JPS5979934A - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPS5979934A
JPS5979934A JP57189055A JP18905582A JPS5979934A JP S5979934 A JPS5979934 A JP S5979934A JP 57189055 A JP57189055 A JP 57189055A JP 18905582 A JP18905582 A JP 18905582A JP S5979934 A JPS5979934 A JP S5979934A
Authority
JP
Japan
Prior art keywords
oxide
cathode
heat
scandium
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57189055A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Toshiyuki Aida
会田 敏之
Yoshihiko Yamamoto
山本 恵彦
Kuniyuki Sakumichi
訓之 作道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57189055A priority Critical patent/JPS5979934A/en
Publication of JPS5979934A publication Critical patent/JPS5979934A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To improve the electron emission capability, suppress the evaporation speed of barium, and extend the life by impregnating with an electron emitting material the pore sections of a composite porous base material consisting of a heat-resistant porous layer dispersed with grains such as scandium oxide and a heat-resistant porous material dispersed with grains of an oxide. CONSTITUTION:Tungsten powder and oxide powder containing scandium oxide or scandium, for example, are weighed and mixed as a heat-resistant porous layer; tungsten powder, for example, is weighed as a heat-resistant porous material; the said mixed powder and the tungsten powder are press-molded in a layer and sintered to produce a compound porous material; pore sections in such a compound porous material are impregnated with an electron emitting material. W grains, Mo grains, or alloy grains containing them are used as the heat- resistant porous material, and an oxide of a rare earth element Sc is used as the oxide containing scandium. Barium aluminate compound or a compound originated from a mixture of barium carbonate, aluminum oxide, and calcium carbonate is used as the electron emitting material.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はブラウン管、撮像管等の電子管に用いる含浸形
陰極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an impregnated cathode for use in electron tubes such as cathode ray tubes and image pickup tubes.

〔従来技術〕[Prior art]

含浸形陰極は高電流密度カソードで、電子管の高性能化
を計るための陰極として有望視されている。含浸形陰極
は多孔質基体の細孔部に電子放出物質を含浸したもので
ある。多孔質基体内1:はとんどがタングステンで製造
されているが、モリブデン、タンタルなどの4熱金属を
含むもので良い。
Impregnated cathodes are high current density cathodes and are considered promising as cathodes for improving the performance of electron tubes. An impregnated cathode is one in which the pores of a porous substrate are impregnated with an electron-emitting substance. The porous substrate 1 is mostly made of tungsten, but may also contain a tetrathermal metal such as molybdenum or tantalum.

電子放出物質としては酸化バリウムと酸化アルミニウム
、酸化カルシウム、酸化マグネシウムなどのうち少なく
とも1種を含む化合物あるいは混合物を出発原料に用い
ているのが一般的である。多孔質基体の細孔率は17〜
30%の範囲で選ばれる。多孔質基体は粒状物質を焼結
して製造する。
As the electron-emitting substance, a compound or mixture containing barium oxide and at least one of aluminum oxide, calcium oxide, magnesium oxide, etc. is generally used as a starting material. The porosity of the porous substrate is 17~
Selected within a range of 30%. The porous substrate is manufactured by sintering a particulate material.

電子放出物質は加熱熔融して多孔質基体に浸み込ませる
ことによって含浸される。
The electron-emitting material is impregnated by heating and melting it to infiltrate the porous substrate.

含浸形陰極の動作状態においては多孔質基体と電子放出
物質が反応し、バリウムを生成し、基体表面、すなわち
電子放出面に到達し、表面拡散して電子放出に適した単
原子層を形成する。このような含浸形陰極は高い電子放
出能を長時間に亘って可能とすることから、プラク/管
、撮影管などの陰極として開発が進められている。しか
し、高いFl、 f−放出能を有する反面、動作温度が
1050−1200Uと高いために、バリウムや酸化バ
リウムの蒸発が多くなり、他の電極へ付着し、管球の特
性に悪影響を及ぼす。また、高温のために、酸化物陰極
で用いている電極やスリーブ材質を変更する必要がある
。さらに、含浸形陰極を加熱するヒータの温度が高くな
るために、長時間の使用が出来ないなど欠点を有してい
る。そのために、低温動作がIIJ能な陰極の探索が活
発である。低温動作陰極として(1、電子放出面に、オ
スミウム、ルテニウム、イリジウムなどを数百nm被覆
したものが実用化している。しかし、動作温度は100
0C前後である。また動作温度が高いために、陰極から
余分なバリウム蒸発がみられ、電極に付着しグリッド・
エミッションの原因となるなどの欠点も有する。
In the operating state of an impregnated cathode, the porous substrate and the electron-emitting substance react to generate barium, which reaches the substrate surface, that is, the electron-emitting surface, and diffuses on the surface to form a monoatomic layer suitable for electron emission. . Since such an impregnated cathode enables high electron emission performance over a long period of time, it is being developed as a cathode for plaques/tubes, photographic tubes, and the like. However, although it has high Fl, f-emitting ability, its operating temperature is as high as 1050-1200 U, so barium and barium oxide evaporate in large quantities and adhere to other electrodes, adversely affecting the characteristics of the bulb. Additionally, due to the high temperature, it is necessary to change the electrode and sleeve materials used in the oxide cathode. Furthermore, since the temperature of the heater that heats the impregnated cathode becomes high, it has the disadvantage that it cannot be used for a long time. For this reason, there is active search for cathodes capable of low-temperature operation. As a low-temperature operating cathode (1), cathodes whose electron-emitting surface is coated with several hundred nanometers of osmium, ruthenium, iridium, etc. have been put into practical use.However, the operating temperature is 100 nm.
It is around 0C. Additionally, due to the high operating temperature, excess barium evaporates from the cathode and adheres to the electrode, causing the grid and
It also has drawbacks such as causing emissions.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電子放出能を高め、バリウムの蒸発速
度を抑え、しかも長寿命型の含浸形陰極を捉供すること
にある。
An object of the present invention is to provide an impregnated cathode that has enhanced electron emission ability, suppresses barium evaporation rate, and has a long life.

〔発明の概要〕[Summary of the invention]

」二記目的を達成するために、本発明による含浸形陰極
は、酸化スカンジウムあるいはこれらを含む酸化物粒子
が分散している耐熱多孔質層と酸化物粒子が分散してい
ない耐熱多孔質体からなる複合多孔質基体とこの複合多
孔質基体の細孔部に含浸させられた電子放出物質からな
る。耐熱多孔質体としては、W粒子、Mo粒子もしくは
これら4r−含む合金粒子が使われる。スカンジウムを
含む酸化物としては、希土類元素・SCの酸化物、(A
t18 C)20318 CtWs OH* Ca、 
5C20e30s ! T  (G a* SC) t
 Os HL iS c02 * L + ScMo(
Jg +5cVO,、(8c、Y)、0.、Sc、Zr
、0.、。
In order to achieve the second object, the impregnated cathode of the present invention consists of a heat-resistant porous layer in which scandium oxide or oxide particles containing scandium oxide are dispersed, and a heat-resistant porous body in which scandium oxide particles are not dispersed. It consists of a composite porous substrate and an electron-emitting substance impregnated into the pores of this composite porous substrate. As the heat-resistant porous body, W particles, Mo particles, or alloy particles containing these 4r particles are used. Oxides containing scandium include oxides of rare earth elements and SC, (A
t18 C) 20318 CtWs OH* Ca,
5C20e30s! T (G a * SC) t
Os HL iS c02 * L + ScMo(
Jg +5cVO, (8c, Y), 0. , Sc, Zr
,0. ,.

8 Z r 02 ” 8 C,o、 ’などがある。8 Z r 02” 8 C, o, ’, etc.

これらの物質を2種以上混合して用い、あるいはさらに
s C,o3との混合物を用いてもさしつかえない。
A mixture of two or more of these substances may be used, or a mixture with s C, O3 may also be used.

以上を代表して、タングステンと酸化スカンジウムを選
んで説明する。
As representatives of the above, tungsten and scandium oxide will be selected and explained.

本発明による含浸形陰極は、耐熱多孔質層としてタング
ステン粉末と酸化スカンジウム粉末を秤量、混合、さら
に耐熱多孔質体としてタングステン粉末を秤量し、上記
混合粉とタングステン粉末を層状にプレス成形、焼結し
て複合多孔質体を作製し、複合多孔質体内の細孔部に電
子放出物質を含浸させることによって製造される。
The impregnated cathode according to the present invention is produced by weighing and mixing tungsten powder and scandium oxide powder as a heat-resistant porous layer, weighing tungsten powder as a heat-resistant porous body, press-molding the mixed powder and tungsten powder into a layer, and sintering. It is manufactured by preparing a composite porous body and impregnating the pores in the composite porous body with an electron-emitting substance.

上記の方法を以下に一層詳しく説明する。The above method will be explained in more detail below.

まず、タングステン粉末と酸化スカンジウム粉末を用意
する。いずれも粒度調整されていることが望ましい。耐
熱多孔質層となるタングステン粉末と酸化スカンジウム
粉末の粒径は同じかあるいは酸化スカンジウム粉末の方
が小さいことが望ましい。耐熱多孔質層に用いるタング
ステン粉末と耐熱多孔質体に用いるタングステン粉末の
粒径は必ずしも同じである必要はない。各層の細孔率を
どの程〆に選ぶかによって異なって来る。たとえば、プ
レス成型圧力、焼結条件が同じであれば細孔率は粒径が
小さい程小さくなる。また細孔率は粒径が同じで焼結売
件も同じであれば、プレス成型圧力の大きい方が細孔率
は小さい。用意したタングステン粉末と酸化スカンジウ
ム粉末を適当量配合して乳鉢等で十分混合し混合粉とし
たのち、円筒状プレス治具に挿入し、その上にタングス
テン粉末を挿入してプレス成型を行なう。プレス成型に
は必要に応じてポリ・ビニール・アルコールなどをバイ
ンダーとして使用する。混合粉とタングステン粉はどち
らを先にプレス治具に挿入しても先し支えない。また任
意の細孔率を選ぶため、先に挿入した粉末を一度プレス
したのち、他の粉末を入れてプレスしても良い。その時
のプレス圧力は一度目と二度目は異なる。プレス成型後
は、水素中で1000−120Orに加熱してバインダ
ーを除くとともに、取り扱い易いように仮焼結を行なっ
たのち、真空中で1700〜2000t’rに加熱して
焼結し、17〜30%の細孔を有する複合多孔質基体を
製造することができる。細孔率はタングステン粉末の粒
径、プレス成型圧力、焼結条件によって任意に選択出来
るが、通常3〜8μmのものを用い、1〜10 ton
/crn”の圧力で成型を行ない、焼結は1700−2
000℃、0.5〜3h程度の焼結条件で行なわれる。
First, tungsten powder and scandium oxide powder are prepared. It is desirable that the particle size of both be adjusted. It is desirable that the particle diameters of the tungsten powder and the scandium oxide powder that form the heat-resistant porous layer are the same, or that the scandium oxide powder is smaller. The particle diameters of the tungsten powder used for the heat-resistant porous layer and the tungsten powder used for the heat-resistant porous body do not necessarily have to be the same. The porosity of each layer differs depending on how close you choose it. For example, if the press molding pressure and sintering conditions are the same, the smaller the particle size, the smaller the porosity. Furthermore, if the particle size is the same and the sintering properties are the same, the porosity will be smaller when the press molding pressure is higher. Appropriate amounts of the prepared tungsten powder and scandium oxide powder are blended and thoroughly mixed in a mortar or the like to form a mixed powder, which is then inserted into a cylindrical press jig, and the tungsten powder is inserted onto it to perform press molding. For press molding, poly, vinyl, alcohol, etc. are used as binders as necessary. Mixed powder and tungsten powder will not be supported first, no matter which one is inserted into the press jig first. Further, in order to select an arbitrary porosity, the powder inserted first may be pressed once, and then other powders may be inserted and pressed. The pressing pressure at that time is different between the first and second presses. After press molding, the binder is removed by heating in hydrogen to 1000-120Or, and after pre-sintering to make it easier to handle, sintering is performed by heating in vacuum to 1700-2000T'r. Composite porous substrates with 30% porosity can be produced. The porosity can be arbitrarily selected depending on the particle size of the tungsten powder, press molding pressure, and sintering conditions, but it is usually 3 to 8 μm and 1 to 10 tons.
Molding is carried out at a pressure of 1700-2
Sintering is carried out at 000°C for about 0.5 to 3 hours.

粉末同士の拡散が十分に進行し、粉末>へl子の移動が
あるものは、同じt![1孔率でも分布が不揃いで閉鎖
孔が多い。切削加工によって陰極形状にする場合には強
度が必要とされるために、拡散を進めなければならない
If the diffusion between the powders has progressed sufficiently and there is a movement of particles from powder to powder, then the same t! [Even with a porosity of 1, the distribution is uneven and there are many obturator pores. When forming a cathode shape by cutting, strength is required, so diffusion must be promoted.

最初から陰極形状を想定してプレス成型する場合にtま
、陰極としての強度があれば良いことになる。
When press molding is performed with the cathode shape assumed from the beginning, it is sufficient that the material has sufficient strength as a cathode.

耐熱多孔m層の酸化スカンジウムは価格あるいけ特性上
から耐熱多孔質層体積の50%以下が望ましく、経済性
、カソード電流特性から10〜20%程度が良い。また
、顕著な効果を得るためには2%以上であることが望ま
しい。またこの層の埋さけ、バリウム蒸発量の減少、カ
ソード寿命特性なとから複合多孔質基体の5〜50%程
度が望ましく、通常は10〜20%の範囲で選ばれる。
The scandium oxide of the heat-resistant porous m layer is desirably 50% or less of the volume of the heat-resistant porous layer from the viewpoint of price and characteristics, and is preferably about 10 to 20% from the viewpoint of economy and cathode current characteristics. Further, in order to obtain a remarkable effect, it is desirable that the content is 2% or more. Further, from the viewpoint of burying this layer, reducing the amount of barium evaporation, and cathode life characteristics, it is desirable that the amount is about 5 to 50% of the composite porous substrate, and is usually selected in the range of 10 to 20%.

複合多孔質基体の埋さは0.3〜1.5間程度が一般的
で望ましい。第1図に複合多孔質基体の断面模型図を示
す。1はタングステン粒、2Fi酸化ス力ンジウム粒、
3は細孔部、4Fi複合多孔質基体を示す。
The filling depth of the composite porous substrate is generally between about 0.3 and 1.5. FIG. 1 shows a cross-sectional model diagram of the composite porous substrate. 1 is tungsten grain, 2Fi sodium oxide grain,
3 indicates a pore portion and a 4Fi composite porous substrate.

このように製指した複合多孔質基体上に、バリウム・ア
ルミネート化合物をのせ、水各中で約170Orに加熱
熔融して含浸させることによって含浸形隈極を製造出来
る。電子放出物ηとしてはバリウム・アルミネート化合
物の他、炭酸バリウム、酸化アルミニウム、炭酸カルシ
ウムの混合物を出発原料としても良い。この3つの組み
合せで良い特性を示した組成は(炭酸バリウム):(酸
化アルミニウム):(炭酸カルシウム)=4:1:1〜
5:2:3であった。このようにして製造した含浸形陰
極の飽和電流特性を第2図に従来型の含浸形陰極および
オスミウムを被覆した含浸形陰極の飽和電流特性5およ
び6と、本発明の含浸形陰極の飽和電流特性7を示す。
An impregnated shade electrode can be manufactured by placing a barium aluminate compound on the composite porous substrate thus prepared and impregnating it by heating and melting it in water to about 170 Orr. In addition to a barium aluminate compound, a mixture of barium carbonate, aluminum oxide, and calcium carbonate may be used as the starting material for the electron emitting substance η. The composition that showed good properties with the combination of these three is (barium carbonate): (aluminum oxide): (calcium carbonate) = 4:1:1 ~
The ratio was 5:2:3. The saturation current characteristics of the impregnated cathode manufactured in this manner are shown in Figure 2. Saturation current characteristics 5 and 6 of the conventional impregnated cathode, the osmium-coated impregnated cathode, and the saturation current of the impregnated cathode of the present invention. Characteristic 7 is shown.

本発明によって得られた含浸形陰極は従来型陰極(%性
5)に較べて約300tl?、従来のオスミウム被覆陰
極(特性6)に較べて約150c低温で動作出来る特性
が得られた。第3図は、耐熱多孔質層中のs c、 o
3  の体積と、飽和電流密度10 A /cm”がイ
4fられる温度との関係を示す図である。図からも明ら
かなように80.O3eわずか混入しても効果が認めら
れるがとくに2容積%以上の場合オスミウム被覆含浸形
陰極よシも優れた効果が得られた8 C,o、でなくヘ
スカンジウムを含む酸化物粒子を用いる時は、そのうち
の5C203成分のみの容しパ 積であればtlは同必効果が得られた。
The impregnated cathode obtained by the present invention has a capacity of about 300 tl compared to a conventional cathode (%5). Compared to the conventional osmium-coated cathode (characteristic 6), a characteristic that allows operation at a lower temperature of about 150 C was obtained. Figure 3 shows sc, o in the heat-resistant porous layer.
This is a diagram showing the relationship between the volume of 80.3 and the temperature at which the saturation current density of 10 A/cm" is achieved.As is clear from the figure, even a small amount of 80. % or more, an osmium-coated impregnated cathode also showed excellent effects.When using oxide particles containing hescandium rather than 8C, O, the volume of only the 5C203 component can be reduced. Batl had the same effect.

酸化スカンジウムが分散した多孔質基体を用いた陰極す
なわち本発明の含浸形陰極の耐熱多孔質層部のみで構成
された陰極(酸化スカンジウム分散型含浸形陰極と称す
)においては、飽和電流特性は本発明の含浸形陰極特性
と同じであった。この陰極からのバリウム、バリウム蒸
発量は酸化スカンジウム量に逆比例して減少している。
In a cathode using a porous substrate in which scandium oxide is dispersed, that is, a cathode composed only of the heat-resistant porous layer of the impregnated cathode of the present invention (referred to as a scandium oxide dispersed impregnated cathode), the saturation current characteristics are The characteristics were the same as those of the impregnated cathode of the invention. The amount of barium and barium evaporated from this cathode decreases in inverse proportion to the amount of scandium oxide.

しかし、この陰極における飽和電流特性の経時変化測定
において従来型陰極よりも短寿命ということがわかった
。これは、蒸発量の減少から判断して、電子放出面への
バリウムの補給が不足したためだった。
However, measurements of the saturation current characteristics of this cathode over time revealed that it has a shorter lifespan than conventional cathodes. This was due to an insufficient supply of barium to the electron-emitting surface, as judged from the decrease in evaporation.

し友がって本発明の含浸形陰極のように、耐熱多孔質層
の下部に耐熱多孔質体全設け、ここからバリウムを補給
することを考え、実行した結果、従来型含浸形陰極より
も余分なバリウム蒸発は少なく、常に安定したバリウム
の補給が行なわれ、寿命特性も従来型陰極とほぼ同じで
あった。
Therefore, as in the impregnated cathode of the present invention, we considered providing a heat-resistant porous body entirely below the heat-resistant porous layer and replenishing barium from there. There was little excess barium evaporation, barium was constantly replenished, and the life characteristics were almost the same as conventional cathodes.

m4図は、従来型含浸形陰極のバリウム蒸発特性8と本
発明による含浸形隘極のバリウム蒸発特性9を示す。
The m4 diagram shows the barium evaporation characteristics 8 of a conventional impregnated cathode and the barium evaporation characteristics 9 of an impregnated pole according to the invention.

本発明の含浸形陰極は同一温度で比較しても小さいが動
作温度で比較すると1.5〜3桁小さい。
Although the impregnated cathode of the present invention is small when compared at the same temperature, it is 1.5 to 3 orders of magnitude smaller when compared at operating temperature.

第5図は、900tT動作における飽和電流特性すなわ
ち寿命特性を示す。図中10は従来型含浸形陰極、11
は酸化スカンジウム分散型含浸形陰極、12は本発明に
よる含浸形陰極の特性を示す。
FIG. 5 shows the saturation current characteristics, that is, the life characteristics in 900tT operation. In the figure, 10 is a conventional impregnated cathode, and 11 is a conventional impregnated cathode.
12 shows the characteristics of the scandium oxide dispersed impregnated cathode, and 12 shows the characteristics of the impregnated cathode according to the present invention.

この上うKして製造した含浸形陰極13は、第6図に示
すようにスリーブ14と障壁)f115、タングステン
芯線16に絶縁被覆層17を設けたヒータ18と組み合
わせて電子管用陰極として(iじ用される。動作温度が
150〜3007:’低下したことによシ、消費電力も
低下し、さらにヒータ18の寿命が、酸化物陰極を加熱
使用したと同程度の敵方時間の寿命が得られた。
The impregnated cathode 13 manufactured by the above process is combined with a sleeve 14, a barrier) f115, and a heater 18 in which an insulating coating layer 17 is provided on a tungsten core wire 16 as shown in FIG. Since the operating temperature has been lowered from 150 to 3007, the power consumption has also been reduced, and the life of the heater 18 has been reduced to about the same amount of time as when heating an oxide cathode. Obtained.

本発明によれば、以上説明したように、従来の製造工程
を適用出来、また管球作製工程f:変更することなく、
従来型の含浸形陰極の動作温度よりも150〜300 
c動作温度を低下させたことによってバリウム、酸化バ
リウムの蒸発速度を約1.5〜3桁低下することが出来
、本発明による含浸形陰極は従来型の含浸形陰極よりも
優れた特性を有する含浸形陰極と言える。
According to the present invention, as explained above, the conventional manufacturing process can be applied, and the tube manufacturing process f: without changing,
150-300°C higher than the operating temperature of conventional impregnated cathodes
c By lowering the operating temperature, the evaporation rate of barium and barium oxide can be reduced by about 1.5 to 3 orders of magnitude, and the impregnated cathode according to the present invention has better characteristics than conventional impregnated cathodes. It can be said to be an impregnated cathode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

実施例1 粒径5μmのタングステ、ン粉末と粒径2〜3μmの酸
化スカンジウム粉末を周章し、酸化スカンジウムの比率
が1..2,4,6,9,12゜16wt% (体積百
分率で表わすと4.8,9.3゜17.2.、24.4
.33.1.40.5.48.8%)になるように秤量
し、乳鉢で十分混合1〜だ。ついでこの混合粉とタング
ステン粉末をそれぞれ0.1と0.4胴となるように秤
−ir j、、1.5 mynφの円筒プレス治具を使
用し、まず混合粉を挿入、次いでタングステン粉末を挿
入してプレス成型を行なった。
Example 1 Tungsten powder with a particle size of 5 μm and scandium oxide powder with a particle size of 2 to 3 μm were mixed, and the ratio of scandium oxide was 1. .. 2,4,6,9,12゜16wt% (expressed as volume percentage: 4.8, 9.3゜17.2., 24.4
.. 33.1.40.5.48.8%) and mix thoroughly in a mortar. Then, using a cylindrical press jig with a diameter of 1.5 min, insert the mixed powder and the tungsten powder so that they are 0.1 and 0.4 mm, respectively. It was inserted and press molding was performed.

プレス成型には、ポリeビニール拳アルコールをバイン
ダーとして用いケ。成型圧力ij 4 ton/crn
”で実施した。次いで水素中で、1ioo′C,ihの
仮焼結を行ない、バインダーを除くとともに取り級い易
いようにした。つぎにI X 10−”porr以下の
圧力の真空中で1900tr、2hの焼結し、耐熱多孔
質層と1熱多孔質体が一体化した複合多孔質体を作った
。このように製造した複合多孔質体の細孔率は平均18
〜27%の軸回に存在していた。このように製造した複
合多孔質体に4BaO・A t、 03・CaOの配合
からなる化合物をのせ、水素雰囲気中で1730〜17
40℃で3分間加熱熔融して含浸形陰極を作製した。こ
の含浸形陰極を厚さ25μmのタンタル・スリーブ14
とメンタルからなるカップ状の障壁層15′f:レーザ
・ビームで熔接し、傍熱形陰極を作シ、スリーブ内にタ
ングステン・ヒータ18を設けて陰極−陽極からなる2
極管を作製し、パルス電源を用いて、陰極の飽和電流を
測定した結果を第2図の7に示す。
For press molding, use polyvinyl alcohol as a binder. Molding pressure ij 4 ton/crn
Next, pre-sintering was carried out in hydrogen at 1 ioo'C, ih to remove the binder and make it easier to grade. Next, it was sintered at 1900 tr in a vacuum at a pressure below I x 10-'porr. , and sintered for 2 hours to produce a composite porous body in which the heat-resistant porous layer and the heat-resistant porous body were integrated. The average porosity of the composite porous body produced in this way is 18
It was present in ~27% of axial gyri. A compound consisting of a combination of 4BaO・At and 03・CaO was placed on the composite porous body produced in this way, and a compound of 1730 to 17
An impregnated cathode was prepared by heating and melting at 40° C. for 3 minutes. This impregnated cathode is wrapped in a tantalum sleeve 14 with a thickness of 25 μm.
A cup-shaped barrier layer 15'f consisting of a metal and a metal is welded with a laser beam to form an indirectly heated cathode, and a tungsten heater 18 is provided inside the sleeve to form a cup-shaped barrier layer 15'f consisting of a cathode and an anode.
An electrode tube was prepared and the saturation current of the cathode was measured using a pulsed power source. The results are shown in 7 in FIG.

7はW−+wt%5CtOs  (体積率で17.2%
)を耐熱多孔質層とした場合の含浸形陰極特性である。
7 is W-+wt%5CtOs (17.2% in volume fraction
) is the impregnated cathode characteristic when the heat-resistant porous layer is used.

第3図には8C2O3量と動作温度の関係、第4図はバ
リウム蒸発特性を測定した図、第5図は寿命特性を調べ
た図である。第3図以外の陰極はいずれも耐熱多孔質層
にW−4wt%3c20.、を用いた含浸形陰極である
FIG. 3 shows the relationship between the amount of 8C2O3 and the operating temperature, FIG. 4 shows the measured barium evaporation characteristics, and FIG. 5 shows the investigated life characteristics. All of the cathodes other than those shown in FIG. 3 have a heat-resistant porous layer of W-4wt%3c20. This is an impregnated cathode using .

さらに本発明の他の実施例を第7図を用いて説明する。Furthermore, another embodiment of the present invention will be described using FIG. 7.

第7図は含浸形カソードの模式図である(加熱用ヒータ
は描かれていない。)多孔質タングステン基体71は3
〜8μm粒径のW粉末を用い1〜10t/cm2の圧力
で成形の後、1700〜2000[″、0.5〜3時間
の焼結を行い17〜30%の空孔率にする。次に空孔部
72に炭酸バリウム二酸化アルミニウム:炭酸カルシウ
ム−4=1=1〜5:2:3に3〜5重量%の5C70
゜を添加した含浸剤を含浸する。これをペレット(カソ
ード材料)と呼ぶ。ペレットをタンタルのカップ73に
装着した後スリーブ74に接ガイする。
FIG. 7 is a schematic diagram of an impregnated cathode (heater is not shown).
After molding at a pressure of 1 to 10 t/cm2 using W powder with a particle size of ~8 μm, sintering is performed for 0.5 to 3 hours at 1,700 to 2,000 mm to obtain a porosity of 17 to 30%.Next barium carbonate aluminum dioxide:calcium carbonate-4=1=1 to 5:2:3 to 3 to 5% by weight of 5C70
Impregnate with an impregnating agent containing ゜. This is called a pellet (cathode material). After the pellet is attached to a tantalum cup 73, it is attached to a sleeve 74.

このペレット表面にsc、y、希土類元素及び酸化物の
is以上をイオン打込み技術により打込むペレットへの
イオン打込みは大容量イオン打込み機を用い、第8図に
示すように表面下11〜1100n (10人〜1μm
)に101!〜1022個/cm” 。
SC, Y, rare earth elements, and IS or higher oxides are implanted into the pellet surface using ion implantation technology. Ions are implanted into the pellet using a large-capacity ion implanter, 11 to 1100 nm below the surface as shown in Figure 8. 10 people ~ 1μm
) to 101! ~1022 pieces/cm”.

好ましくは1ONS〜1022個/cm ’ の密度の
イオン打込み層75を形成する。薄層の厚みは1〜10
001mであってもよい。
The ion implantation layer 75 is preferably formed at a density of 1 ONS to 1022 ions/cm'. The thickness of the thin layer is 1-10
001m may be sufficient.

上記の方法により製作したペレ・ソトを用いた含浸形カ
ソードの特性を評価するために、ショットキープロット
評価を行なった。アノードとしては徹底的にガス出し処
理を施したλ40板を用いカソードルアノード間距離を
1111I+に設定した。アノードにパルス(5μ8.
25tIZ)の電圧を印加し、カソード(表面積0.0
15crn’ )よυ放出される電流が、カソード−ア
ース間に接合した100Ωの抵抗に流れる際発生する電
圧パルスの波高値を測定した。カソードルアノード間電
圧の平方根と放出電流■の関係(ショットキープロット
)を第9図に示す。91は従来のs C,03添加の含
浸形カソード、92はSC打込み処理全行なったカソー
ドの特性を示す。動作温度800CにてSC,0゜添加
の通常のカソードは〜10 A/crn”の飽和電流密
度を得るが、引き出し電界9 X 10” V/cm 
(A点)における電流密度は飽和電流密度を下まわる。
In order to evaluate the characteristics of the impregnated cathode using Peret-Soto fabricated by the above method, Schottky plot evaluation was performed. As the anode, a λ40 plate which had been thoroughly subjected to degassing treatment was used, and the distance between the cathode and the anode was set to 1111I+. Pulse to the anode (5μ8.
A voltage of 25tIZ) was applied, and the cathode (surface area 0.0
The peak value of the voltage pulse generated when the emitted current flows through a 100Ω resistor connected between the cathode and the ground was measured. FIG. 9 shows the relationship between the square root of the cathode-anode voltage and the emission current (Schottky plot). 91 shows the characteristics of a conventional impregnated cathode with addition of s C,03, and 92 shows the characteristics of a cathode completely subjected to the SC implantation process. At an operating temperature of 800 C, a typical cathode with SC, 0° doping obtains a saturation current density of ~10 A/crn'', but with an extraction field of 9 x 10'' V/cm.
The current density at (point A) is below the saturation current density.

一方Sc打込み処理の5C203添加のカソードのA点
での電流密度は従来のものの2倍以上となる。
On the other hand, the current density at point A of the 5C203-added cathode in the Sc implant process is more than twice that of the conventional one.

W基体中に打ち込まれたScは、動作中に基体表面に拡
散し、酸化され5C20、になる。空孔から放出される
遊離13aは、同じく基体表面を拡散し、sc、o3に
吸着もしくは化合する。本実施例によれば、W基体表面
と含浸剤の入った空孔の間の仕事関数の差が小さくなり
、patch電界が減少する。第9図tよこの効果を示
すものである。
Sc implanted into the W substrate diffuses to the surface of the substrate during operation and is oxidized to 5C20. Free 13a released from the pores similarly diffuses on the substrate surface and adsorbs or combines with sc and o3. According to this example, the difference in work function between the surface of the W substrate and the pores containing the impregnating agent is reduced, and the patch electric field is reduced. The effect shown in Figure 9 (t) is shown.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、従来の含浸形陰極の製造工程を
変更することなく、動作温度を150〜300C低くす
ることが出来、かつバリウム蒸発速度を小さく出来、し
かも、長寿命が得られるなど優れた特性を有する含浸形
陰極が得られる。また電子管に実装した場合、酸化物陰
極で用いているヒータおよび電極をその−1ま使えるな
との有利である。
As described above, according to the present invention, the operating temperature can be lowered by 150 to 300 C, the barium evaporation rate can be lowered, and the service life can be extended without changing the manufacturing process of conventional impregnated cathodes. An impregnated cathode with excellent properties is obtained. Furthermore, when mounted in an electron tube, it is advantageous in that the heater and electrode used in the oxide cathode can be used to a lesser extent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の含浸形隈極の複合多孔・6基体の断面
模型図、第2図は、従来法で作製した含浸形陰極と本発
明による含浸形陰極の飽和電流特性とを比較した図、第
3図は、本発明を説明するための温度特性を示す図、第
4図は従来法で作製した含浸形陰極と本発明による含浸
形陰極のノ;リウム蒸発速度を比較した図、第5図は従
来法で作製した含浸形陰極と本発明による含浸形陰極の
飽和電流密度の経時変化を示しfc図、第6図は含浸形
陰極、スリーブ、障壁層、ヒータの組み立て図、第7図
は含浸形カソードの断固模式図、第8図はベレットの模
式図、第9図は本発明のショットキープロットの比較す
る図である。 1・・・タングステン粒、2・・・酸化スカンジウム粒
、3・・・細孔部、4・・・複合多孔質基体、訃・・従
来の含浸形陰極の飽和電流特性、6・・・オスミウムを
被覆して特性を改善した含浸形陰極の飽和電流特性、7
・・・本発明によって得られた含浸形陰極の飽和電流特
性、8・・・従来の含浸形陰極のバリウム蒸発速度、9
・・・本発明によって得られた含浸形陰極のノ(リウム
蒸発速度、10・・・従来の含浸形陰極における飽和電
流密度の経時変化、11・・・酸化スカンジウム分散型
含浸形陰極における飽和電流密度の経時変化、12・・
・本発明による含浸形陰極における飽和電流密度の経時
変化、13・・・本発明による含浸形陰極、14・・・
スリーブ、15・・・カップ状の障壁層、16・・・タ
ングステン芯線、17・・・絶縁被覆層、18・・・ヒ
ータ、71・・・タングステン基体、72・・・空孔部
、73・・・カップ、74・・・スリーブ、75・・・
イオン打込み層、91・・・〆f、 f S c、 0
.添加型含浸カソードの特性、92・・・SC打込み処
理のY 1 圀 3 茅2 困 第 3 図 面1軽9ybVノe+9゜2θ34オミ1史 (va−
e %)第 4 区 ツ(尿色女1温斤つ(k−’) ’f、5  凶 循 乙 暖
Figure 1 is a cross-sectional model diagram of a complex porous six-substrate impregnated shaded electrode of the present invention, and Figure 2 is a comparison of the saturation current characteristics of the impregnated cathode produced by the conventional method and the impregnated cathode of the present invention. 3 is a diagram showing temperature characteristics for explaining the present invention, and FIG. 4 is a diagram comparing the evaporation rate of lithium between an impregnated cathode produced by a conventional method and an impregnated cathode according to the present invention. Figure 5 is an fc diagram showing the change over time in the saturation current density of the impregnated cathode produced by the conventional method and the impregnated cathode according to the present invention. FIG. 7 is a schematic diagram of an impregnated cathode, FIG. 8 is a schematic diagram of a bellet, and FIG. 9 is a comparative diagram of the Schottky plot of the present invention. DESCRIPTION OF SYMBOLS 1... Tungsten grains, 2... Scandium oxide particles, 3... Pores, 4... Composite porous substrate, S... Saturation current characteristics of conventional impregnated cathodes, 6... Osmium Saturation current characteristics of impregnated cathode with improved characteristics by coating, 7
...Saturation current characteristics of the impregnated cathode obtained by the present invention, 8...Barium evaporation rate of the conventional impregnated cathode, 9
...Norium evaporation rate of the impregnated cathode obtained according to the present invention, 10. Time-dependent change in saturation current density in the conventional impregnated cathode, 11. Saturation current in the scandium oxide dispersed impregnated cathode. Change in density over time, 12...
- Change in saturation current density over time in the impregnated cathode according to the present invention, 13... Impregnated cathode according to the present invention, 14...
Sleeve, 15... Cup-shaped barrier layer, 16... Tungsten core wire, 17... Insulating coating layer, 18... Heater, 71... Tungsten base, 72... Hole portion, 73... ...Cup, 74...Sleeve, 75...
Ion implantation layer, 91...〆f, fSc, 0
.. Characteristics of additive impregnated cathode, 92...SC implantation treatment Y 1 圀 3 茅 2 類 3 Drawing 1 light 9ybVnoe+9°2θ34 omi 1 history (va-
e %) 4th ward tsu (urine woman 1 warm tsu (k-') 'f, 5 evil cycle otsu warm

Claims (1)

【特許請求の範囲】 1、 タングステン粒子又はモリブデン粒子もしくはこ
れらを含む合金粒子と酸化スカンジウム粒子又はスカン
ジウムを含む酸化物粒子からなる第1の耐熱多孔質層と
タングステン粒子又は上台多孔質基体と、該多孔質基体
内の細孔部を含浸させた電子放出物質とからなることを
特徴とする含浸形陰極。 2、上記第1の耐熱多孔質層で酸化スカンジウム粒子又
はスカンジウムを含む酸化物粒子のうちの酸化スカンジ
ウムの量が多孔質層容積の2〜50%である特許請求の
範囲第1項記載の含浸形陰極。 3、 上記第1の耐熱多孔質層の厚さは、上記複合多孔
質基体の厚さの5〜50%である特許請求の範囲第1項
又は第2項記載の含浸形陰極。 4、上記細孔部が上記複合多孔質基体容体の17〜30
%である特許請求の範囲第1項から第3項までのいずれ
かに記載の含浸形陰極。 5、上記スカンジウムを含む酸化物が、希土類元素とス
カンジウムの鹸化物、(A l、 S C)203 +
S CzWsO+t + C”s 8C20e3012
 + (oa、 S C)20、、Li5cO,+ L
i8cMoO,,5cVO,+(Sc、 Y)、0. 
、8c4Zr、O,、及び8ZrO,−s C,o、か
らなる群から選ばれた少なくとも一棹の酸化物である特
許請求の範囲第1項から第4項までのいずれかに記載の
含桜形陰極。
[Claims] 1. A first heat-resistant porous layer consisting of tungsten particles or molybdenum particles or alloy particles containing these, scandium oxide particles or oxide particles containing scandium, and tungsten particles or an upper porous substrate; An impregnated cathode comprising an electron-emitting material impregnating the pores in a porous substrate. 2. The impregnation according to claim 1, wherein the amount of scandium oxide among the scandium oxide particles or scandium-containing oxide particles in the first heat-resistant porous layer is 2 to 50% of the porous layer volume. shaped cathode. 3. The impregnated cathode according to claim 1 or 2, wherein the thickness of the first heat-resistant porous layer is 5 to 50% of the thickness of the composite porous substrate. 4. The pores are 17 to 30 of the composite porous substrate container.
% of the impregnated cathode according to any one of claims 1 to 3. 5. The scandium-containing oxide is a saponified product of a rare earth element and scandium, (A l, SC) 203 +
S CzWsO+t + C”s 8C20e3012
+ (oa, S C)20,, Li5cO, + L
i8cMoO,,5cVO,+(Sc, Y), 0.
, 8c4Zr,O, and 8ZrO,-sC,o, the cherry-containing oxide according to any one of claims 1 to 4, which is an oxide of at least one member selected from the group consisting of: shaped cathode.
JP57189055A 1982-10-29 1982-10-29 Impregnated cathode Pending JPS5979934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189055A JPS5979934A (en) 1982-10-29 1982-10-29 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189055A JPS5979934A (en) 1982-10-29 1982-10-29 Impregnated cathode

Publications (1)

Publication Number Publication Date
JPS5979934A true JPS5979934A (en) 1984-05-09

Family

ID=16234529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189055A Pending JPS5979934A (en) 1982-10-29 1982-10-29 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPS5979934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278718A (en) * 1986-05-28 1987-12-03 Hitachi Ltd Impregnated cathode
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
WO2013018027A1 (en) * 2011-08-03 2013-02-07 Koninklijke Philips Electronics N.V. Target for barium - scandate dispenser cathode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278718A (en) * 1986-05-28 1987-12-03 Hitachi Ltd Impregnated cathode
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
US6304024B1 (en) 1995-06-09 2001-10-16 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region
US6447355B1 (en) 1995-06-09 2002-09-10 Kabushiki Kaisha Toshiba Impregnated-type cathode substrate with large particle diameter low porosity region and small particle diameter high porosity region
WO2013018027A1 (en) * 2011-08-03 2013-02-07 Koninklijke Philips Electronics N.V. Target for barium - scandate dispenser cathode
RU2624264C2 (en) * 2011-08-03 2017-07-03 Конинклейке Филипс Н.В. Target for dispenser cathode based on barium scande

Similar Documents

Publication Publication Date Title
JPH054772B2 (en)
US2912611A (en) Thermionic cathodes
JPS58177484A (en) Manufacture of dispenser cathode
JPS6191821A (en) Manufacture of scandium dispensor cathode and dispensor cathode manufactured thereby
US2996795A (en) Thermionic cathodes and methods of making
US4675570A (en) Tungsten-iridium impregnated cathode
RU2380784C1 (en) Magnetron with non-filament cathode
US4982133A (en) Dispenser cathode and manufacturing method therefor
JPS5979934A (en) Impregnated cathode
EP1232511B1 (en) Oxide cathode
US3922428A (en) Thermionic cathode comprising mixture of barium oxide, calcium oxide and samarium oxide
CN105788996B (en) A kind of submicron film scandium tungsten cathode and preparation method thereof
US3760218A (en) Thermionic cathode
US3656020A (en) Thermionic cathode comprising mixture of barium oxide, calcium oxide and lithium oxide
EP1189253B1 (en) Cathode ray tube with doped oxide cathode
JPH01204329A (en) Impregnated cathode and its manufacture
JPS612226A (en) Impregnated cathode
Brodie et al. Secondary electron emission from barium dispenser cathodes
JPS59203343A (en) Impregnated cathode
KR100382060B1 (en) Cathode using cermet pellet and method for manufacturing the same
EP0157634A2 (en) Tungsten-iridium impregnated cathode
JPS5918539A (en) Impregnated cathode
JPS6032232A (en) Impregnated cathode
KR920004551B1 (en) Dispensor cathode
JPS60170136A (en) Impregnated cathode