JPS59772B2 - HoshiyaondoSokuteiSouchi - Google Patents

HoshiyaondoSokuteiSouchi

Info

Publication number
JPS59772B2
JPS59772B2 JP50116979A JP11697975A JPS59772B2 JP S59772 B2 JPS59772 B2 JP S59772B2 JP 50116979 A JP50116979 A JP 50116979A JP 11697975 A JP11697975 A JP 11697975A JP S59772 B2 JPS59772 B2 JP S59772B2
Authority
JP
Japan
Prior art keywords
impeller
measured
temperature
output
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50116979A
Other languages
Japanese (ja)
Other versions
JPS5240387A (en
Inventor
賢 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI SANEI KK
Original Assignee
NIPPON DENKI SANEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI SANEI KK filed Critical NIPPON DENKI SANEI KK
Priority to JP50116979A priority Critical patent/JPS59772B2/en
Publication of JPS5240387A publication Critical patent/JPS5240387A/en
Publication of JPS59772B2 publication Critical patent/JPS59772B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は被測定物体の突発的に発生する急激な温度変化
を測定するに好適な放射温度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation temperature measuring device suitable for measuring abrupt temperature changes that occur suddenly in an object to be measured.

先ず以下に、従来の放射温度測定装置の数例について説
明し、被測定物体の突発的に発生する急激な温度変化を
測定する場合の適性について説明する。
First, several examples of conventional radiation temperature measurement devices will be described below, and their suitability for measuring sudden temperature changes that occur suddenly in an object to be measured will be explained.

i)光一電気変換器よりの電気信号をそのまま直流増幅
器に供給して増巾して、出力電気信号を得るようにした
放射温度測定装置。
i) A radiation temperature measuring device in which an electrical signal from a photoelectric converter is directly supplied to a DC amplifier and amplified to obtain an output electrical signal.

これは出力電気信号に、光一電気変換器及び直流増巾器
のドリフトが混入しているので、高温度の大まかな測定
にしか使用できず実用的でない。ii)光一電気変換器
よりの電気信号を結合コンデンサを介して交流増巾器に
供給して増巾して、出力電気信号を得るようにした放射
温度測定装置。
This method is impractical because it can only be used for rough measurements of high temperatures because the output electrical signal contains drifts from the optical-to-electrical converter and the DC amplifier. ii) A radiation temperature measuring device in which an electrical signal from a photoelectric converter is supplied to an AC amplifier via a coupling capacitor and amplified to obtain an output electrical signal.

之は温度の変化分を測定することはできるが、絶対的な
温度を測定することはできない。又、被測定物体の定常
状態に於ける温度を何らかの手段で測定し得た場合であ
つても、上述の出力電気信号はそのレベルが温度変化に
比例したものではないから、得られた値から補正計算に
よつて被測定物体の絶対的な温度を算出しなければなら
ず、実用上頗る不便である。111)光一電気変換器の
前に所定回転数で回転する肩車(チョッパ)を配し、肩
車の間を通過した被測定物体よりの放射光線と、肩車を
反射した基準温度源よりの基準放射光線とを交互断続的
に光一電気変換器により検出し、これよりの電気信号を
交流増巾器を通じて同期検波器(直流再生器)に供給し
、一方羽車にフォトカプラを関連させて、その出力を同
期パルス発生器に供給し、その出力同期パルスを同期検
波器に供給し、その同期検波器より出力電気信号を得る
ようにした放射温度測定装置。
Although it can measure changes in temperature, it cannot measure absolute temperature. Furthermore, even if the temperature of the object to be measured in a steady state can be measured by some means, the level of the above-mentioned output electrical signal is not proportional to the temperature change, so the obtained value The absolute temperature of the object to be measured must be calculated through correction calculations, which is extremely inconvenient in practice. 111) A shoulder wheel (chopper) that rotates at a predetermined rotation speed is placed in front of the optical-electrical converter, and the radiation rays from the object to be measured that pass between the choppers and the reference radiation rays from the reference temperature source reflected by the shoulder wheels are generated. is detected alternately and intermittently by a photoelectric converter, and the electrical signal from this is supplied to a synchronous detector (DC regenerator) through an AC amplifier, while a photocoupler is associated with the impeller, and its output is A radiation temperature measurement device that supplies a synchronous pulse generator with a synchronous pulse generator, supplies the output synchronous pulse to a synchronous detector, and obtains an output electrical signal from the synchronous detector.

之は羽車の回転数に限界があるので、例えば数μS程度
の急激な温度変化を測定することは困難である。例えば
羽車を回すモータの回転数が10,000rpm1羽車
の羽が30枚とすると、光一電気変換器の10000×
30交流電気信号の周波数は?−5000 (Hz)=5(KHz)となり、測定し得る温度変化は
1〜2kHz(1〜0.5msec)程度である。
Since there is a limit to the number of revolutions of the impeller, it is difficult to measure rapid temperature changes of, for example, several microseconds. For example, if the rotation speed of the motor that rotates the impeller is 10,000 rpm, and each impeller has 30 blades, then the Koichi electric converter has 10,000×
30 What is the frequency of the AC electrical signal? -5000 (Hz) = 5 (KHz), and the measurable temperature change is about 1 to 2 kHz (1 to 0.5 msec).

Iい上記111)の放射温度測定装置に於て、同期パル
ス発生器よりの同期パルスによつて被測定物体の温度変
化を制御し、温度変化時の被測定物体よりの放射光線が
必ず羽根車を通過するようにした放射温度測定装置。之
は温度変化を制御し得えず、温度変化が突発的に起る被
測定物体の温度測定には使用し得ない。かかる点に鑑み
、本発明は被測定物体の突発的に発生する急激な温度変
化を絶対的温度として正確に測定することのできる放射
温度測定装置を提供せんとするものである。
In the radiation temperature measuring device described in 111) above, the temperature change of the object to be measured is controlled by a synchronous pulse from a synchronous pulse generator, and the radiation beam from the object to be measured when the temperature changes is always directed to the impeller. A radiation temperature measurement device that allows the radiation to pass through. This method cannot control temperature changes and cannot be used to measure the temperature of an object to be measured where temperature changes occur suddenly. In view of this point, the present invention aims to provide a radiation temperature measuring device that can accurately measure sudden and rapid temperature changes of an object to be measured as an absolute temperature.

以下に図面を参照して、本発明の一実施例を詳細に説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図に本発明による放射温度測定装置を示す。1は被
測定物体で、例えば金属、プラスチツク等のプロツクで
ある。
FIG. 1 shows a radiation temperature measuring device according to the present invention. Reference numeral 1 denotes an object to be measured, such as a block made of metal, plastic, etc.

この被測定物体1は、例えば材料試験のためにエアハン
マで撃力が与えられ、それに基づく発熱により放射光線
が発射され、その放射光線を検知することにより、その
被測定物体1の温度変化が絶対的温度を以つて測定され
る。2は被測定物体1よりの放射光線を受けて電気信号
に変換する光一電気変換器で、之は例えば赤外波長付近
の光を検知する。
The object to be measured 1 is subjected to an impact force using an air hammer for, for example, a material test, and a radiation beam is emitted due to the heat generated. By detecting the radiation beam, the temperature change of the object to be measured 1 can be determined absolutely. It is measured at a specific temperature. Reference numeral 2 denotes an optical-to-electrical converter that receives radiation rays from the object to be measured 1 and converts them into electrical signals, which detects, for example, light near infrared wavelengths.

3は光学系(レンズ系)で、被測定物体1よりの放射光
線がこの光学系3を通じて集束されて変換器2に投射さ
れるようになされている。
Reference numeral 3 denotes an optical system (lens system) through which the radiation rays from the object to be measured 1 are focused and projected onto the converter 2.

4は基準温度源(基準黒体)である。4 is a reference temperature source (reference blackbody).

5は被測定物体1と変換器2との間に、基準温度源4よ
りの基準放射光線を反射して変換器2に投射させる如く
配された羽車(チヨツパ)である。
Reference numeral 5 denotes an impeller disposed between the object to be measured 1 and the converter 2 so as to reflect the reference radiation beam from the reference temperature source 4 and project it onto the converter 2.

この羽車5は第2図に示す如く、等角で等角間隔に配さ
れた光遮断・反射部たる複数の羽5aを有している。羽
5aと羽5aとの間は等角で等角間隔に配された光透過
部5bである。6はこの羽車5を回転させるモータであ
るO変換器2よりの電気信号は交流増巾器8に供給され
た後、直流再生器(同期検波器)9に供給される。
As shown in FIG. 2, this impeller 5 has a plurality of blades 5a, which serve as light blocking/reflecting parts, arranged at equal angles and at equal angular intervals. Between the wings 5a are light transmitting parts 5b arranged at equal angles and at equal angular intervals. Reference numeral 6 denotes a motor for rotating the impeller 5. An electric signal from the O converter 2 is supplied to an AC amplifier 8, and then to a DC regenerator (synchronous detector) 9.

尚、7は交流増巾器8の結合コンデンサである。羽車5
には光源10及び受光素子11より成るフオトカプラ1
2が関連せしめられ、上記変換器2よりの電気信号に同
期した信号がその受光素子11より得られれ、之が同期
信号発生器13に供給されて、之にて同期信号が作られ
て、直流再生器9に供給される。
Note that 7 is a coupling capacitor of the AC amplifier 8. Impeller 5
includes a photocoupler 1 consisting of a light source 10 and a light receiving element 11;
2 are associated with each other, and a signal synchronized with the electrical signal from the converter 2 is obtained from the light-receiving element 11, which is supplied to the synchronization signal generator 13, where a synchronization signal is generated and a DC signal is generated. It is supplied to the regenerator 9.

14は加算器で、これで被測定物体1の定常状態に於け
る温度に対応した直流電気信号に急激な温度変化に対応
した光一電気変換器2よりの過渡的電気信号を重畳する
Reference numeral 14 denotes an adder, which superimposes a transient electrical signal from the optical-to-electrical converter 2 corresponding to a rapid temperature change on a DC electrical signal corresponding to the steady state temperature of the object 1 to be measured.

又、15はその加算器14の出力を供給して被測定物体
1の温度に応じた電気信号を出力するリニアライザであ
る。尚、このリニアライザ15は、被測定物体1の温度
に基づく電気信号が、温度の指数関数(光一電気変換器
2の波長特性及び測定温度により、例えば7〜8乗)に
比例するので、これを補正して温度の1次関数に比例す
るようにさせて、被測定物体1の絶対温度を正確に測定
するための回路である。出力端子17に得られたリニア
ライザ15の出力は、例えばオシロスコープの垂直入力
端子に供給される。16は直流電源+B及び接地間に接
続された可変直流電圧発生装置を構成する可変抵抗器(
ポテンシヨメータ)である。
Further, 15 is a linearizer that supplies the output of the adder 14 and outputs an electric signal according to the temperature of the object to be measured 1. Note that this linearizer 15 uses an electric signal based on the temperature of the object to be measured 1 that is proportional to an exponential function of the temperature (for example, to the 7th to 8th power depending on the wavelength characteristics of the optical-to-electrical converter 2 and the measured temperature). This is a circuit for accurately measuring the absolute temperature of the object to be measured 1 by correcting it so that it is proportional to a linear function of temperature. The output of the linearizer 15 obtained at the output terminal 17 is supplied to, for example, a vertical input terminal of an oscilloscope. 16 is a variable resistor (configuring a variable DC voltage generator) connected between the DC power supply +B and the ground.
potentiometer).

SWl,SW2は夫々可動接点a1固定接点b及びcを
有し、可動接点aが同じ符号の固定接点に接触する如く
連動す スイツチである。両スイツチSWl,SW2の
各可動接点aは加算器14の入力側に接続されている。
スイツチSWlの固定接点bは交流増巾器8の出力側に
、固定接点cは直流再生器9の出力側に夫夫接続されて
いる。スイツチSW2の固定接点bは可変抵抗器16の
可動中間端子に接続され、固定接点cは接地されている
。次に、この放射温度測定装置の動作を説明しよう。
SW1 and SW2 are switches having a movable contact a and fixed contacts b and c, respectively, and are interlocked so that the movable contact a contacts the fixed contact having the same symbol. Each movable contact a of both switches SW1 and SW2 is connected to the input side of an adder 14.
The fixed contact b of the switch SWl is connected to the output side of the AC amplifier 8, and the fixed contact c is connected to the output side of the DC regenerator 9. A fixed contact b of the switch SW2 is connected to a movable intermediate terminal of the variable resistor 16, and a fixed contact c is grounded. Next, let us explain the operation of this radiation temperature measuring device.

被測定物体1に撃力を与える充分前に、スイツチSW,
,SW2の各可動接点aを各固定接点cに接触させてお
く。そして、羽車5を所定の回転数で回転させておく。
斯くすると被測定物体1よりの放射光線と基準温度源4
よりの放射光線とが交互に断続的に変換器2に投射され
、之よりの電気信号は交流増巾器8に供給されて増巾さ
れた後直流再生器9に供給される。そして、この直流再
生器9の出力はスイツチSWlを通じて加算器14に供
給される。他方、スイツチSW2の可動接点aは接地さ
れているから、こちらからは加算器14に電圧は供給さ
れない。そこで、直流再生器9の出力は加算器14を介
してリニアライザ15に供給され、出力端子17には被
測定物体1の定常状態に於ける温度に応じた直流出力電
圧が得られる。次にスイツチSWl,SW2を連動して
切換えて、その各可動接点aを各固定接点bに接触せし
める。そして、羽車5の回転を停止せしめると共に、被
測定物体1よりの放射光線が常に羽車5の光透過部5b
を通過して変換器2に投射するように羽車5を位置決め
しておく。尚、このときは、スイツチSW,の固定接点
bには、被測定物体1の定常状態に於ける温度に応じた
直流電圧は生じない。そして、可変抵抗器16を調整し
て、被測定物体1の定常状態に於ける温度に応じた直流
電圧と同じ値の直流電圧が出力端子17から得られるよ
うにする。即ち、被測定物体1の定常状態に於いて直流
再生器9より得られる直流電圧と等価な直流電圧が加算
器14に供給されるように、可変抵抗器16を調整すれ
ば良い。以上で過渡的温度測定の準備が完了する。そこ
で、土述のようにスイツチSWl,SW2の各可動接点
aが各固定接点bに接触した状態のままにしておき、被
測定物体1にエアハンマーにて撃力を与える。
Sufficiently before applying impact force to the object to be measured 1, switch SW,
, SW2, each movable contact a is brought into contact with each fixed contact c. Then, the impeller 5 is rotated at a predetermined number of rotations.
In this way, the radiation rays from the object to be measured 1 and the reference temperature source 4
The emitted light beams are alternately and intermittently projected onto the converter 2, and the electrical signals from these are supplied to an AC amplifier 8, where they are amplified and then supplied to a DC regenerator 9. The output of this DC regenerator 9 is then supplied to an adder 14 through a switch SWl. On the other hand, since the movable contact a of the switch SW2 is grounded, no voltage is supplied from this to the adder 14. Therefore, the output of the DC regenerator 9 is supplied to the linearizer 15 via the adder 14, and a DC output voltage corresponding to the temperature of the object to be measured 1 in a steady state is obtained at the output terminal 17. Next, the switches SW1 and SW2 are switched in conjunction to bring each movable contact a into contact with each fixed contact b. Then, the rotation of the impeller 5 is stopped, and the radiation beam from the object to be measured 1 is always transmitted to the light transmitting portion 5b of the impeller 5.
The impeller 5 is positioned so that it passes through and projects onto the transducer 2. At this time, no DC voltage is generated at the fixed contact b of the switch SW, which corresponds to the temperature of the object to be measured 1 in a steady state. Then, the variable resistor 16 is adjusted so that a DC voltage having the same value as the DC voltage corresponding to the temperature of the object to be measured 1 in a steady state is obtained from the output terminal 17. That is, the variable resistor 16 may be adjusted so that the adder 14 is supplied with a DC voltage equivalent to the DC voltage obtained from the DC regenerator 9 when the measured object 1 is in a steady state. This completes the preparation for transient temperature measurement. Therefore, as described above, the movable contacts a of the switches SW1 and SW2 are kept in contact with the fixed contacts b, and an impact force is applied to the object 1 to be measured with an air hammer.

かくすると、被測定物体1の温度が急撃に上昇する。こ
れに応じた被測定物体1よりの放射光線が停止中の羽車
5の光透過部5bを通過して変換器2に投射され、検出
された過渡的電気信号が交流増巾器8に供給されて増巾
された後、スイツチSWlを介して加算器14に供給さ
れて土述の直流電圧に重畳され、その重畳出力がリニア
ライザ15に供給され、出力端子17に被測定物体1の
過渡的温度時の温度の絶対値に応じた出力電圧が得られ
る。この出力電圧をオツシロスコープに供給すれば、被
測定物体1の過渡的温度変化の状態と温度の絶対値が観
測される。尚、スイツチSWl,SW2の各可動接点a
を固定接点c側に切換えた状態で、羽車5を回転させる
ときは、温度変化が比較的緩漫(前述の1〜0.5ms
ec程度)な被測定物体の温度測定も可能である。
As a result, the temperature of the object to be measured 1 rises rapidly. The corresponding emitted light beam from the object to be measured 1 passes through the light transmitting part 5b of the stopped impeller 5 and is projected onto the converter 2, and the detected transient electric signal is supplied to the AC amplifier 8. After being amplified, it is supplied to the adder 14 via the switch SWl and superimposed on the above DC voltage, and the superimposed output is supplied to the linearizer 15, and the transient voltage of the object to be measured 1 is sent to the output terminal 17. An output voltage corresponding to the absolute value of the temperature can be obtained. By supplying this output voltage to an oscilloscope, the state of transient temperature change of the object to be measured 1 and the absolute value of the temperature can be observed. In addition, each movable contact a of switches SWl and SW2
When rotating the impeller 5 with the contact C switched to the fixed contact c side, the temperature change is relatively slow (1 to 0.5 ms as mentioned above).
It is also possible to measure the temperature of an object to be measured.

上述せる本発明放射温度測定装置によれば、撃力、爆発
等による被測定物体の突発的に(例えば数μSの時間内
に)発生する急激な温度変化を絶対的温度として正確に
測定することができる。更にスイツチを切換えることに
より、温度変化が比較的緩漫な被測定物体の温度測定も
可能である。以上の諸機能を有するにも拘わらず、構成
は簡単である。
According to the above-mentioned radiation temperature measuring device of the present invention, it is possible to accurately measure as an absolute temperature a sudden temperature change (for example, within a few μS) of a measured object due to impact force, explosion, etc. Can be done. Furthermore, by switching the switch, it is also possible to measure the temperature of an object to be measured whose temperature changes relatively slowly. Despite having the above functions, the configuration is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図はその
羽車を示す平面図である。 1は被測定物体、2は光一電気変換器、5は羽車、5b
はその光透過部、8は交流増巾器、9は直流再生器、1
4は加算器、15はリニアライザ、SWl,SW2はス
イツチである。
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a plan view showing the impeller. 1 is the object to be measured, 2 is the photoelectric converter, 5 is the impeller, 5b
is its light transmission part, 8 is an AC amplifier, 9 is a DC regenerator, 1
4 is an adder, 15 is a linearizer, and SW1 and SW2 are switches.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物体からの放射光線を断続的に通過させる羽
車と、この羽車の回転をその光透過部が上記被測定物体
に対向する状態で停止せしめる手段と、上記羽車を通過
した放射光線を受けて電気信号を出力する光−電気変換
器と、上記電気信号が供給される交流増幅器と、この交
流増幅器の出力が供給され上記電気信号を直流再生信号
として出力する直流再生器と、上記直流再生信号と等し
い等価直流電圧を作成するための回路手段と、上記等価
直流電圧に上記交流増幅器の出力信号を重畳するための
加算器と、リニアライザと、上記直流再生器の出力側を
上記リニアライザの入力側に接続する第1の接続手段と
、上記加算器の出力側を上記リニアライザの入力側に接
続する第2の接続手段と、上記羽車の回転をその光透過
部が上記被測定物体に対向する状態で停止せしめたとき
、上記第1の接続手段を上記第2の接続手段に切換える
手段とを有し、上記羽車の回転状態時に於ける上記放射
光線断続通過状態による上記直流再生信号に対応した上
記等価直流電圧を得た後、上記羽車の回転停止時に於け
る上記放射光線連続通過状態の上記第2の接続手段から
得られる上記リニアライザの出力電圧に基づき上記被測
定物体の過渡的温度を測定する様にしたことを特徴とす
る放射温度測定装置。
1. An impeller that allows the radiation beam from the object to be measured to pass intermittently, a means for stopping the rotation of the impeller with its light transmitting portion facing the object to be measured, and a means that allows the radiation beam that has passed through the impeller to pass through the impeller intermittently. an optical-to-electrical converter that receives a light beam and outputs an electrical signal; an AC amplifier that is supplied with the electrical signal; and a DC regenerator that is supplied with the output of the AC amplifier and outputs the electrical signal as a DC reproduction signal; circuit means for creating an equivalent DC voltage equal to the DC reproduction signal; an adder for superimposing the output signal of the AC amplifier on the equivalent DC voltage; a linearizer; a first connection means that connects to the input side of the linearizer; a second connection means that connects the output side of the adder to the input side of the linearizer; and means for switching the first connection means to the second connection means when the impeller is stopped facing an object, and the DC current is controlled by the intermittent passing state of the radiation light when the impeller is rotating. After obtaining the equivalent DC voltage corresponding to the reproduction signal, the object to be measured is determined based on the output voltage of the linearizer obtained from the second connection means in which the radiation beam is continuously passing through when the impeller stops rotating. A radiation temperature measuring device characterized in that it measures the transient temperature of.
JP50116979A 1975-09-26 1975-09-26 HoshiyaondoSokuteiSouchi Expired JPS59772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50116979A JPS59772B2 (en) 1975-09-26 1975-09-26 HoshiyaondoSokuteiSouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50116979A JPS59772B2 (en) 1975-09-26 1975-09-26 HoshiyaondoSokuteiSouchi

Publications (2)

Publication Number Publication Date
JPS5240387A JPS5240387A (en) 1977-03-29
JPS59772B2 true JPS59772B2 (en) 1984-01-09

Family

ID=14700477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50116979A Expired JPS59772B2 (en) 1975-09-26 1975-09-26 HoshiyaondoSokuteiSouchi

Country Status (1)

Country Link
JP (1) JPS59772B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459533B2 (en) 2014-04-01 2019-01-30 東洋紡株式会社 Heat-shrinkable polyester film and package

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328220A (en) * 1976-08-26 1978-03-16 Siemens Ag Control device for stepping motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328220A (en) * 1976-08-26 1978-03-16 Siemens Ag Control device for stepping motor

Also Published As

Publication number Publication date
JPS5240387A (en) 1977-03-29

Similar Documents

Publication Publication Date Title
JP3991497B2 (en) Wavelength tracking method of optical spectrum analyzer and tunable light source
US4171908A (en) Automatic two wavelength photoelasticimeter
US3731098A (en) Image scanner drive system
JPS59772B2 (en) HoshiyaondoSokuteiSouchi
US3609365A (en) Radiometer arrangement and control circuit therefor
AU5792400A (en) Aligning and manufacturing components
US3414729A (en) Phase null spectrophotometer
JP2000200922A (en) Optical signal detecting device and its method
US4628196A (en) Temperature measuring apparatus
RU2086912C1 (en) Device testing quality of adhesion of resistance strain gauges
JP2567767B2 (en) Optical displacement measuring method and optical displacement meter using this method
JP3040323B2 (en) Radiation thermometer
US20020176085A1 (en) Feedback position control system and method for an interferometer
JPH01193627A (en) Optical moisture meter
JPH0262170B2 (en)
SU1603255A1 (en) Apparatus for measuring indicatrices of light diffusion
JPH0461182A (en) Method and device for measuring semiconductor laser current-optical output characteristic
RU2084822C1 (en) Device for dynamic check of geometric sizes of commutator and vibrations of electric motor rotor
JP3135630B2 (en) Laser-based measuring instrument using Doppler effect
JPS6152413B2 (en)
JPS628004A (en) Apparatus for measuring thickness of film
SU798640A1 (en) Apparatus for measuring signal and interference of photoreciever
JPH08184550A (en) Optical measuring apparatus
SU851270A1 (en) Device for hot-wire anemometer dynamic calibration
JPH02105078A (en) Measuring instrument for characteristic of semiconductor light emitting element