JPS5979012A - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JPS5979012A
JPS5979012A JP18818882A JP18818882A JPS5979012A JP S5979012 A JPS5979012 A JP S5979012A JP 18818882 A JP18818882 A JP 18818882A JP 18818882 A JP18818882 A JP 18818882A JP S5979012 A JPS5979012 A JP S5979012A
Authority
JP
Japan
Prior art keywords
turbine
turbines
steam
valve loop
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18818882A
Other languages
Japanese (ja)
Other versions
JPS6217644B2 (en
Inventor
Mitsuyasu Tanaka
田中 光耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18818882A priority Critical patent/JPS5979012A/en
Publication of JPS5979012A publication Critical patent/JPS5979012A/en
Publication of JPS6217644B2 publication Critical patent/JPS6217644B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/345Control or safety-means particular thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To make the efficiency of a back pressure turbine system come close to a maximum value by a method wherein in the case of a group of turbines of the same type, a calculating operation is made so as to find out a point of correspondence of the operating point of each of the turbines to an operating point on a valve loop of the turbine on the bases of the valve loop and the present operation condition of the turbine. CONSTITUTION:A plurality of turbines 2a,..., 2d have their exhaust pipes connected in common to a basi pipe 11 so that the turbines are controlled to have a constant steam pressure. That is, each of the turbines is brought under such a valve loop operation condition that the total output of the turbines becomes maximum without changing the total flow rate of steam flowing through the turbines. For this purpose, the point of correspondence of the operating point of each of the turbines to the operating point on the valve loop of the turbine stored in a memory 6 is ascertained on the base of the actual flow rate of steam through the turbine. Thus, in operating the distribution of steam for the turbines, the inclinations deltaW/deltaQ of the valve loop at the operating points of the turbines are compared to one another and the flow rate of steam in the turbine having a larger valve loop inclination is increased while that in the turbine having a smaller valve loop inclination is decreased. Therefore, it is possible to make the efficiency of the back pressure turbine system maximum by repeating the above operation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複数台のタービンを経済運用するのに好適なタ
ービン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine control device suitable for economically operating a plurality of turbines.

〔発明の技術的背景〕[Technical background of the invention]

産業用発電システム等複数台の小容量タービンから成る
発電システムでは、従来からこれらの複数台のタービン
を最も効率的に運用し、燃料消費を極力抑えようという
要求がある。タービンの経済運転としては後述する弁点
制御といったタービンのパルプループに着目した方法が
あるが、複数台のタービンにおいては従来あまシ用いら
れなかった。パルプループというのは、第1図に示すよ
うに横軸に蒸気加減弁カム角度、縦軸にタービン出力を
とった曲線で、一般に個々のタービンの蒸気加減弁の数
やタービン特性に応じた下に凸の曲線の組合せとなる。
BACKGROUND ART In power generation systems such as industrial power generation systems that include a plurality of small-capacity turbines, there has been a demand to operate these plurality of turbines most efficiently and to minimize fuel consumption. For economical operation of turbines, there is a method that focuses on the pulp loop of the turbine, such as valve point control, which will be described later, but this method has not been widely used in the past when multiple turbines are involved. As shown in Figure 1, the pulp loop is a curve with the horizontal axis representing the steam control valve cam angle and the vertical axis representing the turbine output. It is a combination of convex curves.

即ち、1台のタービンにつき複数個の蒸気加減弁が存在
し、これらが順々に開閉するため、各加減弁に応じた曲
線の組合せとなるのである。従って、一般にはカム角度
と蒸気流量は比例するが、カム角度とタービン出力とは
第1図のような関係となシ直線とはならない。図のP点
は加減弁の切替わる点で、図からも明らかなようにター
ビン効率はこの点において最も高くQ点のように下に凸
の部分では低い。即ち、個々の蒸気加減弁の開ききった
状態が最も効率が高く、中間開度の状態は効率が低い。
That is, each turbine has a plurality of steam control valves, and since these valves open and close in sequence, a combination of curves is created according to each control valve. Therefore, although the cam angle and the steam flow rate are generally proportional, the relationship between the cam angle and the turbine output is not a straight line as shown in FIG. Point P in the figure is the point where the control valve switches, and as is clear from the figure, the turbine efficiency is highest at this point and lower at the downwardly convex portion like point Q. That is, the efficiency is highest when the individual steam control valves are fully opened, and the efficiency is low when they are in the intermediate opening position.

〔背景技術の問題点〕[Problems with background technology]

そこで、複数台のタービンを最適に経済運用するために
は、すべてのタービンをこのP点近傍で運転すればよく
、通常このP点近傍に運転制御することを弁点制御と呼
んでいる。ところが、実際にはタービンの形式はすべて
同一ではなく、特に産業用蒸気タービンでは一般に数種
の蒸気を使用するため、抽気タービンや背圧タービンが
多く用いられ、電力需要ばか)か蒸気需要に応じた制御
が行なわれている。従って、これら形式の異なるター・
ビンを蒸気需要、電力需要に合わせながらP点近傍で運
転しなければならない。これは非常に困難なことで、従
来これを最適に運用した例は無く、せいぜいタービン容
量の大きいものから順にP点近傍の運転を行ない、容量
の小さいタービンの加減弁位置は、そのときの蒸気需要
、電力需要によって左右されるといった運転であった。
Therefore, in order to optimally and economically operate a plurality of turbines, it is sufficient to operate all the turbines near this point P, and controlling the operation near this point P is usually called valve point control. However, in reality, all types of turbines are not the same.In particular, industrial steam turbines generally use several types of steam, so extraction turbines and backpressure turbines are often used. control is in place. Therefore, these different formats
The bin must be operated near point P while matching the steam demand and power demand. This is extremely difficult, and there is no example of optimal operation in the past.At best, the turbines with the largest capacity are operated near point P, and the position of the control valve of the turbine with the smallest capacity is determined by the steam at that time. The operation was influenced by demand and electricity demand.

こうした従来の制御装置では、タービン形式が抽気や背
圧あるいは抽気背圧となるにつれてますます制約が多く
なシ、発電システム全体としての効率向上があまシ望め
なかった。
These conventional control devices have more and more restrictions as the type of turbine changes to bleed air, back pressure, or bleed back pressure, and it has not been possible to improve the efficiency of the power generation system as a whole.

(発明の目的〕 本発明は、複数台のタービンを最も効率良く運転し得る
タービン制御装置を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a turbine control device that can operate a plurality of turbines most efficiently.

〔発明の概要〕[Summary of the invention]

このため、本発明は同じ形式のタービン群における各タ
ービンのパルプループと現在の各タービンの運転状態と
を基に、各タービン運転点が・ぐルプループ上のどの運
転点に相当するか、タービン形式に従った演算式から算
出し、その最大点と最小点を比較判定することによシ、
運転点を挾む2つの効率極大値に最も近い運転点にある
2台のタービンを見つけ、そのときの運転条件に従って
それぞれ効率極大値に近づける操作を繰)返すことによ
シ、上記タービン群の効率を最大にするようにしたこと
を特徴とする。
For this reason, the present invention can determine which operating point on the group loop each turbine operating point corresponds to based on the pulp loop of each turbine in a group of turbines of the same type and the current operating state of each turbine. By calculating from the calculation formula according to the following and comparing and judging the maximum and minimum points,
By finding the two turbines at the operating point closest to the two efficiency maximum values that sandwich the operating points, and repeating the operation to bring each of them closer to the efficiency maximum value according to the operating conditions at that time, the above turbine group can be It is characterized by maximizing efficiency.

〔発明の実施例〕[Embodiments of the invention]

経済配分を行なうためKは、制御対象である複数のター
ビン間に何らかの関係がなくてはならない。産業用ター
ビンの多くは数種の蒸気圧力系統によシ連結され、各種
蒸気圧力を一定に保つことが大前提となっている。従っ
て、各種形式の異なるタービンが混在する場合は同種の
蒸気系統を共有するタービン群に分け、それぞれの群の
中で経済配分を行なう必要がある。そこで、本実施例で
は、背圧タービン系、抽気背圧タービン系、復水タービ
ン系、抽気復水タービン系の4群に分け、各群毎に経済
配分を行なう場合について説明する◇第2図は無抽気背
圧タービン系の経済配分を行なう錫合について示したも
ので、制御装置1は複数台のタービン2m、2b、2e
、2dのそれぞれの蒸気流量を流量検出器3a、3b、
3e、3dから入力処理部4を介して入力し、演算部5
で記憶部6に記憶されている各タービン2m、2b。
In order to perform economic allocation, K must have some kind of relationship between the plurality of turbines to be controlled. Most industrial turbines are connected to several types of steam pressure systems, and a major premise is to keep the various steam pressures constant. Therefore, when turbines of various types coexist, it is necessary to divide them into groups of turbines that share the same type of steam system, and to perform economic allocation within each group. Therefore, in this embodiment, we will explain the case where the system is divided into four groups: a back pressure turbine system, an extraction back pressure turbine system, a condensate turbine system, and an extraction condensate turbine system, and economic allocation is performed for each group.◇Figure 2 shows a tin combination for economically distributing a non-bleed back pressure turbine system, in which the control device 1 controls multiple turbines 2m, 2b, 2e.
, 2d are detected by flow rate detectors 3a, 3b,
3e and 3d via the input processing unit 4, and the calculation unit 5
Each turbine 2m, 2b is stored in the storage unit 6.

2c、2dのパルプループと突き合わせを行なう。Match with pulp loops 2c and 2d.

更に、後に述べる演算を行なって各タービン加減弁7m
、7b、7e、7dへの増分出力または減分出力を決定
して出力部8よ多出力する。この出力は電流増巾を行な
うサイリスタスイッチ9m。
Furthermore, by performing calculations to be described later, each turbine control valve 7m
, 7b, 7e, and 7d are determined and outputted from the output section 8. This output is a 9m thyristor switch that amplifies the current.

9b、9c、9dを介して蒸気加減弁7m、7b。Steam control valves 7m, 7b via 9b, 9c, 9d.

7c、7dを駆動する電動機10m、10b。Electric motors 10m and 10b drive motors 7c and 7d.

10c、10dへ与えられ、蒸気加減弁7m。10c, 10d, steam control valve 7m.

7b、7c、7dは総合的に見て最も効率のよい開度を
満足する。
7b, 7c, and 7d satisfy the most efficient opening degree overall.

かかる構成で、複数台のタービン2m、2b。With this configuration, a plurality of turbines 2m, 2b.

2c、2dはすべてその排気管が共通の蒸気母管11に
連結されておシ、この蒸気圧力が一定となるよう各々の
排気が制御されている。即ち、背気圧カ一定ということ
が第2図の場合の制約条件である。経済配分を行なうた
めにはこの条件を満足し、かつ全体のタービン出力が最
大となるように各タービンの蒸気流量を決定することで
ある。換言すれば、全タービンを流れる総蒸気量を変え
ずに全体のタービン出力が最大となるような各タービン
のバルブループにおける運転点を見出すことである。そ
のためには、先ず各タービンの現在の流量から各タービ
ンが記憶部6の/?ルゾルーゾ上でどの運転点にあるか
を確認する。も踵仮に2つのタービンの運転点が第3図
のA、B点だったとすると、A点にあるタービンの蒸気
流量をΔQAだけ感じ、それと同量のΔQB(=−ΔQ
A)だけB点にあるタービンの蒸気流量を増すと、全体
として蒸気流量の変化は無いが、それに応じた全体の出
力変化はA点の移動による減少分−ΔWAとB点の移動
による増加分ΔWBとの和となフΔWB−ΔwA(>0
)となる。このことは蒸気流量の配分調整によって出力
が増加したことを意味する。以上の蒸気配分演算を考え
てみると、各タービンの運転点におけい方゛のタービン
の蒸気流量を増し、小さい方のタービンの蒸気流量を減
じている。従って、第2図のよう々複斂の背圧タービン
における経済配分は、なえる。この演算は各タービンに
対し最適な運転点を全て計算の上、同時に与えることも
可能だが、演算の複雑化や演算時間の増大や系の状態変
化による絶対値のバラツキ等を考慮して次の方法をとる
ことが実際的である。即ち、その時点で最大の流量の増
減を行なうという操作を次々と繰シ返すという方法で、
背圧タービン系の効率を最大にもっていくことができる
。また、これによって刻々の状態変化に対しても系は常
に出力増大の方向へ動く。この場合、記憶部6にはバル
ブループのかい。
All of the exhaust pipes 2c and 2d are connected to a common steam main pipe 11, and each exhaust is controlled so that the steam pressure is constant. That is, the constraint in the case of FIG. 2 is that the back pressure is constant. In order to perform economic allocation, it is necessary to determine the steam flow rate of each turbine so that this condition is satisfied and the overall turbine output is maximized. In other words, the purpose is to find an operating point in the valve loop of each turbine at which the overall turbine output is maximized without changing the total amount of steam flowing through all the turbines. To do this, first, from the current flow rate of each turbine, each turbine is stored in the storage section 6 as /? Check which driving point you are on on Lusoluso. If the operating points of the two turbines are points A and B in Figure 3, the steam flow rate of the turbine at point A is felt by ΔQA, and the same amount ΔQB (=-ΔQ
If you increase the steam flow rate of the turbine at point B by A), there will be no change in the steam flow rate as a whole, but the corresponding overall output change will be the decrease due to the movement of point A - ΔWA plus the increase due to the movement of point B The sum of ΔWB and FΔWB−ΔwA(>0
). This means that the output was increased by adjusting the steam flow rate distribution. Considering the above steam distribution calculation, at each turbine operating point, the steam flow rate of one turbine is increased and the steam flow rate of the smaller turbine is decreased. Therefore, the economic distribution in a compound back pressure turbine as shown in FIG. 2 is reduced. This calculation can calculate and give all the optimal operating points for each turbine at the same time, but considering the complexity of the calculation, the increase in calculation time, and the variation in absolute values due to changes in the system state, the following It is practical to take this method. In other words, by repeating the operation of increasing or decreasing the maximum flow rate at that point one after another,
The efficiency of the back pressure turbine system can be maximized. Moreover, as a result, the system always moves in the direction of increasing output even when the state changes from moment to moment. In this case, the memory section 6 stores the valve loop.

それ演算出力の増減を行なう。演算出力は出力部8を経
由して更にサイリスクスイッチ9 m 、 9 b。
It increases or decreases the calculation output. The calculation output is further transmitted via the output section 8 to the SIRISK switches 9m and 9b.

9e、9d等の出力増巾部、電動機log、10b。Output amplification parts such as 9e and 9d, motor log, 10b.

10e、10dを介して蒸気加減弁7m、7b。Steam control valves 7m, 7b via 10e, 10d.

7c、7dを増減する。これにより、蒸気加減弁7m、
7b、7c、7dはその加減弁カム角度に比例した蒸気
流量を流す。
Increase or decrease 7c and 7d. As a result, the steam control valve 7m,
7b, 7c, and 7d flow a steam flow rate proportional to the cam angle of the adjusting valve.

背景タービン系の場合には、以上のように各りW −ビンの運転点の、。を比較し、最大のタービンと最小
のタービンとの間で蒸気量の増減を行ない、一方の加減
弁が全開又は全閉位置に達すれば、そW こで操作は打ち切シ、再び次の−4の最大と最小のター
ビンを見い出し、蒸気量の増減操作を行なうことによシ
、そのタービン系の効率を最大にすることができる。
In the case of a background turbine system, each W-bin operating point is as described above. The steam amount is increased or decreased between the largest turbine and the smallest turbine, and if one of the regulating valves reaches the fully open or fully closed position, the operation is terminated and the next -4 The efficiency of the turbine system can be maximized by finding the maximum and minimum turbines and increasing or decreasing the amount of steam.

第4図は抽気背圧タービン系の場合を示したものである
。図中、第2図と同一符号は同−又は相当部分を示し、
更に、各タービンは抽気加減弁12m、12bを持ち、
背圧ばかシでなく抽気圧も制御される。従って、この場
合の制約条件は抽気圧カ一定かつ背圧一定ということで
ある。また、抽気・加減弁12m、12bを操作すると
抽気、背気共に変化する。そこで、互いに他に影響を与
えぬように制御するために一般にスリーアーム機構とい
った方式が用いられている。
FIG. 4 shows the case of an extraction back pressure turbine system. In the figure, the same symbols as in Figure 2 indicate the same or equivalent parts,
Furthermore, each turbine has extraction control valves 12m and 12b,
Not only the back pressure but also the extraction pressure is controlled. Therefore, the constraint conditions in this case are that the extraction pressure is constant and the back pressure is constant. Furthermore, when the bleed air/control valves 12m and 12b are operated, both the bleed air and the back air change. Therefore, a three-arm mechanism is generally used to control each component so that they do not affect each other.

これは第5図に示すように、加減弁12の双方を動かす
ことによって、抽気と背気をそれぞれ独立に制御するも
ので、背気制御のときはアーム全体を上下することで背
気の増減を行なう。このとき、抽気加減弁12は加減弁
7と同方向に同程度だけ開閉するので、抽気量は変わら
す背気量のみ増減する。また、抽気制御のときはアーム
の可動支点13を左右に動かすことによシ、加減弁7と
抽気加減弁12の開度を互いに反対方向に動かす。
As shown in Figure 5, this system controls bleed air and back air independently by moving both regulating valves 12. During back air control, the entire arm is moved up and down to increase or decrease the back air. Do the following. At this time, the bleed air adjustment valve 12 opens and closes to the same extent in the same direction as the adjustment valve 7, so the amount of bleed air increases or decreases only by the amount of back air that changes. Further, during bleed control, by moving the movable fulcrum 13 of the arm left and right, the opening degrees of the control valve 7 and the bleed control valve 12 are moved in opposite directions.

このとき、抽気量と同時に背気量も変動するが、背気量
の変動分はアームの上下方向の操作で吸収することがで
き、背気量に彰智を与えずに抽気量のみ制御できる。
At this time, the amount of back air fluctuates as well as the amount of bleed air, but the fluctuation in the amount of back air can be absorbed by operating the arm in the vertical direction, and only the amount of bleed air can be controlled without affecting the amount of back air.

さて、この場合の経済配分であるが、基本的には第2図
の背圧タービンの場合と同様で各タービンの加減弁7a
、7b及び抽気加減弁12m、12b比較することで行
なう。第1段通過蒸気量をQl、それによる出力をWl
、第2段通過蒸気量をQ2、それによる出力をW2とす
ると加減弁7a、7bする。
Now, the economic distribution in this case is basically the same as in the case of the back pressure turbine shown in Fig. 2, and the control valve 7a of each turbine is
, 7b and the bleed air control valves 12m, 12b. The amount of steam passing through the first stage is Ql, and the resulting output is Wl.
, the amount of steam passing through the second stage is Q2, and the resulting output is W2, the control valves 7a and 7b are operated.

先ず、抽気制御による経済配分は背圧一定といばよいが
、このときΔQ2=0となシΔq=ΔQ+  となる。
First, the economic distribution by air bleed control can be said to be such that the back pressure is constant, but in this case, ΔQ2=0 and Δq=ΔQ+.

従って、 と在る。また、これは抽気加減弁12a、12bが動か
ず、加減弁7a、7bのみが動作すること大のタービン
と最小のタービンとの間で蒸気の増減を行なえばよい。
Therefore, there is. Further, this can be done by increasing or decreasing the steam between the large turbine and the minimum turbine by operating only the control valves 7a and 7b without moving the extraction control valves 12a and 12b.

即ち、記憶部6において各りHl L、、それぞれに入
力蒸気の増減を行なえばよい。
That is, the input steam may be increased or decreased for each of Hl and L in the storage section 6.

この操作を周期的に繰返せばシステムの総蒸気量は変わ
らず、出力は増方向へと向かう。
If this operation is repeated periodically, the total amount of steam in the system remains the same and the output increases.

次に、背気制御による経済配分は抽気圧一定という制約
条件のもとで行なうのでaWを比較すれQ ばよい。このとき、Δq二ΔQ1−ΔQ2二〇であるか
らΔQ+ ”ΔQ2二ΔQとなシ、 ゆえに、 となる。また、これは加減弁7 a 、 7 b %抽
気加減弁12a、12bとも同一方向に同程度だけ動作
することを示している。従って、経済配分はれらを比較
し、最大のタービンと最小のタービンとを決定してその
2つのタービンの間で入力蒸気aw1  aw富 の増減を行なえばよい。つま” aQ++−dQ*の最
大のタービンの入力蒸気を増し、最小のタービンの入力
蒸気を減じれば総蒸気量は変わらず出力は増加する。
Next, since the economic allocation by back air control is performed under the constraint that the extraction pressure is constant, it is sufficient to compare aW. At this time, since Δq2ΔQ1−ΔQ220, ΔQ+"ΔQ222ΔQ, therefore, becomes. Also, this means that the control valves 7a and 7b and the % extraction control valves 12a and 12b are also connected in the same direction. Therefore, economic allocation can be done by comparing them, determining the largest turbine and the smallest turbine, and increasing or decreasing the input steam aw1 aw wealth between the two turbines. Good. So, if you increase the input steam to the largest turbine of aQ++-dQ* and decrease the input steam to the smallest turbine, the output will increase without changing the total amount of steam.

第6図は復水タービンの例で、蒸気圧力の制約条件が無
いため、排気は制約を受けず自由に出力を増減できるの
で、負荷制御が可能なタービンである。この場合の経済
配分は第2図、第4図の場合とは考え方が若干異なシ、
総出カ一定のもとて入力蒸気量の減少を図るものである
。つま夛、概念的には第3図において、ΔW、=−ΔW
BとなるようにA点、B点を互いに反対方向に動かし、
それによってΔQB−ΔQA(<0)だけの入力蒸気の
減少最小のタービン出力を減じるという操作でもよい。
FIG. 6 shows an example of a condensing turbine. Since there is no restriction on steam pressure, the output of the exhaust gas can be freely increased or decreased without being restricted, so the turbine is capable of load control. The economic distribution in this case is based on a slightly different concept from that in Figures 2 and 4.
The aim is to reduce the amount of input steam while keeping the total output constant. Conceptually, in Figure 3, ΔW, = -ΔW
Move point A and point B in opposite directions so that
Thereby, the input steam may be reduced by ΔQB-ΔQA (<0), and the minimum turbine output may be reduced.

第・7図は抽気復水タービンの例で、各タービンは抽気
加減弁12a、12bを持ち、抽気圧力は一定に制御さ
れるが、抽気圧力は制御されず、負荷制御が可能である
。即ち、負荷制御のときは、第5図に示したスリーアー
ム機構において、アームを上下し、加減弁7a、7bも
抽気加減弁12a。
FIG. 7 shows an example of a bleed condensing turbine. Each turbine has a bleed control valve 12a, 12b, and the bleed pressure is controlled to be constant, but the bleed pressure is not controlled and the load can be controlled. That is, during load control, in the three-arm mechanism shown in FIG. 5, the arms are moved up and down, and the control valves 7a and 7b are also controlled by the bleed air control valve 12a.

12bも同方向に同程度操作することで抽気量に影響を
与えぬよう通過蒸気量を制御し、抽気圧制御のときはア
ームの可動支点13を左右に動かして加減弁7a、7b
と抽気加減弁12a、12bを互いに反対方向に動かす
12b is also operated in the same direction and to the same extent to control the amount of passing steam so as not to affect the amount of extracted air, and when controlling the extraction pressure, the movable fulcrum 13 of the arm is moved left and right to control the control valves 7a and 7b.
and move the bleed air control valves 12a and 12b in opposite directions.

さて、抽気制御による経済配分は負荷一定といよい。こ
こで、負荷一定の条件カラ、 である。また、抽気量の変動分は、 Δq=ΔQ1−ΔQ2         ・・・・・凹
(5)であるから、上記(4) 、 (5)式から、定
し、最大となるタービンの抽気を減じ、最小となるター
ビンの抽気を増加すれば、総出力は変わらず、入力蒸気
量は減少する。
Now, the economic distribution using bleed air control can be said to be based on a constant load. Here, the condition of constant load is as follows. Also, the variation in the amount of extracted air is Δq = ΔQ1 - ΔQ2 ... concave (5), so it is determined from the above equations (4) and (5), and the maximum extracted air of the turbine is subtracted, Increasing the minimum turbine bleed will reduce the input steam amount without changing the total output.

次に、負荷制御による経済配分であるが、これQ は抽気圧カ一定という制約条件のものとで話を比較すれ
ばよい。抽気量一定の条件からΔq=ΔQ1−Δ(b”
OであるからΔQ1−ΔQ2”ΔQとな少、 となる。ゆえに、 最大となるタービンの出力を増し、最小となるタービン
の出力を減じれば、総出力は変らず入力蒸気量は減少す
る。
Next, regarding economic distribution through load control, we can compare Q with the constraint that the extraction pressure is constant. From the condition of constant bleed air amount, Δq=ΔQ1−Δ(b”
O, so ΔQ1-ΔQ2''ΔQ is less than ΔQ.Therefore, if the maximum output of the turbine is increased and the minimum output of the turbine is decreased, the input steam amount will decrease without changing the total output.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、複数台のタービンかう成
る発電システムにおいて、システム全体の出力の増大あ
るいは使用蒸気量の減少−b=可會目となシ、高効率化
、省エネルギー効果が得られる。
As described above, according to the present invention, in a power generation system comprising a plurality of turbines, it is possible to increase the output of the entire system or reduce the amount of steam used - b = variable time, increase efficiency, and save energy. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

mx@はタービンのパルプルーグ図、第2図は本発明を
背圧タービン系に適用した場合の実施例を示すタービン
制御装置の構成図、第3図はそのときの経済配分の要領
を示すグラフ図、第4図は本発明を抽気背圧タービン系
に通用した場合の実施例を示すタービン制御装置の構成
図、第5図はそのときの弁操作に用いるスリーアーム機
構の説明図、第6図は本発明を後水タービン系に適用し
た場合の実施例を示すタービン制御装置の構成図、第7
図は本発明を抽気復水タービン系に適用した場合の実施
例を示すタービン制御装置の構成図である。 1・・・制御装置、21〜2d・・・タービン、3a〜
3d・・・流量検出器、4・・・大刀処理部、5・・・
演算音臥6・・・記憶部、7a〜7d川加減弁、8・・
・出力部、9a〜9d・・・サイリスタスイッチ、10
a〜10d・・・電動機、ll・・・蒸気母管、12m
、12b・・・抽気加減弁。 第7図 N3賊弁力ム灼度       r’ノ第2図 1 第3図 AQA       AQB           t
 4ン21)蒸気流量 第4図 一閘一 第5図 粕!FL    排気 第6図 1 1g7図 −5シ
mx@ is a Palprug diagram of the turbine, Fig. 2 is a configuration diagram of a turbine control device showing an embodiment in which the present invention is applied to a back pressure turbine system, and Fig. 3 is a graph showing the outline of economic allocation at that time. , FIG. 4 is a configuration diagram of a turbine control device showing an embodiment in which the present invention is applied to an extraction back pressure turbine system, FIG. 5 is an explanatory diagram of a three-arm mechanism used for valve operation at that time, and FIG. 6 FIG. 7 is a configuration diagram of a turbine control device showing an embodiment in which the present invention is applied to a trailing water turbine system.
The figure is a configuration diagram of a turbine control device showing an embodiment in which the present invention is applied to an extraction condensate turbine system. 1... Control device, 21-2d... Turbine, 3a-
3d...Flow rate detector, 4...Daicho processing section, 5...
Calculation sound 6...Storage section, 7a to 7d river control valve, 8...
・Output section, 9a to 9d... Thyristor switch, 10
a~10d...Electric motor, ll...Steam main pipe, 12m
, 12b...Bleed air control valve. Figure 7 N3 Robbery level r'no Figure 2 Figure 3 AQA AQB t
4-21) Steam flow rate Figure 4 One lock Figure 5 Kasu! FL Exhaust Figure 6 1 1g7 Figure-5

Claims (1)

【特許請求の範囲】[Claims] 複数台のタービンを運転制御するタービン制御装置にお
いて、各タービンの現在の運転状態から各タービンがタ
ービンパルプルーズ上のどの運転点にあるか算出する手
段と、前記算出された各運転点のうちから、各運転点を
それぞれ挾むパルプループ上の2つの効率極大値の一方
に最も近い運転点と、他方に最も近い運転点とを判定す
る手段と、前記判定された2つの運転点をそれぞれ1つ
宛有する2台のタービンを、タービン形式によシflf
lJ約される条件に従って、それぞれ前記2つの効率極
大値に近づける操作を行なう手段とを備え、上記各手段
による処理を繰シ返し実行することによシ、タービン全
体の効率を最大にすることを特徴とするタービン制御装
置。
In a turbine control device that controls the operation of a plurality of turbines, means for calculating which operating point on the turbine pulp loose each turbine is at from the current operating state of each turbine, and from among the calculated operating points. , means for determining the operating point closest to one of the two efficiency maximum values on the pulp loop sandwiching each operating point, and the operating point closest to the other; Converting two turbines to different turbine typesflf
The turbine is equipped with a means for performing an operation to approach each of the two efficiency maximum values according to the conditions to reduce the efficiency, and by repeatedly performing the processing by each of the above means, it is possible to maximize the efficiency of the entire turbine. Characteristic turbine control device.
JP18818882A 1982-10-28 1982-10-28 Turbine control device Granted JPS5979012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18818882A JPS5979012A (en) 1982-10-28 1982-10-28 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18818882A JPS5979012A (en) 1982-10-28 1982-10-28 Turbine control device

Publications (2)

Publication Number Publication Date
JPS5979012A true JPS5979012A (en) 1984-05-08
JPS6217644B2 JPS6217644B2 (en) 1987-04-18

Family

ID=16219302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18818882A Granted JPS5979012A (en) 1982-10-28 1982-10-28 Turbine control device

Country Status (1)

Country Link
JP (1) JPS5979012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272407A (en) * 1991-02-26 1992-09-29 Toshiba Corp Control device for optimizing electric power
KR20180124229A (en) * 2017-05-11 2018-11-21 현대자동차주식회사 Waste heat recovery expander apparatus and waste heat recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272407A (en) * 1991-02-26 1992-09-29 Toshiba Corp Control device for optimizing electric power
KR20180124229A (en) * 2017-05-11 2018-11-21 현대자동차주식회사 Waste heat recovery expander apparatus and waste heat recovery system

Also Published As

Publication number Publication date
JPS6217644B2 (en) 1987-04-18

Similar Documents

Publication Publication Date Title
CN104632302B (en) A kind of condensing steam turbine sliding pressure operation curve test/implementation methods
EP0098037B1 (en) Electric power generation systems and methods of operating such systems
US4402183A (en) Sliding pressure flash tank
CN113107623A (en) Device and method for improving heat supply steam extraction parameters during low-load operation of double-low-pressure-cylinder steam turbine
US5136848A (en) Method for predicting the optimum transition between constant and sliding pressure operation
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
CN106765520A (en) A kind of autocontrol method for realizing the operation of thermal power plant unit Optimal initial steam pressure
JPS5979012A (en) Turbine control device
US5333457A (en) Operation between valve points of a partial-arc admission turbine
CN113006891A (en) Comprehensive frequency modulation system and method for coupling heat supply and low-pressure steam extraction
JP2578328B2 (en) Output control method for back pressure turbine generator
US4862692A (en) Supercritical pressure once-through boiler
CN109343409B (en) Auxiliary control system and method for primary frequency modulation of full-cycle steam inlet unit
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
CN114607478B (en) Double-adjusting-stage turbine unit and operation method
CN114562346B (en) Parallel configuration power system of expander
JPH0553922B2 (en)
GB1429324A (en) Method employing valve management for operating a steam turbine
CN207992830U (en) A kind of condensed water primary frequency modulation optimization system
JPS61106903A (en) Speed governing type change-over device
JPS62243995A (en) Parallel operation control device for compressor
CN116028756A (en) Sliding pressure curve calculation method for weighting time sequence energy balance full working condition
JP2023086015A (en) nuclear power plant
JPS623287B2 (en)
JPS6353561B2 (en)