JPS598409A - Monopulse antenna - Google Patents

Monopulse antenna

Info

Publication number
JPS598409A
JPS598409A JP11745682A JP11745682A JPS598409A JP S598409 A JPS598409 A JP S598409A JP 11745682 A JP11745682 A JP 11745682A JP 11745682 A JP11745682 A JP 11745682A JP S598409 A JPS598409 A JP S598409A
Authority
JP
Japan
Prior art keywords
horn
antenna
primary
horns
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11745682A
Other languages
Japanese (ja)
Other versions
JPH0440883B2 (en
Inventor
Yuji Numano
沼野 雄司
Takashi Sasagawa
笹川 敬司
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP11745682A priority Critical patent/JPS598409A/en
Publication of JPS598409A publication Critical patent/JPS598409A/en
Publication of JPH0440883B2 publication Critical patent/JPH0440883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To make an angle detecting sesitivity sensible remarkably, by mounting a cruciform control plate of radiating direction on an aperature of a primary horon system, in a monopulse antenna of the simultaneous lobing system using four horns. CONSTITUTION:The cruciform control plate 18 of radiating direction is mounted on the aperature 19 of the primary horn system, in the monopulse antenna of the simultaneous lobing system using four horns. Thus, the secondary directivity of each unit horn is converged to an antenna center axis 5, resulting that a sum singal level is increase, the distance detecting sensitivity is improved, the slope of descending of an incoming signal to a null point is made steep at the same time and the angle detecting sensitivity is sensible remarkably. Further, the construction is simple and the economical in comparison with a 12-horn and a 16-horn system.

Description

【発明の詳細な説明】 本発明は受信用のモノパルスアンテナに関する。さらに
詳しくはモノパルスアンテナの角度誤差検出感度を向上
させる一次ホーン系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a monopulse antenna for reception. More specifically, the present invention relates to a primary horn system that improves the angle error detection sensitivity of a monopulse antenna.

同時ロービング方式のモノパルスアンチf(ti、単一
パルス応答で瞬時にアンテナの方位指向誤差を検出する
。このために少くとも4個の1次ホーンを用いて、直交
する2軸についての角度誤差を得る。すなわち1次ホー
ンの出力の和信号端子に受信信号を、差信号端子に角度
誤差信号を得る。上記差信号は、アンテナが到来波に正
対した場合には入力がなく、到来来波に対して偏位した
場合には偏位角度に対して双峰性の特性を持つ。モノパ
ルスアンテナにおいては両ピークの中央のヌル点の方向
にアンテナを向けることにより、アンテナが電波到来方
向を追尾する。この目的のためには両ピーク値より中心
軸方向のヌル点への落込み傾斜が急峻なtlど、角度検
知感度が高いことになる。
Simultaneous roving monopulse anti-f(ti) instantly detects the azimuth pointing error of the antenna with a single pulse response.For this purpose, at least four primary horns are used to detect the angular error about two orthogonal axes. In other words, the received signal is obtained at the sum signal terminal of the output of the primary horn, and the angular error signal is obtained at the difference signal terminal.The above difference signal has no input when the antenna is directly facing the incoming wave; When the antenna is deflected from the peak, it has a bimodal characteristic with respect to the deflection angle.In a monopulse antenna, by pointing the antenna toward the null point in the center of both peaks, the antenna tracks the direction of arrival of the radio wave. For this purpose, the angle detection sensitivity is high, such as tl, which has a steeper slope to the null point in the central axis direction than both peak values.

一方給電用導波管の開口径を拡大するパラボラアンテナ
としての性能を考慮すると、−次ホーンによる励振波の
主反射鏡からのスピルオーバー量を抑えて広角指向性を
改善し、反射鏡開口面に対し最適照度分布として利得を
向上するためには、最適開口径の一次ホーンを必要とす
る。このようなホーンを使用して4ポ一ン方式の一次ホ
ーン系を構成すると、各ホーンの放射中心のアンテナ中
心軸からの偏位量が大きくなり、その結果和信号の最大
レベルは構成する個々のホーンの励撮による最大レベル
に比較してそれ程レベルアップされず、距離検知感度が
低い。また差信号のヌル点への落込み傾斜が緩かとなり
、追尾アンテナとしての角度検知感度も劣化する欠点が
ある。この理由により従来は、4個のホーンを用いる一
次ホーン系は実用に供せられなかった。
On the other hand, considering the performance as a parabolic antenna that expands the aperture diameter of the feeding waveguide, it is possible to improve wide-angle directivity by suppressing the amount of spillover of the excitation wave from the main reflector by the -order horn, and to On the other hand, in order to improve the gain with an optimal illuminance distribution, a primary horn with an optimal aperture diameter is required. When such a horn is used to configure a four-point primary horn system, the deviation of the radiation center of each horn from the antenna center axis becomes large, and as a result, the maximum level of the sum signal is higher than that of each of the constituent individual horns. Compared to the maximum level due to excitation of the horn, the level is not increased much, and the distance detection sensitivity is low. In addition, there is a drawback that the slope of the difference signal falling to the null point is gentle, and the angle detection sensitivity of the tracking antenna is also degraded. For this reason, a primary horn system using four horns has not been put to practical use in the past.

これの改善策として、12ホ一ン方式とか16ホ一ン方
式のマルチホーン方式によるアレーアンテナで、−次ホ
ーン系の励振波の指向性を成形する方法が実用化されて
いる。しかしこれらの方式では個々のアンテナに位相制
御器を必要として経済性がないばかυか、多数個ホーン
の組合せで一次ホーンを構成するのでアンテナ開口面の
ブロッキング損失も犬となり、利得が劣化する欠点もあ
る。
As a measure to improve this, a method has been put into practical use in which the directivity of the excitation wave of the -order horn system is shaped using a multi-horn array antenna such as a 12-horn system or a 16-horn system. However, these systems either require a phase controller for each antenna and are not economical, or because the primary horn is composed of a combination of multiple horns, blocking loss at the antenna aperture is also a problem, resulting in degraded gain. There is also.

本発明は各−次ホーンの特性を改良して、従来かえりみ
られなかった4ホ一ン方式の一次ホーン系を実用化する
とともに、上記12ホ一ン方式とか16ホ一ン方式のマ
ルチホーン方式の欠点を改善した、高能率かつ紅済的な
モノパルスアンテナを提供するものである。
The present invention improves the characteristics of each order horn to put into practical use a 4-horn type primary horn system, which has not been seen before, as well as a multi-horn system such as the 12-horn type or 16-horn type. The present invention provides a highly efficient and cost-effective monopulse antenna that improves the disadvantages of the prior art.

以下、図面を参照しながら本発明を説明する。The present invention will be described below with reference to the drawings.

第1図はカセグレンアンテナを用いたモノパルスアンテ
ナの概念図、第2図はカセグレンアンテナにおける一次
ホーンの偏位および副反射鏡の回転偏位の影響を示す概
念図である。
FIG. 1 is a conceptual diagram of a monopulse antenna using a Cassegrain antenna, and FIG. 2 is a conceptual diagram showing the influence of the deviation of the primary horn and the rotational deviation of the sub-reflector in the Cassegrain antenna.

第1図に示す主反射鏡・副反射鏡・−次ホーンより構成
されるカセグレンアンテナをアンテナの代表例にして、
以下モノパルスアンテナを説明する。
Taking the Cassegrain antenna shown in Fig. 1, which is composed of a main reflector, a sub-reflector, and a -order horn, as a typical example of an antenna,
The monopulse antenna will be explained below.

第1図において%Fr1FVは副反射鏡(双曲面反射鏡
)1の第1.第2焦点であり、−次ホーン2の位相の中
心はFrと一致し、また主反射鏡(パラボラ反射鏡)3
の焦点はFVと一致している。二点鎖線の曲面4はFr
を焦点とする、とのカセグレンアンテナに等価なパラボ
ラ反射鏡を、参考として図示したものである。Fmをパ
ラボラ反射鏡(主反射鏡)3の焦点距離r F cを双
曲面反射鏡(副反射鏡)1の2焦点間距離+Feを等価
パラボラ反射鏡4の焦点距離、eを双曲面反射鏡1の離
心率+ Dmを主反射鏡3の直径I D。
In FIG. 1, %Fr1FV is the 1st. It is the second focal point, and the phase center of the -order horn 2 coincides with Fr, and the main reflecting mirror (parabolic reflecting mirror) 3
The focus of is coincident with FV. The curved surface 4 indicated by the two-dot chain line is Fr
A parabolic reflector equivalent to a Cassegrain antenna with a focal point of , is shown for reference. Fm is the focal length r of the parabolic reflector (main reflector) 3, F c is the bifocal distance of the hyperboloid reflector (sub-reflector) 1 + Fe is the focal length of the equivalent parabolic reflector 4, e is the hyperboloid reflector The eccentricity of 1 + Dm is the diameter ID of the main reflector 3.

を副反射鏡1の直径、φrを副反射鏡1の第1焦点Fr
と副反射鏡1の縁端のなす角度、φVを主反射鏡3の焦
点Fvと主反射鏡3の縁端のなす角度とすると、カセグ
レンアンテナの性質として、が成立する。なお、第1図
においてアンテナ中心軸5はZ軸方向であり、主反射鏡
3のX軸はXm +副反射鏡1のX軸はXsで表わされ
ている。
is the diameter of the sub-reflector 1, φr is the first focus Fr of the sub-reflector 1
If φV is the angle between the focal point Fv of the main reflecting mirror 3 and the edge of the main reflecting mirror 3, then the properties of the Cassegrain antenna are as follows. In FIG. 1, the antenna center axis 5 is in the Z-axis direction, and the X-axis of the main reflecting mirror 3 is represented by Xm + the X-axis of the sub-reflecting mirror 1 is represented by Xs.

いま、カセグレンアンテナにおいて、第2図(a)のよ
うに−次ホーン2が、アンテナ中心軸5よりΔhだけX
軸の正側に平行に偏位した場合二次指向性の主方向6f
dX軸の負側にΔθ、だけ偏位し、その量は となる。ここで また同図(b)のように副反射鏡1がアンテナ中心軸5
に対して、ΔψだけX軸の正側に回転偏位した場合の二
次指向性の主方向7は、X軸の正側にΔθ、だけ偏位し
、その量は となる。
Now, in a Cassegrain antenna, as shown in FIG.
Main direction of secondary directivity 6f when deflected parallel to the positive side of the axis
It deviates to the negative side of the dX axis by Δθ, and the amount is . Here again, as shown in the same figure (b), the sub-reflector 1
On the other hand, the main direction 7 of the secondary directivity when rotationally deviated by Δψ to the positive side of the X-axis is deviated by Δθ to the positive side of the X-axis, and the amount is as follows.

第3図は4個の一次ホーンで構成された一次ホーン系の
斜視図、第4図は2個の一次ホーンの出力の和信号と差
信号とを求めるハイブリッド回路の概念的回路図、第5
図は4個の一次水 −ンの出力の和信号と差信号とを求
めるノ・イブリッド回路の概念的回路図、第6図は2個
の各−次ホーンの指向特性とその和信号・差信号の指向
特性曲線である。
Fig. 3 is a perspective view of a primary horn system composed of four primary horns, Fig. 4 is a conceptual circuit diagram of a hybrid circuit that obtains the sum signal and difference signal of the outputs of the two primary horns, and Fig. 5
The figure is a conceptual circuit diagram of a hybrid circuit that obtains the sum signal and difference signal of the outputs of four primary horns, and Figure 6 shows the directivity characteristics of each of the two order horns and their sum signal and difference signal. This is a signal directional characteristic curve.

4ホ一ン方式の一次ホーン系は、第3図のようにアンテ
ナ中心軸5に対して、僅かに偏位して給電された同形状
の一次ポーン2a 、 2b 、 2c。
The primary horn system of the four-horn system includes primary horns 2a, 2b, and 2c of the same shape, which are fed with power slightly offset from the antenna center axis 5, as shown in FIG.

2dで構成され、各ホーンの出力端子にハイブリッド回
路(以下HYBと略記する)、例えばマジックT ’(
M Tと略記する)が接続されている。
2d, and the output terminal of each horn is connected to a hybrid circuit (hereinafter abbreviated as HYB), such as magic T' (
(abbreviated as MT) is connected.

ホーン2a、2bの出力端子は第4図に示すようKMT
(HYB)8に接続さり、ており、MT8の合成点と両
−次ホーン2a、2bを結ぶ両系統の給電線が同位相と
なるように接続されている。
The output terminals of horns 2a and 2b are KMT as shown in Figure 4.
(HYB) 8, and is connected so that the feeder lines of both systems connecting the synthesis point of MT 8 and both order horns 2a, 2b are in the same phase.

同形式の4個の一次ホーン系に対しては、第5図に示す
ように、コンパレーター(4個のMTの各ポートがそれ
ぞれの合成点に対して等長となるような給電線で接続し
た立体回路)を合成すれば、到来波に対して和信号Σ=
−4((A+B)+(C+D))、水平方向差信号ΔA
Z =±((A+C)−(B+D))、垂直方向差信号
出すことができる。A、B、C,Dは各−次ホーンの受
信電界レベルを示す。
For four primary horn systems of the same type, as shown in Fig. 3D circuit), the sum signal Σ=
-4((A+B)+(C+D)), horizontal direction difference signal ΔA
Z=±((A+C)-(B+D)), a vertical difference signal can be output. A, B, C, and D indicate the received electric field level of each -order horn.

つぎに2つの一次ホニンを例にして、電波到来角度の検
出の動作を記す。
Next, the operation of detecting the radio wave arrival angle will be described using two primary honins as an example.

各−次ホーンは第3図に示すようにアンテナ中心軸5に
対してわずかに偏位しているので、各−次ホーン指向性
は第2図(a)に示すように角度Δθ1だけ偏向する。
Since each -order horn is slightly deviated with respect to the antenna center axis 5 as shown in Fig. 3, the directivity of each -order horn is deflected by an angle Δθ1 as shown in Fig. 2(a). .

すなわち個々の一次ホーンの励振波による二次放、射波
(各−次ホーンの受信電界レベル)の主ビームは、第5
図(a)の点線9aと破線9b’に示すように、アンテ
ナ中心軸5に対して僅かにずれている。そして第4図の
MT8の出力端子Kid、第5図(bJの指向性に示す
ように、I(ボー)1(IKは実線12aで示す和信号
る。和信号12Bは単峰性ビームであり、軸方向での利
得が高いほど距離検知感度が高くなる。
In other words, the main beam of the secondary radiation and emitted waves (received electric field level of each order horn) by the excitation wave of each primary horn is the fifth
As shown by the dotted line 9a and the broken line 9b' in FIG. As shown in the output terminal Kid of MT8 in Fig. 4 and the directivity of Fig. 5 (bJ), I (baud) 1 (IK is the sum signal shown by the solid line 12a. The sum signal 12B is a single peak beam. , the higher the gain in the axial direction, the higher the distance detection sensitivity.

他方差信号12bはアンテナが到来波に正対した場合に
は入力がなく、アンテナ中心軸5が到来波方向に対して
偏位した場合は、両−次ホーン2a、2bへの到来波の
位相差成分が受信され双峰性ビ一台となる。この場合両
ピークから中心軸方向5のヌル点13への落込み傾斜が
急峻なほど、角度検知感度が高めことになる。
On the other hand, the difference signal 12b has no input when the antenna is directly facing the arriving wave, and when the antenna center axis 5 is deviated from the direction of the arriving wave, the position of the arriving wave to both order horns 2a and 2b is input. The phase difference component is received and becomes a bimodal signal. In this case, the steeper the slope from both peaks to the null point 13 in the central axis direction 5, the higher the angle detection sensitivity.

第7図は測定周波数15GHz帯、主反射鏡の開口直径
が45λ(λは使用波長)、単一ホーンの開口径が1.
9λ×1.9λ、各ホーンのアンテナ中心軸5よりX軸
、およびy軸方向への偏位量がΔh=±λのモノパルス
アンテナの2次1W向性特性曲線である。
In Figure 7, the measurement frequency is 15 GHz, the aperture diameter of the main reflector is 45λ (λ is the wavelength used), and the aperture diameter of the single horn is 1.
This is a secondary 1W directional characteristic curve of a monopulse antenna of 9λ×1.9λ, and the deviation amount of each horn from the antenna center axis 5 in the X-axis and y-axis directions is Δh=±λ.

個々のホーンの2次指向特性曲線は破線14、点線15
に示されているようにアンテナ中心軸5よシの偏位量は
それぞれΔθ、=1.1°(3式からの計算値は1.8
°)であって、両生ビームの交点レベルは一6dBであ
る。
The secondary directivity curves of individual horns are shown by dashed line 14 and dotted line 15.
As shown in , the deviation amount from the antenna center axis 5 is Δθ, = 1.1° (the calculated value from equation 3 is 1.8
), and the intersection level of the amphib beams is -6 dB.

この時の和信号は実線16でピーク値は単体のピーク値
と変らず、差信号は一点鎖線17でヌル点13への落込
み傾斜は緩いものである。即ち従来形式では距離検知感
度が低く、角度検知感度が鈍いことを示している。
At this time, the sum signal is a solid line 16 and the peak value is the same as the single peak value, and the difference signal is a dashed line 17 and the slope of the drop to the null point 13 is gentle. That is, the conventional type has low distance detection sensitivity and low angle detection sensitivity.

第8図は、本発明の一次ホーン系の斜視図である。FIG. 8 is a perspective view of the primary horn system of the present invention.

本発明の一次ホーン系は、その開口面十字状の接触辺土
に、高さ3λの十字状で一片が三角形をなす放射方向制
御板18が装着されている。
In the primary horn system of the present invention, a radial direction control plate 18 having a cross shape with a height of 3λ and one piece having a triangular shape is attached to the contact edge of the cross-shaped opening surface.

上記十字状放射方向、制御板18の機能を、放射方向制
御板を有する単体の一次ボーンによって説明する。
The function of the cross-shaped radial control plate 18 will be explained using a single primary bone having a radial control plate.

第9図は板状放射方向制御板を有する単体の一次ホーン
の斜視図、第10図はそれの電界分布を模式的に示しだ
断面図である。
FIG. 9 is a perspective view of a single primary horn having a plate-shaped radiation direction control plate, and FIG. 10 is a sectional view schematically showing its electric field distribution.

一次ホーンの開口面19の一辺に第9図のように、金属
導体板よりなる有限長の放射方向制御板18をアンテナ
中心軸5に平行に装着すると、第】()図に示すように
、−次ホーン2の開口面19の近傍における放射波の位
相速度は、太線の矢印加、21の大小で示すごとく、放
射方向制御板18Vc近い側が自由空間である反対側よ
シ速くなる。この励振波の電界分布曲線は放射波の主方
向乙がアンテナ中心軸5よりX軸の正側にΔθ。
When a finite length radiation direction control plate 18 made of a metal conductor plate is mounted parallel to the antenna center axis 5 on one side of the opening surface 19 of the primary horn as shown in FIG. 9, as shown in FIG. The phase velocity of the radiation wave in the vicinity of the aperture surface 19 of the -order horn 2 is faster on the side closer to the radiation direction control plate 18Vc than on the opposite side, which is free space, as shown by the bold arrows 21 and 21. In the electric field distribution curve of this excitation wave, the main direction of the radiation wave is Δθ on the positive side of the X-axis from the antenna center axis 5.

たけ偏位することを示している。ここで偏位量Δθ3は
、軸方向の長さLK関係する。なお図では放射方向制御
板18を励振波の電界と直交する方向に装着した場合を
示したが、電界と平行方向に装着しても同様の効果が得
られる。
This shows that the deviation is large. Here, the deviation amount Δθ3 is related to the axial length LK. Although the figure shows the case where the radiation direction control plate 18 is mounted in a direction perpendicular to the electric field of the excitation wave, the same effect can be obtained even if it is mounted in a direction parallel to the electric field.

カセグレンアンテナの構成各素子を正規位置に配置し、
−次ホーンの開口面のX軸の負側に、適当長の放射方向
制御板を装着すると、副反射鏡1への励振波は、X軸の
負側から正flllK向い、アンテナ中心軸1と斜交し
て励振することになる。このことは第2図(b) にお
いて、副反射鏡1がアンテナ中心軸5に対してX軸の正
側に回転偏位したのと等価である。−次ボーン系として
4ホ一ン方式−次ホーン系を用いると、各−次ホーンは
モノパルスアンテナに対してわずかに並行偏位している
ので第2図(a)K示すように、各−次ホーンがモノパ
ルスアンテナの中心線5に対してX軸の正側に平行に偏
位したものに放射方向制御板を装着すれば、偏位量Δθ
1はΔθ。
Arrange each element of the Cassegrain antenna in its proper position,
- When a radiation direction control plate of an appropriate length is attached to the negative side of the X-axis of the aperture surface of the secondary horn, the excitation wave to the sub-reflector 1 will be directed from the negative side of the This results in diagonal excitation. This is equivalent to the case where the sub-reflector 1 is rotationally displaced to the positive side of the X-axis with respect to the antenna center axis 5 in FIG. 2(b). When a 4-horn type -order horn system is used as the -order bone system, each -order horn is slightly deviated parallel to the monopulse antenna, so each Next, if the radiation direction control plate is attached to the horn deviated parallel to the center line 5 of the monopulse antenna to the positive side of the X axis, the deviation amount Δθ
1 is Δθ.

で打消され、合成二次指向性の偏位量は小さくなる。即
ち二次指向性の主方向は、アンテナ中心軸1に集束され
ることになる。
, and the amount of deviation of the composite secondary directivity becomes smaller. That is, the main direction of the secondary directivity is focused on the antenna center axis 1.

第11図は本発明の一次ホーン系を用いたモノパルスア
ンテナの特性曲線である。第1I図の破線列および点線
6は個々の1次ホーンの二次指向性を表わし、その偏位
量はそれぞれΔθ、=0.34゜とX軸方向に集束され
、両生ビームの交点は一3dB以内となっている。なお
実験によれば、個々の一次ホーンによる二次指向性の交
点が一3dB以内にならなければ和信号のレベルの増加
は少ない。第11図の実線で示した和信号がのレベルは
個々の主ビームム、26のピーク値より2.6dB高く
、一点鎖線で示した差信号茨のヌル点への落込み傾斜は
第7図(b)の一点鎖線で示した曲m17より急峻とな
っている。したがって距離検知感度は1.82倍に、角
度検知感度は著しく向上したことになる。なお十字状放
射方向制御板18により単体ホーンの指向性主ビーム囚
および5は、X軸方向のみならずy軸方向においても集
束されることは明らかである。
FIG. 11 is a characteristic curve of a monopulse antenna using the primary horn system of the present invention. The dashed line array and the dotted line 6 in FIG. 1I represent the secondary directivity of each primary horn, and the deflection amount is Δθ, = 0.34°, which is focused in the X-axis direction, and the intersection of the bidirectional beams is at the same point. It is within 3dB. According to experiments, the level of the sum signal does not increase much unless the intersection points of the secondary directivities of the individual primary horns are within 13 dB. The level of the sum signal shown by the solid line in Fig. 11 is 2.6 dB higher than the peak value of the individual main beam beams 26, and the slope of the drop of the difference signal thorns to the null point shown by the dashed-dotted line is as shown in Fig. 7 ( It is steeper than the curve m17 shown by the dashed line in b). Therefore, the distance detection sensitivity is increased by 1.82 times, and the angle detection sensitivity is significantly improved. It is clear that the directional main beam 5 of the single horn is focused not only in the X-axis direction but also in the Y-axis direction by the cross-shaped radial direction control plate 18.

結局、各単体の指向性主ビームはアンテナ中心軸5に集
束され、総合指向性として和信号は5dB以上高く距離
検知感度は3倍以上に向上し、同時に角度検知感度は水
平・垂直方向とも著しく敏感となる。
In the end, the directional main beam of each individual unit is focused on the antenna center axis 5, and the total directivity is more than 5 dB higher, and the distance detection sensitivity is more than 3 times higher. At the same time, the angle detection sensitivity is significantly increased in both horizontal and vertical directions. Becomes sensitive.

放射方向制御板】8を構成する導体板の一片の形状を三
角形として先端を尖らせたり、あるいは三角形の先端を
切除して台形としたり、テーパーを付けず長方形として
も、アンテナ中心軸方向の長aLが変るだけであって効
果には変りがない。
[Radiation Direction Control Board] If the shape of one piece of the conductor plate 8 is triangular and the tip is pointed, or if the tip of the triangle is cut off to make a trapezoid, or if it is rectangular without a taper, the length in the direction of the antenna center axis can be changed. There is no change in the effect, only the aL changes.

以上本発明のモノパルスアンテナを、アンテナを高性能
とするカセグレンアンテナによる複反射鏡方式のアンテ
ナで説明したが、−次ホーン・パラボラ反射鏡で構成さ
れる単一反射鏡方式のアンテナによるモノパルスアンテ
ナに適用しても同様の効果が得られる。
The monopulse antenna of the present invention has been described above using a double-reflector type antenna using a Cassegrain antenna that achieves high performance. The same effect can be obtained by applying it.

以上詳述したごと〈4ホーンによる同時ロービーング方
式のモノパルスアンテナにおいて一次ホーン系の開口面
19ニ十字状の放射方向制御板18を装着することによ
り、各単体ホーンの二次指向性がアンテナ中心軸5に集
束され、その結果和信号レベルが高くなり距離検知感度
が向上し、同時に差信号のヌル点への落込み傾斜が急峻
となり角度検知感度が著しく敏感となる。
As detailed above, in a monopulse antenna of simultaneous low-beaming method using four horns, the secondary directivity of each single horn can be adjusted to the central axis of the antenna by installing a double-cross-shaped radiation direction control plate 18 on the aperture surface 19 of the primary horn system. As a result, the sum signal level becomes high and the distance detection sensitivity improves, and at the same time, the slope of the difference signal falling to the null point becomes steeper, making the angle detection sensitivity extremely sensitive.

また12ポ一ン方式、16ホーン方式と比較すれば、構
造が簡単で経済的となる利点もある。
Furthermore, compared to the 12-point system and the 16-horn system, it has the advantage of being simpler and more economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカセグレンアンテナを用いたモノパルスアンテ
ナの概念図、第2図はカセグレンアンテナにおける一次
ホーンの偏位および副反射鏡の回転偏位の影響を示す概
念図、第3図は4個の1次ホーンで構成された一次ホー
ン系の斜視図、第4図は2個の一次ホーンの出力の和信
号と差信号とを求める概念的回路図、第5図は4個の一
次ホーンの出力の和信号と差信号とを求める概念的回路
図、第6図は2個の各−次ホ−ンの指向特性とその和信
号・差信号の指向特性曲線、第7図は従来技術の4個の
一次ホーンからなるモノパルスアンテナの2次指向特性
の実際例、第8図は本発明の一次ホーン系の斜視図、第
9図は放射方向制御板を有する単一の一次ホーンの斜視
図、第10図はそれの電界分布を模式的に示した断面図
、第11図は本発明の一次ホーン系を用いたモノパルス
アンテナのWlltl線線図である。 1・・・・・・副反射鏡、 212 a l 2 b l 2 e l 2 d −
−・・・・−次ホーン、3・・・・・・主反射鏡、 4・・・・・・等価パラボラ反射鏡、 5・・・・・・アンテナ中心軸、 6.7・・・・・・2次指向性の主方向、8・・・・・
・ハイブリッド回路、 111・・・・・・Hポート、  11・・・・・・E
ポー)、13・・・・・・ヌル点。 18・・・・・・放射方向制御板、 】9・・・・・・−次ホーン開口面、 F r r F v・・・・・・副反射鏡の第1.第2
焦点。 Fm・・・・・・主反射鏡の焦点距離、Fc・・・・・
・双曲面反射鏡の2焦点距離、Fe・・・・・・等価パ
ラボラ反射鏡の焦点距離、e ・・・・・・双曲面反射
鏡の離心率、Dm・・・・・・主反射鏡の直径、 Ds・・・・・・双曲面反射鏡の直径、φr・・・・・
・双曲面反射鏡の第1焦点Frとその縁端のなす角度、 φV・・・・・・主反射鏡の焦点Fvとその縁端のなす
角度。 Δθ・・・・・・2次指向性の主方向の偏位、HTB・
・・・・・ハイブリッド回路、MT・・・・・・マジッ
クT0 第1図 第2図 (a)          (b) 第3rgJ 巨5 Σ     Δ 第5図 第6図 第7図 第8図 第9図 第10図 第11図 □角度(θ0)□
Figure 1 is a conceptual diagram of a monopulse antenna using a Cassegrain antenna, Figure 2 is a conceptual diagram showing the effects of primary horn deviation and rotational deviation of the sub-reflector in a Cassegrain antenna, and Figure 3 is a conceptual diagram of a monopulse antenna using a Cassegrain antenna. Fig. 4 is a conceptual circuit diagram for determining the sum signal and difference signal of the outputs of two primary horns, and Fig. 5 is a perspective view of a primary horn system consisting of two primary horns. A conceptual circuit diagram for obtaining a sum signal and a difference signal. Fig. 6 shows the directivity characteristics of each of the two -order horns and the directivity characteristic curves of their sum signal and difference signal. Fig. 7 shows the four horns of the prior art. A practical example of the secondary directivity characteristic of a monopulse antenna consisting of a primary horn; FIG. 8 is a perspective view of the primary horn system of the present invention; FIG. 9 is a perspective view of a single primary horn with a radiation direction control plate; FIG. 10 is a cross-sectional view schematically showing the electric field distribution thereof, and FIG. 11 is a Wlltl diagram of a monopulse antenna using the primary horn system of the present invention. 1... Sub-reflector, 212 a l 2 b l 2 e l 2 d -
-...Next horn, 3...Main reflector, 4...Equivalent parabolic reflector, 5...Antenna center axis, 6.7... ...Main direction of secondary directivity, 8...
・Hybrid circuit, 111...H port, 11...E
Po), 13... Null point. 18...Radiation direction control plate, ]9...-th horn aperture surface, F r r F v...... First side of the sub-reflector. Second
focus. Fm・・・Focal length of main reflecting mirror, Fc・・・・・・
・Bifocal length of hyperboloid reflector, Fe... Focal length of equivalent parabolic reflector, e... Eccentricity of hyperboloid reflector, Dm... Main reflector Diameter, Ds...Diameter of hyperboloid reflector, φr...
・Angle between the first focus Fr of the hyperboloid reflector and its edge, φV...Angle between the focus Fv of the main reflector and its edge. Δθ・・・Deflection in the main direction of secondary directivity, HTB・
...Hybrid circuit, MT...Magic T0 Fig. 1 Fig. 2 (a) (b) 3rd rgJ Giant 5 Σ Δ Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Figure 10 Figure 11 □ Angle (θ0) □

Claims (1)

【特許請求の範囲】[Claims] 反射鏡の焦点面内に各ホーンの放射中心があり、アンテ
ナ中心軸を中心とする直交座標系の各象限にあるごとく
、互いに密着して配置された同形の4個の4角錐−次ホ
ーンからなる一次ホーン系において、構成台ホーン開口
部の十字形接触辺とアンテナ中心軸とを含む平面内に金
属導体板が上記−次ホーンの前方に付設されて、断面形
状が十字形の放射方向制御板が形成されていることを特
徴とする4ホ一ン方式のモノパルスアンテナ。
The radiation center of each horn is within the focal plane of the reflector, and the radiation center is from four quadrangular pyramid-order horns of the same shape that are arranged closely to each other as in each quadrant of a rectangular coordinate system centered on the antenna center axis. In the primary horn system, a metal conductor plate is attached in front of the secondary horn in a plane containing the cross-shaped contact side of the component horn opening and the antenna center axis, and the cross-sectional shape is cross-shaped to control the radiation direction. A four-horn type monopulse antenna characterized by a plate.
JP11745682A 1982-07-06 1982-07-06 Monopulse antenna Granted JPS598409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11745682A JPS598409A (en) 1982-07-06 1982-07-06 Monopulse antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11745682A JPS598409A (en) 1982-07-06 1982-07-06 Monopulse antenna

Publications (2)

Publication Number Publication Date
JPS598409A true JPS598409A (en) 1984-01-17
JPH0440883B2 JPH0440883B2 (en) 1992-07-06

Family

ID=14712109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11745682A Granted JPS598409A (en) 1982-07-06 1982-07-06 Monopulse antenna

Country Status (1)

Country Link
JP (1) JPS598409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281855B1 (en) 1999-06-24 2001-08-28 Mitsubishi Denki Kabushiki Kaisha Monopulse antenna apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281855B1 (en) 1999-06-24 2001-08-28 Mitsubishi Denki Kabushiki Kaisha Monopulse antenna apparatus

Also Published As

Publication number Publication date
JPH0440883B2 (en) 1992-07-06

Similar Documents

Publication Publication Date Title
US5451969A (en) Dual polarized dual band antenna
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US3633208A (en) Shaped-beam antenna for earth coverage from a stabilized satellite
US4862185A (en) Variable wide angle conical scanning antenna
EP0028018B1 (en) An improved phased array antenna system
JPH0586682B2 (en)
JPH03503570A (en) Radar system for angular positioning for linear phased array antennas
EP0248886B1 (en) High efficiency optical limited scan antenna
US3792480A (en) Aerials
EP0597318A2 (en) Multibeam antenna for receiving satellite
US4080605A (en) Multi-beam radio frequency array antenna
US3696435A (en) Offset parabolic reflector antenna
US4574287A (en) Fixed aperture, rotating feed, beam scanning antenna system
US4591866A (en) Multi-beam antenna and its configuration process
US5319379A (en) Parabolic dual reflector antenna with offset feed
JPS598409A (en) Monopulse antenna
CA1232061A (en) Shaped offset-fed dual reflector antenna
KR100240894B1 (en) Antenna of the beam-tilting and discrimination between self and others
US3852748A (en) High-resolution hemispherical reflector antenna
US4283728A (en) Five-horn cassegrain antenna
US6633264B2 (en) Earth coverage reflector antenna for geosynchronous spacecraft
Loux et al. Efficient aberration correction with a transverse focal plane array technique
JPH0936655A (en) Multi-beam antenna
JPH04232885A (en) Elevation-angle measuring device for rada having double-curved-surface reflecting mirror type antenna
EP0141886A1 (en) Monopulse detection systems