JPS5984202A - Infrared optical fiber and its manufacture - Google Patents

Infrared optical fiber and its manufacture

Info

Publication number
JPS5984202A
JPS5984202A JP57195661A JP19566182A JPS5984202A JP S5984202 A JPS5984202 A JP S5984202A JP 57195661 A JP57195661 A JP 57195661A JP 19566182 A JP19566182 A JP 19566182A JP S5984202 A JPS5984202 A JP S5984202A
Authority
JP
Japan
Prior art keywords
core
optical fiber
compd
infrared fiber
chalcogenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57195661A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kubo
久保 良宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP57195661A priority Critical patent/JPS5984202A/en
Publication of JPS5984202A publication Critical patent/JPS5984202A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To manufacture an IR optical fiber superior in mechanical strength, durability, and permeability by coating the outer circumference of a core made of a metallic halide type compd. with a heated and softened chalcogenide compd. to form a clad part. CONSTITUTION:A metallic halide type compd. A, such as AgBr, is contained in the container 1 of an extrusion molding machine is pressed with a stem 3, and extrusion molded through the opening 4 of a die 3 to form the core 6 of an IR optical fiber 5. This is introduced into a chalcogenide compd. 11, such as Ge.S, fed from a feeding port 10 into a softening container 7 and made viscous like starch syrup with a heater 8 to coat the outer circumference of the core 6, and a clad part 16 is formed after cooling, thus obtaining an IR optical fiber 5 of a step index type.

Description

【発明の詳細な説明】 本発明は、金属ハライド系化合物をコア部とする赤外フ
ァイバ及びその製造方法に関する。従来この種赤外ファ
イバ(コア部が金属ハライド系化合物で形成されている
赤外ファイバ)としては、クラッド部にAgC1を用い
たものがあるが、AgCf自身柔かいため機械強度、耐
久性が不充分であり、又、その製造方法の一つ1よ竹状
のAgC1!内に棒状の金属ハライド系化合物を挿入し
たものをアルミパイプ内に入れて引き抜き、線引加工を
行なうというものであり、この方法ではコア部とクラッ
ド部とのW而に一様な応力で変形を加えることが困・碓
なため前記界面が凹凸状となり、製造された赤外ブrイ
バーの透過性が悪いという欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared fiber having a core made of a metal halide compound and a method for manufacturing the same. Conventional infrared fibers of this type (infrared fibers whose core is made of a metal halide compound) use AgC1 for the cladding, but because AgCf itself is soft, its mechanical strength and durability are insufficient. And, one of the manufacturing methods is bamboo-like AgC1! A rod-shaped metal halide compound is inserted inside the aluminum pipe and pulled out to perform the wire drawing process.In this method, the core and cladding parts are deformed by uniform stress. Since it is difficult and difficult to add the above-mentioned infrared rays, the interface becomes uneven, resulting in the disadvantage that the produced infrared breaker has poor transmittance.

本発明は、これらの従来欠点に鑑み、機械強度、耐久性
及び透過性のいずれにおいても優れ、目、つ製造が容易
である7、金属ハライド系化合物をコア部とする赤外フ
ァイバ及びその製造方法を提供することを目的とする。
In view of these conventional drawbacks, the present invention provides an infrared fiber having a core made of a metal halide compound, which has excellent mechanical strength, durability, and transparency, and is easy to manufacture. The purpose is to provide a method.

以下、本発明の実施例を図面に基いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図、v;2図は本発明の一実施例を示し、同図にお
いて、lは押出し成形機のコンテナ、2はグイ、3はス
テムであって、コンテナ1内に収容された金属ハライド
系化合物A (AgBr又はTV−X。Xは、C/’ 
+  Brz (C1+ Br  ) +  (Br+
I )、  (C1+Br −1−I )などである。
Figures 1 and 2 show an embodiment of the present invention, in which 1 is a container of an extrusion molding machine, 2 is a guide, 3 is a stem, and metal halide is housed in the container 1. Compound A (AgBr or TV-X. X is C/'
+ Brz (C1+ Br) + (Br+
I), (C1+Br-1-I), etc.

)はステム3に抑圧されてダイ2の開口4より押出し成
形され、赤外ファイバ5のコア部6が形成される。次に
、7は軟化用コンテナ、8は加熱用ヒータ、9は雰囲気
調整用カバーであって、投入口10からコンテナ7内に
投入されたカルコゲナイド化合部11(後述)はヒータ
8により加熱されて軟化し且つ水あめ状となり、押出し
成形中のコア部6外周に被覆され、爾後冷却されてクラ
ッド部12が形成され、ステップインデックス型の赤外
ファイバ5が製造される。このとき入口13から導入さ
れ出口14から排出されるArガスによって赤外ファイ
バ5成形時の雰囲気が調整される。句15は空気ぬき孔
、16は栓である。
) is pressed by the stem 3 and extruded from the opening 4 of the die 2 to form the core portion 6 of the infrared fiber 5. Next, 7 is a container for softening, 8 is a heater for heating, and 9 is a cover for atmosphere adjustment, and a chalcogenide compound 11 (described later) that is introduced into the container 7 from an input port 10 is heated by the heater 8. It softens and becomes syrup-like, coats the outer periphery of the core part 6 which is being extruded, and is then cooled to form a clad part 12, thereby producing a step index type infrared fiber 5. At this time, the atmosphere during molding of the infrared fiber 5 is adjusted by Ar gas introduced from the inlet 13 and discharged from the outlet 14. Numeral 15 is an air vent, and 16 is a plug.

611記力ルコゲナイド化合物としては、たとえば、■
Ge*S、■As11S、あるいは■As@SにTl+
  C1,Br、I、F、Set  Te、Sb。
Examples of the 611-dyelucogenide compounds include ■
Tl+ for Ge*S, ■As11S, or ■As@S
C1, Br, I, F, Set Te, Sb.

Geのうち一以上を適当用ブレンドしたものなどが用い
られ加熱により容易に軟化してあめ状となる。(たとえ
ばGe m Sの場合、軟化点380°C)次に、第3
図は、本発明の別実施例を示す。この実施例では、予じ
め押出し成形により製作した、金属ハライド系化合物よ
りなる長尺状のコア部6を巻取りボビン17に巻取って
おき、次にこれを順次矢印方法に操り出して、その外局
にヒータ18により加熱され軟化して水あめ状となった
カルコゲナイド化合物(前述)11を被゛rυし爾後冷
却してステップインデックス型の赤外ファイバ5を製造
するものである。
A suitable blend of one or more of Ge is used, and it is easily softened by heating to become candy-like. (For example, in the case of Ge m S, the softening point is 380°C) Next, the third
The figure shows another embodiment of the invention. In this embodiment, an elongated core part 6 made of a metal halide compound, manufactured in advance by extrusion molding, is wound up on a winding bobbin 17, and then the core part 6 is sequentially rolled out in the direction of the arrow. The step index type infrared fiber 5 is manufactured by heating the chalcogenide compound (described above) 11, which has been softened and becomes starch syrup-like by being heated by the heater 18, and then cooling it.

尚、図中19は加熱るつぼである。この他に予じめ成形
したコア部の外周に、蒸着法を用いてカルコゲナイド化
合物を蒸着して赤外ファイバを製造してもよい。前記三
つの製造方法のいずれによっても、冒頭に記載した従来
方法のようにコア部−クラッド部の界面が凹凸状になる
ようなことがなく、従って赤外ファイバの透過性が向上
する。
In addition, 19 in the figure is a heating crucible. Alternatively, an infrared fiber may be manufactured by depositing a chalcogenide compound on the outer periphery of a pre-formed core using a vapor deposition method. In any of the three manufacturing methods described above, unlike the conventional method described at the beginning, the interface between the core part and the cladding part does not become uneven, and therefore the transmittance of the infrared fiber is improved.

又、製作された赤外ファイバは、カルコゲナイド化合物
の物性に基き、機械強度、耐久性において、従来のAg
Cl!をクラッド部とするものに比較しはるかに優れて
いる。
In addition, the manufactured infrared fiber has mechanical strength and durability superior to that of conventional Ag based on the physical properties of the chalcogenide compound.
Cl! This is far superior to those with a cladding part.

以上説明したように、本発明によれば透過性、機械強度
、i@久住の点で優れた、金属ハライド系化合物をコア
部とする赤外ファイバを得られ、その製造もクラッド部
となるカルコゲナイド化合物の特性である軟化しやすい
点、蒸着しやすい点を利用し容易に行なうことができる
As explained above, according to the present invention, it is possible to obtain an infrared fiber having a metal halide compound as the core part, which is excellent in terms of transparency, mechanical strength, and i@kusumi, and its production is also possible using chalcogenide as the cladding part. This can be easily carried out by taking advantage of the characteristics of the compound, which are that it is easy to soften and that it is easy to vapor deposit.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図は本発明の赤外ファイバの製造方法を示す縦断面
図、第2図は赤外ファイバの縦断面図、第3図は本発明
にかかる製造方法の別実施例を示す説明図である。 5・・・赤外ファイバ、6・・・コア部、11・・カル
コゲナイド化合物、12・・・クラッド部、A・・金属
ノXライド系化合物。
FIG. 4 is a longitudinal cross-sectional view showing the infrared fiber manufacturing method of the present invention, FIG. 2 is a vertical cross-sectional view of the infrared fiber, and FIG. 3 is an explanatory diagram showing another embodiment of the manufacturing method according to the present invention. be. 5... Infrared fiber, 6... Core part, 11... Chalcogenide compound, 12... Clad part, A... Metal no Xride based compound.

Claims (1)

【特許請求の範囲】 (1)  コア部が金属ハライド系化合物で構成され、
クラッド部がカルコゲナイド化合物で構成されている赤
外ファイバ (z)金属ハライド系化合物よりなりコア部の外周を、
加熱により軟化した状態のカルコゲナイド化合物で被覆
してクラッド部を形成することを特徴とする赤外ファイ
バの製造方法 (3)  コア部の押出し成形時に前記被覆を行なう特
許請求の範囲第(2)項に記載の赤外ファイバの製造方
法 (4)予じめ成形したコア部を移送しつつ前記被覆を行
なう特許請求の範囲第(2)項に記載の赤外ファイバの
製造方法 (5)予じめ成形した金属ハライド系化合物よりなるコ
ア部を蒸着法によりカルコゲナイド化合物で被覆しそク
ラッド部を形成することを特徴とする赤外ファイバの製
造方法
[Claims] (1) The core portion is composed of a metal halide compound,
Infrared fiber (z) whose cladding part is made of a chalcogenide compound.The outer circumference of the core part is made of a metal halide compound.
A method for manufacturing an infrared fiber (3), characterized in that the cladding portion is formed by coating with a chalcogenide compound softened by heating. Claim (2), wherein the coating is performed during extrusion molding of the core portion. (4) The method for manufacturing an infrared fiber according to claim (2), in which the coating is carried out while transferring the preformed core part. A method for producing an infrared fiber, which comprises forming a core made of a metal halide compound and forming a cladding part by coating the core part with a chalcogenide compound by a vapor deposition method.
JP57195661A 1982-11-06 1982-11-06 Infrared optical fiber and its manufacture Pending JPS5984202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195661A JPS5984202A (en) 1982-11-06 1982-11-06 Infrared optical fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195661A JPS5984202A (en) 1982-11-06 1982-11-06 Infrared optical fiber and its manufacture

Publications (1)

Publication Number Publication Date
JPS5984202A true JPS5984202A (en) 1984-05-15

Family

ID=16344882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195661A Pending JPS5984202A (en) 1982-11-06 1982-11-06 Infrared optical fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS5984202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564587B2 (en) * 2000-09-01 2003-05-20 Viatcheslav Artiouchenko Method of producing an optical fiber by gathering material from a molten bath

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564587B2 (en) * 2000-09-01 2003-05-20 Viatcheslav Artiouchenko Method of producing an optical fiber by gathering material from a molten bath

Similar Documents

Publication Publication Date Title
US4061484A (en) Process for producing gradient fibers
JPS5984202A (en) Infrared optical fiber and its manufacture
WO1983003145A1 (en) Process for manufacturing optical multiple fiber
JPS63249631A (en) Manufacture of fiber reinforced synthetic resin molded article
JP7115095B2 (en) Manufacturing method of preform for optical fiber
JP3517848B2 (en) Manufacturing method of optical fiber preform
JPS621331B2 (en)
JPH1135335A (en) Production of optical fiber preform
JPH02501384A (en) Method for manufacturing optical fiber using preform obtained by reducing the diameter of a tube
JP2020059646A5 (en)
JP5459241B2 (en) Glass base material manufacturing method
JPS5828706A (en) Production of optical fiber bundle having flexibility
JPS6012981B2 (en) Manufacturing method of optical fiber base material
JPS6051083B2 (en) Optical transmitter for infrared transmission
GB2180232A (en) Optical fibre
JPS60145926A (en) Production of base material for optical fiber
JPS5911881B2 (en) Optical fiber manufacturing method
GB2133786A (en) Silica tube manufacture
JPH02120703A (en) Image fiber and its manufacture
JPH04250026A (en) Manufacture of bent formed hose
JPS5992937A (en) Production of optical fiber
JPS63151639A (en) Production of glass preformer for optical fiber
JPH07267669A (en) Production of multiple structure material
JPH04250025A (en) Manufacture of bent formed hose
JPS6114085B2 (en)