JPS5980387A - Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane - Google Patents

Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane

Info

Publication number
JPS5980387A
JPS5980387A JP18976482A JP18976482A JPS5980387A JP S5980387 A JPS5980387 A JP S5980387A JP 18976482 A JP18976482 A JP 18976482A JP 18976482 A JP18976482 A JP 18976482A JP S5980387 A JPS5980387 A JP S5980387A
Authority
JP
Japan
Prior art keywords
composite membrane
waste water
water
semipermeable
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18976482A
Other languages
Japanese (ja)
Inventor
Yasuo Baba
馬場 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP18976482A priority Critical patent/JPS5980387A/en
Publication of JPS5980387A publication Critical patent/JPS5980387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain permeating water of high purity, by treating waste water used for washing electronic parts after being subjected to oxidizing and reducing treatments with the semipermeable composite membrane of a cross-linking polymer containing furfuryl alcohol as a main component on a porous supporting body. CONSTITUTION:Waste water used for washing electronic parts, e.g. water discharged from the process of etching semiconductor bodies, the process of dulling Braun tubes, etc., is subjected to oxidizing and reducing treatments. As a means for said oxidizing treatment, a method for oxidatively decomposing the waste water by applying ultraviolet rays of 400Nm to it in the presence of chlorine or hydrogen peroxide may be adopted. A reducing agent for said reducing treatment may be sodium sulfite, sodium sulfide or the like. After said treatments are completed, the waste water is treated with a cross-linking semipermeable composite membrane in which the semipermeable membrane layer of a cross-linking polymer containing furfuryl alcohol as a main component is provided on a porous supporting body. Thus, the quality of permeating water can be purified to a high degree.

Description

【発明の詳細な説明】 木光明は半透性複合膜による電子部品洗浄廃水の逆浸透
処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Mokkomei relates to a method for reverse osmosis treatment of electronic component cleaning wastewater using a semipermeable composite membrane.

更に詳しくは、多孔性支持体上にフルフリルアルコール
を主成分とする架橋性重合体の半透性薄膜層を設けた架
橋型半透性複合膜による電子部品洗浄廃水の逆浸透処理
方法に関するものである。
More specifically, it relates to a method for reverse osmosis treatment of electronic component cleaning wastewater using a crosslinked semipermeable composite membrane in which a semipermeable thin film layer of a crosslinkable polymer containing furfuryl alcohol as a main component is provided on a porous support. It is.

電子部品の洗浄においては超純水か用いられているが、
この超純水を市水などの一般水から製造するよりも洗浄
に使用した水(以下、電子部品洗浄廃水吉称す。)から
製造する方か資源の   −有効利用及び製造コストの
面において有利である。
Ultrapure water is used to clean electronic parts, but
It is more advantageous to produce ultrapure water from water used for cleaning (hereinafter referred to as electronic parts cleaning waste water) than from general water such as city water in terms of effective use of resources and production costs. be.

このため逆浸透法などにより前記廃水の処理か行われて
いるが、近時においては半透性非対称膜に比してすぐれ
た排除率が得られる半透性複合膜を用いるのが一般的に
なりつつある。
For this reason, the wastewater is treated using methods such as reverse osmosis, but recently it has become common to use semipermeable composite membranes, which have a superior rejection rate compared to semipermeable asymmetric membranes. It is becoming.

ところが、この半透性複合膜を用いる場合においても膜
汚染による排除率の低下が比較的旬時間で発生するとい
う欠点を有しており、これによって処理コストの低減化
が妨げられているのが実情である。
However, even when this semipermeable composite membrane is used, it has the disadvantage that the rejection rate decreases due to membrane contamination relatively quickly, and this hinders the reduction of processing costs. This is the reality.

なお前記廃水を逆浸透処理して得られる透過水は、超純
水に近いものであるほどこれを後処理工程のポリラシャ
−で超純水にするのを容易化しうるが、従来のように前
記廃水を精密濾過したのち半透性複合膜により逆浸透処
理するような方法では超純水にきわめて近い透過水を得
るのか困難てあり、この点での改善の余地も残されてい
たつ 本発り]はこのような従来の問題点に注1」シて発’J
l aれたものであり、その目的とするところは。
Note that the closer the permeated water obtained by reverse osmosis treatment to the wastewater is to ultra-pure water, the easier it is to convert it into ultra-pure water in the post-treatment process, Polylasha. It is difficult to obtain permeated water that is extremely close to ultrapure water using a method that performs reverse osmosis treatment using a semipermeable composite membrane after precision filtration of wastewater, and there is still room for improvement in this respect. ] is based on these conventional problems.
What is its purpose?

膜汚染による排除率の低下を長時間にわたって防止する
ことかてきると共により高純度の透過水か得られる半透
性複合膜による電子部品洗浄廃水の逆浸透処理方法を提
供しようとするにある。
It is an object of the present invention to provide a method for reverse osmosis treatment of wastewater from washing electronic parts using a semipermeable composite membrane, which can prevent a reduction in rejection rate due to membrane contamination over a long period of time, and can obtain permeated water of higher purity.

この目的を達成する本発明に係る半透性複合膜による電
子部品洗浄廃水の逆浸透処理方法は。
A method for reverse osmosis treatment of electronic component cleaning wastewater using a semipermeable composite membrane according to the present invention achieves this objective.

多孔性支持体」−ニフルフリルアルコールを主成分とす
る架橋性TJ重合体半透性薄膜層を設けた架楡型半透性
複合膜による電子部品洗浄廃水の逆浸透処理方法におい
て、前記廃水を前処理工程で酸化処理及び還元処理する
ことを特徴とするものである。
"Porous Support" - A method for reverse osmosis treatment of electronic component cleaning wastewater using a cross-linked semipermeable composite membrane provided with a crosslinkable TJ polymer semipermeable thin film layer containing niflufuryl alcohol as a main component, in which the wastewater is This method is characterized by performing oxidation treatment and reduction treatment in the pretreatment step.

本発明における電子部品洗浄廃水とは、半導体のエソチ
ング工程あるいはブラウン管のつ\・消し工程などから
排出される使用済水を意味し。
Electronic component cleaning wastewater in the present invention refers to used water discharged from a semiconductor etching process or a cathode ray tube matting process.

この水には各種の有機、無機性物質が含有されており、
一般にはPHか4以下の酸性になっている。なお含有物
質の詳細について述へるならば、フッ素イオンとして2
00 p pm以下、その他金属イオンとして500 
ppm +有機物はC0I)c+値として50 p p
m以下であるのが一般的である。
This water contains various organic and inorganic substances.
Generally, it is acidic with a pH of 4 or less. Regarding the details of the contained substances, as fluorine ions, 2
00 ppm or less, 500% as other metal ions
ppm + organic matter is C0I) 50 p p as c+ value
Generally, it is less than m.

本発明においてはこのようにフ・ノ素1ナトリウム、カ
ルシウムなどの金属イオン、低級アルコール、ハロゲン
化炭化水素などの低分子量の有機物を含有している電子
部品洗浄廃水をフルフリルアルコール系半透性複合膜を
用いて逆浸透処理するか、この際、前記廃水を前処理工
程において酸化処理及び還元処理するのであり、これに
よって膜汚染による排除率の低下を長時間にわたって防
止することができると共にその透過水の水質をより高純
度にすることが″てき、而して処理コストの低減化を図
ることかてきるのである。
In the present invention, electronic component cleaning wastewater containing low molecular weight organic substances such as monosodium fluoride, calcium, lower alcohols, and halogenated hydrocarbons is converted into a semipermeable furfuryl alcohol based wastewater. Reverse osmosis treatment is performed using a composite membrane, or at this time, the wastewater is oxidized and reduced in the pretreatment process. This makes it possible to prevent a decline in the rejection rate due to membrane contamination over a long period of time, and also to reduce the The quality of permeated water can be improved to a higher degree of purity, and treatment costs can be reduced.

なおこの逆浸透処理において用いられる前記複合膜は多
孔性支持体上にフルフIJ )レアルコールを主成分と
する架橋性重合体の半透性薄膜層を設けたものであり、
この上うな半透性複合膜は米国特許第二)926798
号IJJ +Y(II男などに開示されおり、そして・
11板型1円筒型、スパイラル型。
The composite membrane used in this reverse osmosis treatment is one in which a semipermeable thin film layer of a crosslinkable polymer whose main component is Fluf IJ) real alcohol is provided on a porous support.
This semipermeable composite membrane is covered by U.S. Patent No. 2) 926,798.
No. IJJ +Y (disclosed to II man etc., and...
11 plate types, 1 cylindrical type, and spiral type.

中空子型々ど各種の型式のものか存在するか。Are there various types of hollow child types?

不発りIにおいてはいかなる型式のものを用いてもよい
Any type of misfire I may be used.

寸だ前記多孔性支持体としては厚さが20μ〜圓/lの
ポリスルホン、ポリアクリロニトリルなどのノート材か
あげられ、これらには2ooX〜100(1人の孔か多
数IN口されている。
Examples of the porous support include notebook materials such as polysulfone and polyacrylonitrile having a thickness of 20 μm to 1/l, and these have 20× to 100 holes (one or more holes).

一万+ l−1iJ処理工程での酸化処理は、前記廃水
中に含有されている選択分離能を経時的に低下させる物
質及び低選択分離性の物質を酸化分解ある無害化させる
ために行うものてあり、その具体的方法としては、 4
0ONmの紫外線を塩素あるいは過酸化水素の存在下で
照射して酸化分解する方法、オゾンによる酸化分解方法
、鉄塩あるいはニッケル塩を触媒として次亜塩素酸ソー
ダもしくは過酸化水素のよう゛な酸化剤で酸化分解する
方法などがあげられる。
The oxidation treatment in the 10,000+ l-1iJ treatment process is carried out to detoxify and detoxify substances that reduce the selective separation ability over time and substances with low selective separation contained in the wastewater. The specific method is as follows: 4
Oxidative decomposition method by irradiation with 0ONm ultraviolet rays in the presence of chlorine or hydrogen peroxide, oxidative decomposition method using ozone, oxidizing agent such as sodium hypochlorite or hydrogen peroxide using iron salt or nickel salt as a catalyst. Examples include methods of oxidative decomposition.

そしてこれらの各種の方法のうちから選はれた方法によ
り電子部品洗浄廃水を酸化処理し、残留する有機物質を
C0Dc r値として1ot)I)111以下。
Then, the electronic parts cleaning wastewater is oxidized by a method selected from among these various methods, and the remaining organic substances have a C0Dcr value of 1ot) I) 111 or less.

好ましくは3 ppmに処理する。Preferably it is treated at 3 ppm.

次いてこの酸1ヒ処理した水を更に還元処J!l!する
か、この還元処理は前記フルフリルアルコール系半透性
複合膜の分離能、特にフッ素イオンの分離能を高め、か
つその高排除率を長時間又は長期間にわたって一定に保
たせるために行うものであり、ここて用□ハられる還元
剤としてQま。
Next, this acid-treated water is further reduced. l! Alternatively, this reduction treatment is carried out in order to increase the separation ability of the furfuryl alcohol-based semipermeable composite membrane, especially the separation ability of fluorine ions, and to maintain its high rejection rate constant for a long time or a long period of time. Here, Q is used as a reducing agent.

亜硫酸ソーダ、重亜硫酸ソーダ、 i+を町硫酸カス。Sodium sulfite, sodium bisulfite, i+ town sulfuric acid scum.

硫Iヒンータなどがあげられ、これらの複数種を添加す
るのが好ましく、その添加量は酸fヒ処理において添加
された酸化剤が完全に消去され。
It is preferable to add a plurality of these, and the amount of addition is such that the oxidizing agent added in the acid and arsenic treatment is completely erased.

かつここで添加された還元剤が系内に残留、すなわち還
元性雰囲気をつくりだすように適量を添加する。一般に
は酸化還元電位で表示した場合、 ]00mV〜200
7MVになるように添加すればよく、もちろんこれに限
定されることなく含有酸化剤の種類及びJけ、あるいは
使用する還元剤の種類などにより適当に選択することが
できる。
In addition, an appropriate amount of the reducing agent added here remains in the system, that is, an appropriate amount is added so as to create a reducing atmosphere. Generally, when expressed in terms of redox potential, ]00mV to 200
It is sufficient to add the oxidizing agent so that the amount of the oxidizing agent becomes 7 MV, and the oxidizing agent is not limited to this, and can be appropriately selected depending on the type and size of the oxidizing agent contained, the type of reducing agent used, etc.

なお過剰に添加するとフッ素イオンの分離能を逆に低下
させることになるので、これの添加に際しては十分に留
意する必要がある。
Note that if added in excess, the separation ability of fluorine ions will be adversely reduced, so sufficient care must be taken when adding this.

而して電子部品洗浄廃水を酸化処理したのち還元処理し
て逆浸透処理すると、前記廃水の水質によって多少の差
異はあるが、一般にはフッ素イオンとしてO,l pp
m以下、電気伝導度は1μs/−以下+ CoI)Cr
値としてLppm以下の透過水が得られる。
When electronic component cleaning wastewater is oxidized, then reduced, and then subjected to reverse osmosis treatment, it generally produces O, l pp as fluorine ions, although there are some differences depending on the quality of the wastewater.
m or less, electrical conductivity is 1 μs/- or less + CoI) Cr
Permeated water with a value of Lppm or less can be obtained.

このfc7られた透過水は高純朋のものであって。This fc7 permeated water is of high purity.

所謂、超純水に近いものてあり、従ってこれを後処理す
ることによって電子部品の洗浄に使用しつる超純水を容
易に得ることがてき、水資源の有効利用化及び超純水製
造コストの低減化を図ることかできる。
It is close to so-called ultra-pure water, and by post-processing it, it is easy to obtain ultra-pure water that can be used for cleaning electronic parts, making effective use of water resources and reducing the cost of producing ultra-pure water. It is possible to try to reduce the

なお前処理工程で酸化処理及び還元処理した電子部品洗
浄廃水をフルフリルアルコール系半透性複合膜で逆浸透
処理するに際しては1j11記廃水を10 K!7/m
 〜100に9/crl 、好捷しくは30 KVAv
t 〜60 K’//ciに加圧して供給すればよく、
この/JO圧条汁、あるいは水温などの操作条件は1l
ll常一般の場ごと同様に設定することかできる。
In addition, when performing reverse osmosis treatment of electronic component cleaning wastewater that has been oxidized and reduced in the pre-treatment process using a furfuryl alcohol-based semipermeable composite membrane, the 1j11 wastewater must be treated at 10K! 7/m
~9/crl to 100, preferably 30 KVAv
It is sufficient to supply it under pressure to t ~ 60 K'//ci,
The operating conditions such as this /JO pressure juice or water temperature are 1 liter.
It can be set in the same way for every general occasion.

以F、実施例及び比較例に基ついて不発明をより具体的
に説明する。
Hereinafter, the non-invention will be explained more specifically based on Examples and Comparative Examples.

実施例1 F−か117 ppm 、 NH;l−か7Q ppm
 、 Na  か61)1ml 、CI−が151)l
)In 、電気伝導度か480 μS/cm 、 C0
DC’か81)PIYI I PHか3.2  の半畔
体エッチジグE程からの洗浄廃水を、C12が30円)
!11の存在下、尚圧水銀打(クシオ市戟株式会社製)
により0.5 l\WAn’で照射して酸化処理した。
Example 1 F- or 117 ppm, NH; l- or 7Q ppm
, Na61) 1ml, CI-151)l
) In, electrical conductivity 480 μS/cm, C0
DC' or 81) PIYI PH or 3.2 Cleaning waste water from half-shaped body etching jig E or C12 for 30 yen)
! In the presence of 11, Sho Pressure Mercury Strike (manufactured by Kushio Ichigeki Co., Ltd.)
Oxidation treatment was performed by irradiating with 0.5 l\WAn'.

得られた水の酸化還元電位は600mVであった。The oxidation-reduction potential of the obtained water was 600 mV.

次いてこれに亜硫酸ソーダ100 ppmを添nI混合
し酸化還元電位を110y7LVに調整した。そしてこ
れを50Kg/mに加圧し、かつ水温25°Cで平膜イ
1シ逆浸透試験機(膜面積32.15 crl )によ
り処理した吉ころ、その透過水量及び透過水の水質は表
1のようになった。
Next, 100 ppm of sodium sulfite was added and mixed to adjust the redox potential to 110y7LV. This was pressurized to 50 kg/m and treated with a flat membrane reverse osmosis tester (membrane area 32.15 crl) at a water temperature of 25°C.The amount of permeated water and the quality of the permeated water are shown in Table 1. It became like this.

なお前記試験機の逆浸透膜は、多孔性ポリスルポン膜を
支持体おし、これの上に架橋ポリフルフリルアルコール
車合体の半透性薄膜層を設けた半透性複合1漠であり米
国特許第3926798号明細書に記載の方法により製
造しまた。
The reverse osmosis membrane used in the tester is a semipermeable composite film in which a porous polysulfone membrane is placed on a support and a semipermeable thin film layer of a cross-linked polyfurfuryl alcohol vehicle is provided on top of the porous polysulfone membrane. Produced by the method described in No. 3,926,798.

才なイっち厚さ160μのポリエステル繊維をガラス板
」二に載置し、これにポリスルホン(ユニオンカー/々
イド往製udel P 3500 )の15%−ジメチ
ルホ7レムアミド(DMF)g敢を流し、178μのア
プリケーターて均一にひろげたのち、2%−I)MF 
、 05%−ドテシル硫酸ソーダを含む水溶〆fりにべ
漬し、そして水でよく洗い多孔性ポリスルボッ膜(支持
体)を製造しfv、次いてガラス板」二の多孔性ポリス
ルホン膜にフルフリルアルコール2%、硫酸2%、イソ
フロビルアルコール20%、ドテシル硫酸ソーダ0.6
7 ’Xを含む水溶t1kを流し、室11]1^て1分
間垂的に保持したのち。
A polyester fiber with a thickness of 160μ was placed on a glass plate, and 15% dimethylformamide (DMF) of polysulfone (Union Car Co., Ltd., Udel P 3500) was poured onto it. , after spreading it evenly with a 178μ applicator, apply 2%-I) MF.
A porous polysulfone membrane (support) was prepared by soaking it in an aqueous solution containing 0.05% sodium dotecyl sulfate, and thoroughly washing with water. Alcohol 2%, sulfuric acid 2%, isoflovir alcohol 20%, dotecyl sulfate soda 0.6
7' Aqueous solution t1k containing X was poured into the chamber 11]1^ and held vertically for 1 minute.

150′Cのオーフンに入れ15分間加熱処理し、その
のちガラス板からはかし七り表面か黒色の半透性複合膜
を得た。
It was heated in an oven at 150'C for 15 minutes, and then a black semipermeable composite membrane with a transparent surface was obtained from the glass plate.

なおこの複合膜の分離性能は+3.5wt%−食塩水を
25°C,56Kg肩で処理したところ七の食塩(J1
除率が99.6%、透過水量か0.31 nt/―・1
」であった。
In addition, the separation performance of this composite membrane was as follows: +3.5wt% - When a saline solution was treated at 25°C with 56 kg of water, the separation performance of the composite membrane was as follows:
The division ratio is 99.6%, the amount of permeated water is 0.31 nt/-・1
"Met.

表1 比較例1 実施例1の洗浄廃水と同一の洗浄廃水を酸化処理及び還
元処理しないで直接、逆I受透試験促に供給して処理し
たところ、その透過水量及び透過水の水質は表2のよう
になった。
Table 1 Comparative Example 1 When the same cleaning wastewater as that of Example 1 was directly supplied to a reverse I permeation test without oxidation treatment or reduction treatment, the amount of permeated water and the water quality of the permeated water were as shown in Table 1. It became like 2.

なお前記試TAmの逆浸透膜及びこれの操作条件は実施
例1と同一にした。
Note that the reverse osmosis membrane of the sample TAm and its operating conditions were the same as in Example 1.

表2 このことからして明らかのように、洗1+廃水を1ii
J %理工程で酸化処理及び還元処理しない比較例1に
Pいては、運転(処理)時間か経過するに従って透過水
の水質が悪化、すな4つちF−9′市気伝?U度、 C
0DCI−が増加するのに対し、実施例1においては変
化しないで一定になってお・す。
Table 2 As is clear from this, washing 1 + waste water 1ii
J% In Comparative Example 1, in which oxidation treatment and reduction treatment were not performed in the physical process, the quality of the permeated water deteriorated as the operation (treatment) time elapsed. U degree, C
While 0DCI- increases, in Example 1, it does not change and remains constant.

かつ6値か比較例1の値よりも一段七超純水に近いもの
になっていることがわかる。
It can also be seen that the value of 6 is one step closer to ultrapure water than the value of Comparative Example 1.

比較例2 逆浸透膜ケ、多孔性ポリスルホン膜を支持体とし、これ
の上にポリエチレンイミンを生成分とする架橋性重合体
の半透性薄膜層を設けた半透性複合膜にした以外は実施
例1と同一の条件て処理したところ、その透過4(旧及
び透過11(C′)11〈質は表3のようになった。
Comparative Example 2 The reverse osmosis membrane was a semipermeable composite membrane in which a porous polysulfone membrane was used as a support and a semipermeable thin film layer of a crosslinkable polymer containing polyethyleneimine as a product was provided on the support. When treated under the same conditions as in Example 1, the quality of permeation 4 (old and permeation 11 (C')) was as shown in Table 3.

なお前記複合膜は特開昭49−133282号公?1Q
 Itで記載の方法に準して製造した。すなわち厚さ1
tit1μのポリエステル繊維をカラス板トに載ii″
+“し。
The above composite membrane is disclosed in Japanese Patent Application Laid-Open No. 49-133282. 1Q
It was produced according to the method described in It. i.e. thickness 1
Polyester fiber with a tit of 1μ is placed on a glass plate.
+“Shi.

これにポリスルホン(ユニオンカーバイド社製udel
 P−3500)の15%−ジメチルホルムアミド溶液
を流して178μのアプリケーターで均一にひろげたの
ち2%−DMF(ジメチルホルムアミド)、05%−ド
ブノル硫酸ソーダを含む4(溶液に浸漬し、そして水て
よく洗いポリエステル繊維補強の多孔性ポリスルホン膜
(支持体)を製造した。
Add polysulfone (Udel manufactured by Union Carbide) to this.
After pouring a 15% dimethylformamide solution of P-3500 and spreading it evenly with a 178μ applicator, immerse it in the solution containing 2% DMF (dimethylformamide) and 05% sodium dobnol sulfate, and then apply it with water. A well-washed polyester fiber-reinforced porous polysulfone membrane (support) was produced.

次いてこのポリスルホン膜ニポリエナレンイミン(口木
触媒化学社製エボノンI)−] OIll ) 0.2
5%を含有する水/メタノール(%)溶液を均一に塗イ
ロし。
Next, this polysulfone membrane was coated with polyenalenimine (Ebonon I manufactured by Kuchiki Shokubai Kagaku Co., Ltd.)-]OIll) 0.2
Apply a 5% water/methanol (%) solution evenly.

−tしてこの基材i2.4−)ルエンジイソンア不一)
 (D 1 wt%、n−′・キサン溶液に1分間浸漬
したのちに基材を引き上げ膜面に付着しているn−へ午
サンを揮散させ、さらに110°CてIO分間ガ[1熱
処理して架橋性ポリエチレンイミン層を有する゛1′−
透性複合膜を得た。
-t and this base material i2.4-)
(D After immersing in a 1 wt% n-xane solution for 1 minute, the substrate was pulled up to volatilize the n-xane adhering to the film surface, and then heat-treated for 10 minutes at 110 °C.゛1′- having a crosslinkable polyethyleneimine layer
A permeable composite membrane was obtained.

なおこの腹合膜の分離性能は、0.1%−食塩水を25
°に 、 56Ky/ciて処理したところその食塩排
除率が99.1%、透過づ(漬が0.31 nl′An
’日であった。
The separation performance of this peritoneal membrane is as follows: 0.1% saline at 25%
When treated at 56 Ky/ci, the salt rejection rate was 99.1% and the permeation rate was 0.31 nl'An
'It was day.

表  3 このことからして11らかのように、比較例2にお・い
ては経時的に透過水の水質か悪(ヒしており。
Table 3 From this, as shown in Figure 11, in Comparative Example 2, the quality of the permeated water deteriorated over time.

かつその値も実施例1の値よりも一段と非超純水に近い
ものとなっており、従ってエチレンイミン系半透性複合
膜を用いても上述した本発明の効果を得ることができな
いことかわかる。
Moreover, the value is even closer to that of non-ultrapure water than the value of Example 1. Therefore, it is possible that the above-mentioned effects of the present invention cannot be obtained even if an ethyleneimine-based semipermeable composite membrane is used. Recognize.

比較例3 逆浸透膜力棉′I酸セルロースを素材とする非対称膜で
あって東し、昧式会社製の型式か5C−1100のもの
を1羽いた以外は実施例1と同一の条件−〔処理したと
ころ、その透過水h1及び透機水の水質は表4のように
なった。
Comparative Example 3 Reverse osmosis membrane The conditions were the same as in Example 1, except that an asymmetric membrane made of cotton I-acid cellulose was used, and one of the type 5C-1100 manufactured by Maishiki Company was used. [After treatment, the quality of the permeate water h1 and permeate water was as shown in Table 4.

表4 このことからして明らかのように、比較例2の場合と同
様に、非対称膜を用いても上述した不発明の効果を得る
ことかできないことが4つかる。
Table 4 As is clear from the above, there are four points that, as in the case of Comparative Example 2, the above-mentioned uninvented effects cannot be obtained even if an asymmetric membrane is used.

以上、詳述したように不発明によれは1模汚染による排
除率の低下を長時間にわたって防止することができると
共により高純度の透過水が得られる半透性複合膜による
電子部品洗浄廃水の逆浸透処理方法が得られる。
As detailed above, the invention is able to prevent the reduction in rejection rate due to temporary contamination over a long period of time, and to obtain permeated water of higher purity, the semi-permeable composite membrane can be used to clean electronic parts waste water. A reverse osmosis treatment method is obtained.

特許出願人  東し・エノシニノ′リノグ株式会d。Patent applicant: Higashi Enoshinino' Rinogu Co., Ltd. d.

Claims (1)

【特許請求の範囲】[Claims] (1)多孔性支持体上にフルフリルアルコールを主成分
とする架橋性重合体の半透性薄膜層を設けた架橋型半透
性複合膜による電子部品洗浄廃水の逆浸透処理方法にお
いて、前記廃水を前処理工程で酸化処理及び還元処理す
ることを特徴とする半透性複合膜による電子部品洗浄廃
水の逆浸透処理方法
(1) In the method for reverse osmosis treatment of electronic parts cleaning wastewater using a crosslinked semipermeable composite membrane in which a semipermeable thin film layer of a crosslinkable polymer containing furfuryl alcohol as a main component is provided on a porous support, A method for reverse osmosis treatment of electronic component cleaning wastewater using a semipermeable composite membrane, characterized in that the wastewater is subjected to oxidation treatment and reduction treatment in a pretreatment step.
JP18976482A 1982-10-27 1982-10-27 Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane Pending JPS5980387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18976482A JPS5980387A (en) 1982-10-27 1982-10-27 Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18976482A JPS5980387A (en) 1982-10-27 1982-10-27 Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane

Publications (1)

Publication Number Publication Date
JPS5980387A true JPS5980387A (en) 1984-05-09

Family

ID=16246786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18976482A Pending JPS5980387A (en) 1982-10-27 1982-10-27 Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane

Country Status (1)

Country Link
JP (1) JPS5980387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167494A (en) * 1985-01-18 1986-07-29 Asahi Chem Ind Co Ltd Treatment of waste water of silicon wafer polishing
CN104150666A (en) * 2014-06-09 2014-11-19 煤科集团杭州环保研究院有限公司 High ammonia-nitrogen tail liquid zero-discharge treatment system and high ammonia-nitrogen tail liquid zero-discharge treatment method applied after alkaline etching waste liquid treatment
JP2014233714A (en) * 2013-06-05 2014-12-15 野村マイクロ・サイエンス株式会社 Wastewater treatment method and wastewater treatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621604A (en) * 1979-07-27 1981-02-28 Toray Ind Inc Separation of liquid by semipermeable composite membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621604A (en) * 1979-07-27 1981-02-28 Toray Ind Inc Separation of liquid by semipermeable composite membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167494A (en) * 1985-01-18 1986-07-29 Asahi Chem Ind Co Ltd Treatment of waste water of silicon wafer polishing
JPH0439398B2 (en) * 1985-01-18 1992-06-29
JP2014233714A (en) * 2013-06-05 2014-12-15 野村マイクロ・サイエンス株式会社 Wastewater treatment method and wastewater treatment device
CN104150666A (en) * 2014-06-09 2014-11-19 煤科集团杭州环保研究院有限公司 High ammonia-nitrogen tail liquid zero-discharge treatment system and high ammonia-nitrogen tail liquid zero-discharge treatment method applied after alkaline etching waste liquid treatment

Similar Documents

Publication Publication Date Title
US7867417B2 (en) Membrane post treatment
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
WO2012147715A1 (en) Method for cleaning membrane module
JP2007090192A (en) Processing method for semi-permeable composite membrane and its production method
Kumar et al. Sustainable treatment of saline dye wastewater and resource recovery with flux-recoverable hollow fiber of antifouling ‘water channel’
JPS5980387A (en) Reverse osmosis treatment of waste water used for washing electronic part with semipermeable composite membrane
CN108043233B (en) Oxidation-resistant polyamide reverse osmosis membrane and preparation method and application thereof
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP2006021094A (en) Compound semi-permeable membrane and its manufacturing method
AU2005312347B2 (en) Membrane post treatment
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR102206809B1 (en) Method for preparing water treatment membrane and water treatment membrane prepared thereby
JPH0780262A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JPH0780259A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
WO2017110898A1 (en) Composite semipermeable membrane
JPH0780260A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JPS5980304A (en) Reverse osmosis treatment of liquid containing organic and inorganic substances by employing semi-permeable composite membrane
JP2000051855A (en) Water treatment apparatus
JP3798071B2 (en) Hydrophilization method of permeable filtration membrane
JP3083589B2 (en) Ozone-containing water treatment method
CN112973448B (en) Composite reverse osmosis membrane with chlorine resistance body, preparation method and application thereof
CN111013411B (en) Nanofiltration membrane for purifying water and preparation method and application thereof
JP2001000970A (en) High-degree treatment of wastewater using membrane module
CN112295412B (en) Ultra-filtration degradation regeneration method for ultraviolet reinforced oxidation waste reverse osmosis membrane
KR20180124525A (en) Method for manufacturing water treatment membrane, water treatment membrane manufactured by thereof and water treatment module comprising water treatment membrane