発光用キャパシターの充電レベ
ルを一致もしくは主発光用キャパシターの方が高レベル
状態におくことが出来、上述の従来装置の欠点を解消し
得るものである。
As described above, according to the present invention, since the pre-flash capacitor is discharged during main light emission, the charge level of the pre-flash capacitor and the main light-emission capacitor are always the same or the charge level of the main light-emission capacitor is higher. It can be placed in a level state, and the above-mentioned drawbacks of the conventional device can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る閃光装置の一実施例を示す回路図
である。
FIG. 1 is a circuit diagram showing an embodiment of a flash device according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] ブリ発光用の電荷を充電するプリ発光用キヤの電荷を放
電管に放電し主発光を行なわせる以前にブリ発光用キャ
パシターの電荷を放電管に放電しプリ発光を行なわせ、
該プリ発光による被写体からの反射光を測光し主発光時
に使用する絞り値を決定する閃光装置において主発光に
際して前記ブリ発光用キキパシターの蓄積電荷に対する
放電路を形成する放電制御回路を設けた事を特徴とする
閃光装置。
Before discharging the charge of the pre-light emission carrier which charges the charge for the flash light emission into the discharge tube and causing the main light emission, the charge of the flash light emission capacitor is discharged to the discharge tube to perform the pre-light emission.
In a flash device that measures the light reflected from the subject by the pre-flash and determines the aperture value to be used during the main flash, a discharge control circuit is provided to form a discharge path for the charge accumulated in the preflash capacitor during the main flash. Features a flash device.
JP57195061A 1982-11-06 1982-11-06 Flash device Pending JPS5984231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195061A JPS5984231A (en) 1982-11-06 1982-11-06 Flash device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195061A JPS5984231A (en) 1982-11-06 1982-11-06 Flash device

Publications (1)

Publication Number Publication Date
JPS5984231A true JPS5984231A (en) 1984-05-15

Family

ID=16334901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195061A Pending JPS5984231A (en) 1982-11-06 1982-11-06 Flash device

Country Status (1)

Country Link
JP (1) JPS5984231A (en)

Similar Documents

Publication Publication Date Title
JPS6169049A (en) Electronic flash device
JPS5984231A (en) Flash device
JPS61185735A (en) Electronic flash device
JPH0220088B2 (en)
US4089013A (en) Flashlight information signal generating device for a camera
JPS5888731A (en) Test flashing device of flash discharge light emitting device
GB2125978A (en) Photographic flash device
JPS5953820A (en) Flash device for additional multiple lighting
JPS5825595Y2 (en) Multi-light device that can control the amount of light emitted
JPS60146498A (en) Serial controlled strobe device
JPS6128184Y2 (en)
JPS5981633A (en) Electronic flash device
JPS58108521A (en) Two-light type automatic dimming and flashing device
JPS6339696Y2 (en)
JPS6239408B2 (en)
JPH0621910B2 (en) Continuous flash strobe device
JPH0617962B2 (en) Continuous flash strobe device
JPS6244722A (en) Multiple electronic flash photographing device
JPS5858529A (en) Flash light quantity controller for camera
JPS60158427A (en) Automatic dimming electronic flash
JPH0462369B2 (en)
JPS6236649A (en) Multilamp stroboscopic photographing device
JPS597369B2 (en) Combination device of photographic camera and strobe device
JPS61190323A (en) Exposure control circuit for flat lighting strobe
JPS60136723A (en) Automatic dimming signal circuit of flash discharge light emitting device