JPS5976595A - Treating apparatus by activated sludge - Google Patents

Treating apparatus by activated sludge

Info

Publication number
JPS5976595A
JPS5976595A JP57187126A JP18712682A JPS5976595A JP S5976595 A JPS5976595 A JP S5976595A JP 57187126 A JP57187126 A JP 57187126A JP 18712682 A JP18712682 A JP 18712682A JP S5976595 A JPS5976595 A JP S5976595A
Authority
JP
Japan
Prior art keywords
sludge
tank
water
activated sludge
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57187126A
Other languages
Japanese (ja)
Inventor
Kozo Kimura
興造 木村
Norimasa Nonaka
規正 野中
Nariaki Takeda
武田 整明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DICK PLANT KK
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
DICK PLANT KK
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DICK PLANT KK, Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical DICK PLANT KK
Priority to JP57187126A priority Critical patent/JPS5976595A/en
Publication of JPS5976595A publication Critical patent/JPS5976595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To enable the optimum treatment by activated sludge even if at the big fluctuation of the influent quantity of waste water, by introducing the waste water into a combined tank for flow controlling and aeration, and adding the sludge in proportion to the influent quantity of the waste water. CONSTITUTION:Waste water 11 is introduced into a combined tank 12 for flow controlling and aeration, and is brought into contact with activated sludge to send to a solid-liquid separation equipment 14 via a constant flow device 13. It is separated therein to treated water 15 and extracted sludge 16. After the extracted sludge 16 is aerated in a sludge aeration tank 17, it is supplied adequately to the aeration tank 12, and the excess sludge is sent to the outside. At this time, the sludge 16 is stored temporarily in the sludge aeration tank 17, and supplied to the aeration tank 12 as the activated sludge 18 at the constant rate or by proportional control in proportion to the influent quantity in conformity with time flowing the waste water into the aeration tank 12.

Description

【発明の詳細な説明】 汚泥処理装置に係り、特に流入刊一水−h)の変動が大
きい場合に最適な活性汚泥処理装置に1ラ1fる。
DETAILED DESCRIPTION OF THE INVENTION Regarding sludge treatment equipment, this activated sludge treatment equipment is particularly suitable for cases where there are large fluctuations in inflow water.

一般に活性泥泥法で排水処理全行う場合、処理装置への
流入排水量負荷が時間的に変動のある場合、適当な容量
の流量調整槽が前置され、定流量化装置(fcよって排
水?定流量でげつ気槽へ供給する。流入排水量負荷の時
間変動の状態Vこよって―極めて巨大な流量調整槽が必
髪な場合がある。流量調整Wは通常、排水全好気的条件
に保つと共に、沈積金防ぐため、ばつ気攪拌が行われ、
活性汚泥ばつ気槽と極めて類似した構造″T″ある。流
量調整槽で排水をばつ気すれば、多少生物的に排水中の
生物化学的酸素要求量( B O D ’)や化学的酸
素要求量(COD)は除去されるが、極めて効果は小さ
い。
In general, when all wastewater treatment is carried out using the activated mud method, if the load on the inflowing wastewater to the treatment equipment fluctuates over time, a flow rate adjustment tank of an appropriate capacity is installed in front of it, and a constant flow device (FC) is used to adjust the amount of wastewater. The flow rate is supplied to the aeration tank.Due to the time-varying state of the inflow wastewater load, V - an extremely large flow rate control tank may be required.The flow rate control W normally maintains the wastewater in fully aerobic conditions. At the same time, airy stirring is carried out to prevent deposited gold.
There is a structure "T" which is very similar to an activated sludge aeration tank. Although the biochemical oxygen demand (BOD') and chemical oxygen demand (COD) in the wastewater are somewhat biologically removed by venting the wastewater with a flow rate adjustment tank, the effect is extremely small.

第1図および第2図の70−シートは、通當一般に流量
調整槽vi−會む活性汚泥処理法のフローソートである
。特VC第1図は、標準活性汚泥法、長時間ばつ気法、
ハイレート法などのフローシートを示す。第2図は接触
安定化法と呼ばれるもののフローシートである。第1図
で流入拮.水または必要に応じて1次処理が施こされた
排水1(以下説明の簡略化のため、t1’t [’流入
排水と呼ぶ)If″′f、流量v40を槽2 vc導入
され、通常軽度のばつ気攪拌されながら貯留される。流
量調整槽2内の排水は、ポンプで汲上げられ定流量化装
置3 GCJ:つで、単位時間当りの流′にA、’ k
均等化され、連続してばつ気槽4に導入される。ばつ気
槽4で排水は活性汚泥と接1q++Iル、排水中の有機
物性汚濁物質は、生物学的に除去され、次工程の固−液
分離装置5VCよって活性汚泥と排水に分離される。同
一液分離装置5は一般に沈てん伸Iが用いられるが、浮
土分離、遠心分離、p過である場合も特殊な例としであ
る。
The 70-sheet of FIGS. 1 and 2 is a flow sort of activated sludge treatment method that generally involves a flow regulating tank vi. Special VC Figure 1 shows standard activated sludge method, long aeration method,
A flow sheet for the high rate method etc. is shown. Figure 2 is a flow sheet of what is called the contact stabilization method. Figure 1 shows the inflow. Water or wastewater 1 that has been subjected to primary treatment as necessary (to simplify the explanation, t1't ['inflow wastewater') If'''f, flow rate v40 is introduced into tank 2 vc, and normally The waste water in the flow rate adjustment tank 2 is pumped up by a pump to make the flow constant.
It is equalized and continuously introduced into the aeration tank 4. The wastewater comes into contact with activated sludge in the aeration tank 4, and organic pollutants in the wastewater are biologically removed and separated into activated sludge and wastewater by the solid-liquid separator 5VC in the next step. The same liquid separation device 5 is generally a sedimentation system I, but special examples include floating soil separation, centrifugation, and p-filtration.

固−液分′fJII装置5で分離されたN111脱水は
、処理水としてJ1ツク出され、亦縮された活性汚泥7
は返送汚泥としてl’つ気1% VC返送され、一部は
余剰iり泥8として系外に取υ出され処分される。
The solid-liquid fraction'fN111 dehydrated separated in the JII device 5 is discharged as treated water to the J1 and reduced activated sludge 7.
The 1% VC is returned as return sludge, and a portion is taken out of the system as surplus sludge and disposed of.

第2図については符号1,2.3は上記第1図の説明と
同じである。接触+i!’74 Aでは導入された排水
が活性汚泥と接触し、ばつ気される。ここでは、活性汚
泥の初期生物性吸着と凝集能力に工つて排水の有機性汚
濁物質は活性汚泥側に取り入れられる。このため滞留時
間はイヴめで短く一般1c05〜2時間程度と言われて
いる。活性汚泥と接触混合された排水は同一液分離装置
5によって処理水6と分離活性汚泥7に分けられること
は第1図の説明と全く同様である。分離活性汚泥7は安
定化槽8に導入さればつ気され、排水工υ吸着ないしは
凝集した有機性汚濁物質は完全に酸化されろ。
In FIG. 2, the symbols 1, 2, and 3 are the same as in the description of FIG. 1 above. Contact+i! In '74 A, introduced wastewater comes into contact with activated sludge and is vented. Here, organic pollutants from wastewater are taken into the activated sludge by utilizing the activated sludge's initial biological adsorption and coagulation ability. For this reason, the residence time is generally said to be short, about 1c05 to 2 hours. The wastewater mixed with activated sludge is separated into treated water 6 and separated activated sludge 7 by the same liquid separation device 5, which is exactly the same as the explanation in FIG. 1. Once the separated activated sludge 7 is introduced into the stabilization tank 8, it is aerated, and the organic pollutants adsorbed or aggregated in the drainage system are completely oxidized.

一般的にここでの滞留時間は2〜3時間程度とされてい
る。安定化された汚泥は返送汚泥9として接触槽へ連続
的((戻され一部ぐま余剰汚泥10として系外へ引抜か
れ処分される。
Generally, the residence time here is about 2 to 3 hours. The stabilized sludge is continuously returned to the contact tank as return sludge 9, and a portion is pulled out of the system as surplus sludge 10 and disposed of.

通常都市下水処理などは流量調整i%J((d二股けら
れないが、小規模し尿処理(合併処理)、産業押1水処
理、ビル等の排水処理などでは必ず流量調整槽が設置さ
れる。もし設置されないと十分な処理機能が得られない
。即ち排水の処理設備へ流入する時間帯が1日のうち極
めて限られた時間帯に集中する場合が多く、流量調整槽
がない壕合流人刊・水蓄のピーク時には活性汚泥での処
理時間が不足して処理水りtが悪化すると共に、同一液
分離装置で活性汚泥の流出が起り結果として汚泥令荀短
くし、系内の活イ′1:汚泥の性状を悪化させ一層固一
液分N1#’k !1iffi Lいものとし、処理水
質全史に悪化する7+WG循環現象を起す。従って通常
、第1図、第2図に示す工うな流JN(′調整(曹が設
置さする。:、′已1図、第2図に示した流量調整槽の
客用は、別画排水量の1て設置され、印4間整1’、i
!!+への流入排水量の1日のうちの流入水駄パターン
によって客月、力;決定される。
Normally, urban sewage treatment cannot be divided into two parts, but a flow rate adjustment tank is always installed in small-scale human waste treatment (combined treatment), industrial wastewater treatment, wastewater treatment of buildings, etc. If it is not installed, sufficient treatment function will not be obtained.In other words, the time when wastewater flows into the treatment equipment is often concentrated at extremely limited times of the day, and there is no flow adjustment tank in the trench junction. At the peak of production and water storage, the treatment time with activated sludge is insufficient and the treated water level deteriorates, and at the same time, activated sludge flows out from the same liquid separation equipment, resulting in a short sludge age and an increase in the amount of activated sludge in the system. '1: Deterioration of the properties of sludge, making the solid-liquid content N1#'k !1iffi L even higher, and causing a 7+WG circulation phenomenon that deteriorates the overall quality of treated water.Therefore, it is usually shown in Figures 1 and 2. The flow rate adjustment tank shown in Figures 1 and 2 for customer use is installed in a separate section with a drainage volume of 1, and is 4 meters in size. ,i
! ! It is determined by the daily inflow pattern of the amount of water flowing into the water.

必要な調整容部ψは次式によって計算できる。The required adjustment volume ψ can be calculated using the following formula.

すなわち、 V−起点からの流入排水量の累積(Vin) −起点か
らの取り出し排水量の累積(Vout)・・・・・・(
1〕とすれば、必要調整量VDは Vo=Vの最大値(V+nax) ” Vの最少値(V
min) ・・−−(2)で示される。ちなみに、実際
に測定した流入杉i水量ノξターンで、必要調整容量を
求めてみる。第3図には団地汚水の水−腋負荷のノミタ
ーン、第4図にはおるエゴb排水の水量負荷パターンを
示す。第・3図より求められる必要調整容量は、−日の
制水総量の約22%(平均時間幽り排水量の約5.3時
間分)、第4図では、約63%(平均時間尚り排水量の
約15時間分)である。
That is, V - Cumulative amount of inflow drainage from the starting point (Vin) - Cumulative amount of outgoing drainage from the starting point (Vout)
1], the required adjustment amount VD is Vo = maximum value of V (V + nax) ” minimum value of V (V
min) ---(2). By the way, let's find the required adjustment capacity using the actually measured inflow cedar i water volume ξ turn. Figure 3 shows the water-armpit load pattern of sewage from the housing complex, and Figure 4 shows the water volume load pattern of Ego-B drainage. The required adjustment capacity determined from Figure 3 is approximately 22% (approximately 5.3 hours of the average hourly drainage volume) of the total water control volume on day -, and approximately 63% (approximately 5.3 hours of the average hourly drainage volume) in Figure 4. (approximately 15 hours worth of drainage).

本発明は第3,4図に示される如(、極めて限られた時
間帯に排水が流入し、大きな排水負荷変動)ぐターン金
有する場合に、J入排水′j■の変化に適切に対処でき
、しかも設置スペース全減少することができる活性汚泥
処理装置ケ得ることが目的である。
As shown in Figures 3 and 4, the present invention can appropriately deal with changes in J inflow and drainage when there is a large fluctuation in drainage load due to inflow of wastewater in a very limited time period. The purpose is to provide an activated sludge treatment device that can be used in a variety of ways, and that can also reduce the total installation space.

本発明に係る活性汚泥処理装置でり2、一般に活性汚泥
工程に前置される流量調整槽と活性汚泥工程のばつ気槽
を併合した併合槽企流量調整兼ばつ気f’+1とし、こ
の併合槽の後へ設置するν・1−液分離装置への液送に
定流量化装置全配置し、同一液分離装置で活性汚泥と分
離された排水を処理水として取り出し、濃縮された活性
汚泥は1日分の流入排水量に対して返送に必要な貯留容
量をイイする汚泥ばつ気槽に一時貯留してばつ気し、流
入排水のタイミングに合わせて必要量全併合!’ti’
;へばっ気返送−I:6工うになっている。
In the activated sludge treatment apparatus according to the present invention, the flow rate adjustment tank and the aeration tank of the activated sludge process, which are generally installed in front of the activated sludge process, are combined into a combined tank for flow rate adjustment and aeration f'+1, and this combination All constant flow devices are installed to feed the liquid to the ν・1-liquid separation device installed after the tank, and the activated sludge and wastewater separated from the same liquid separation device are taken out as treated water, and the concentrated activated sludge is The sludge is temporarily stored and vented in a sludge aeration tank that has the storage capacity required for return for one day's worth of inflow wastewater, and then all the necessary amount is combined in accordance with the timing of inflow wastewater! 'ti'
;Here the air is returned - I: It's 6 inches long.

以下、本発明の実施例2図面に従い説明する。Embodiment 2 of the present invention will be described below with reference to the drawings.

第5図にtよ本発明の第1実施例に係る活性汚泥処理装
置が示されている。この実施例では流入排水11がばつ
気(シl、i12へ導入されるよ5になっている。この
ばつ気槽12は流量調整槽とばっ気槽と奮併せた併合槽
としての役目?有している。
FIG. 5 shows an activated sludge treatment apparatus according to a first embodiment of the present invention. In this embodiment, the inflow wastewater 11 is introduced into the aeration tank 12.The aeration tank 12 serves as a merging tank that combines the flow rate adjustment tank and the aeration tank. are doing.

このばつ気槽12は定流量化装置13金経て固液分前装
置14へ接続され、この同一液分離装置14内では混合
液全処理水15と引抜き汚泥16とに分離するようにな
っている。引抜き汚泥16は汚泥ばつ気11’V17へ
接続されており、この汚泥ばつ気f’、!、 17から
のばつ気後の活性汚泥18けばつ気Wj12へ又は余剰
汚泥19として系外へ送られる構成である。
This aeration tank 12 is connected to a solid-liquid separation device 14 through a constant flow rate converting device 13, and in this same liquid separating device 14, the mixed liquid is separated into total treated water 15 and drawn sludge 16. . The drawn sludge 16 is connected to a sludge vent 11'V17, and this sludge vent f',! , 17 after aeration, the activated sludge 18 is sent to the aeration Wj12 or to the outside of the system as surplus sludge 19.

このように構成される本実施例では、流量調整前げつ気
槽12へ送られた流入排水は、散気方式によるばつ気で
活性汚泥と接触し、排水中に含まれる有機性汚濁物質が
生物学的に処理される、活1′を汚泥との混合液に1]
定流開化装置13iでよって次の固−液分離装置工4へ
一定流爺づつ送り込寸!上る。固−液分離装置14で分
MidされたDl・水は処理水15として14y、シ出
され、濃縮された活性汚泥は引抜き汚泥16として汚泥
Uっ気杷・17へ導入される。汚泥ばっ気杷・17では
ばっ気しながら、一時活性汚泥16を貯留し、流入排水
量1が流入してくるタイミングに合せて活tト汚泥18
 ’、−流;、:調整兼ばつ気(V目2へ必要量返送す
る。系内vc j2>えすぎた活性汚泥は余剰汚泥19
として、系外へ取り出される。
In this embodiment configured in this way, the inflowing wastewater sent to the pre-flow rate adjustment aeration tank 12 comes into contact with activated sludge through aeration by the aeration method, and the organic pollutants contained in the wastewater are removed. Biologically treated active 1' mixed with sludge 1]
The constant flow opening device 13i sends a constant flow one by one to the next solid-liquid separation device 4! climb. The Dl/water separated in the solid-liquid separator 14 is pumped out as treated water 15 14y, and the concentrated activated sludge is introduced as drawn sludge 16 into the sludge 17. The activated sludge 16 is temporarily stored in the sludge aeration loquat 17 while being aerated, and the activated sludge 18 is pumped in time with the inflow of the inflow wastewater amount 1.
',-Flow;,: Adjustment and aeration (returns the required amount to V 2. System vc j2> Excessive activated sludge is used as surplus sludge 19
, and is taken out of the system.

流量調整前ばつ気槽12kl:、第1図、第2図の流量
調整槽同様、この槽より汲上り′る流h]よフ少い流入
排水量では貯留している承知:が減少し汲上げ流量↓り
多い流入排水量のときり1、貯留している水量が増加す
る。従って、第1図、第2図に示した通常の方法での汚
泥返送の工うに連ゎ)、的に汚泥を返送すると流量調整
前ばっ気停止・内の活性汚泥′m度が変動し、後流の同
一液分離装置にががる固形物負荷が極めて大きく変動し
−c1固−液分n1′1が如しくなる。本実力r、′i
例のシスデムリ゛、固−液分離装置:14から引抜いた
汚泥全汚泥げっ気tei7で一時貯留し、;#li水が
流入して(るタイミングに合せて、−宏量ないし何1、
JJV水流mに対して比例制御しながら汚泥を返送する
ことICjって成り立っている。汚泥げっ気槽17で、
げっ気するのは、汚泥の沈積を防ぐと共に好気条件ケ保
つことVCJ:り腐敗を防ぎその活tL度全維持しかつ
、好気性による流派の消化V?−よって余剰汚泥の減量
化を削っている。
Aeration tank 12 kl before flow rate adjustment: As with the flow rate adjustment tank in Figures 1 and 2, the flow pumped up from this tank (h) is known to be stored when the amount of inflow water is small, and the amount of water pumped up decreases. Flow rate ↓ When the amount of inflow drainage increases, the amount of stored water increases. Therefore, when the sludge is returned using the normal method shown in Figures 1 and 2, the degree of activated sludge in the activated sludge will fluctuate. The solids load flowing into the downstream same liquid separation device fluctuates extremely greatly, and -c1 solids-liquid content n1'1 becomes as follows. Real ability r,'i
In the example system, the solid-liquid separator: All sludge drawn from 14 is temporarily stored in tei7, and water flows in (according to the timing of
ICj consists of returning sludge while controlling it proportionally to JJV water flow m. In the sludge aeration tank 17,
The purpose of vomiting is to prevent the deposition of sludge and maintain aerobic conditions. −Therefore, the amount of excess sludge is reduced.

流賢調整兼ばっ気れtl112の必要調整容量は、(2
)式に対して、汚泥返送の分を考慮することによって求
められる。通常の方法(第1図、第2図など)の流量調
整槽より増加した分が汚泥げっ気槽の必要容量となる。
The required adjustment capacity of Ryuken Adjustment and Bakkire tl112 is (2
) is calculated by taking into account the amount of sludge returned. The required capacity of the sludge aeration tank is the amount increased from the flow rate adjustment tank of the normal method (Fig. 1, Fig. 2, etc.).

流入排水の流入時にタイミングを合せ、汚泥を返送しそ
の流量全流入排水量と比例制御して返送すれば、返送汚
泥引゛/流入排水鍬の割合外だけ通常方法の流量調整の
必要調整容量に追加すれば工(、′fた汚泥ばっ気槽1
7の必要容量もその値でよい。
If the sludge is returned at the same time as the inflow of wastewater and the flow rate is controlled proportionally to the total amount of inflow wastewater, only the ratio of the return sludge draw/inflow wastewater hoe can be added to the required adjustment capacity for flow rate adjustment using the normal method. Then the sludge aeration tank 1
The required capacity of 7 may also be the same value.

処理水質は、排水がばつ気仔qでばつ気処p11さiす
る時間(滞留時間)との関数であるから、処理水質を良
くしようと思えば、流量2調整兼ばつ気f’l’f I
 2の容量を必要に応じて増加すればよい。
The quality of treated water is a function of the time (residence time) in which the wastewater spends in the evaporation chamber, so if you want to improve the quality of the treated water, it is necessary to I
The capacity of 2 may be increased as necessary.

次に第6図には本発明の第2実施例が示されており、流
入排水11、流量W々整兼ばつ気++i912、定流量
化装置13は第4図の前記第1実施例と同様である。し
かし定流量化装置13の後にげつ気槽24が設けられて
おり、このばつ気(曹24の容量は従来のばつ気槽より
も著しく小さい容1にとなっている。即ち、流量調整前
ばつ気槽12で排水中の有機性汚濁物質の多くはυ1水
エク除されているためばつ気槽24は少量の排水中に残
る有様性汚濁物質を仕上げ処理的に除去すれば↓いので
小容偏:ですむ。・ またばつ気槽24の秒に設けられる固−液分1’9装置
25は第1実施例と同様で、原水を処:[jllll水
気6されるようになっている。汚泥はつ気槽29へ流入
される引抜汚泥27は前記1ぷ施例と同様にばつ気され
るが、この汚泥ばつ気槽29からは返送汚泥28に代え
て、又は併用して返送汚泥22tf ン、ばつ気憎手寸′\返送してもニー。
Next, FIG. 6 shows a second embodiment of the present invention, in which the inflow drainage water 11, flow rate W, aeration and ventilation 912, and constant flow device 13 are the same as those in the first embodiment shown in FIG. It is. However, an aeration tank 24 is provided after the constant flow rate device 13, and the capacity of this aeration tank 24 is significantly smaller than that of a conventional aeration tank. In the aeration tank 12, most of the organic pollutants in the wastewater have been removed by υ1 water, so in the aeration tank 24, the small amount of specific pollutants remaining in the wastewater can be removed by finishing treatment. Small volume bias: No need to worry.・Also, the solid-liquid 1'9 device 25 installed in the second part of the aeration tank 24 is the same as the first embodiment, and is used to treat raw water. The drawn sludge 27 flowing into the sludge aeration tank 29 is aerated in the same manner as in the first embodiment, but the sludge is returned from the sludge aeration tank 29 instead of or in combination with the return sludge 28. Sludge 22tf N, I'm so embarrassed that I sent it back.

この汚泥ばつ気槽29からの汚泥30を流入排水11の
タイミンダに合せて必扱量全流量調整兼ばつ気h!’j
 12へ送り又は余剰汚泥31として系外へ排出できる
工うになっていることは前記実施例と同様である。
The sludge 30 from the sludge aeration tank 29 is adjusted to the total flow rate of the inflow wastewater 11 in accordance with the timing of the inflow wastewater 11. 'j
As in the previous embodiment, the sludge can be sent to the sludge 12 or discharged outside the system as surplus sludge 31.

この81′!2実施例値:第2図の接触安定化法と類似
したフローとなっているが、各々の槽は第2図とはイタ
めて異る構成である。即ち、第6図の流烟:調整1)、
jl、i兼ばつ気槽12は、第2図の接触槽4Aのよう
に滞留時間は短くなく、通常は、第1図の流量調整11
+172とばつ気Nu d を併合した機能?持ち、極
めて、流入水量負荷の大きい時間帯の限られたときのみ
に接触槽的状態になる。また汚泥ばっ気槽29は第2図
の安定化槽8とは異り、汚泥を貯留することが目的であ
り、安定化槽エフ大きな滞留時間が必要となり、また本
システムについては汚泥を安定化する必要もない。処理
水質の向上のために、流量調整前ばつ気槽の容量全増加
すること多い。かかる場合は第5図のシステムの後流に
、生物脱法による処理工程を配することにx、!7合理
的に高次処理が達成できる。捷だ高次処理を生物脱法に
よらず、活性汚泥法で実施する場合は第2実施例の第6
図に示すフローシートが組める。第6図は、第1図と第
5図の方式全型ね合わせたもので第5図の方式エフも生
物処理の段数効果が期待され、エフ効果的に処理される
ため装置の小形化が可能である。
This 81′! 2 Example values: The flow is similar to the contact stabilization method shown in FIG. 2, but each tank has a completely different configuration from that shown in FIG. That is, the flow smoke in Figure 6: Adjustment 1),
The residence time of the aeration tank 12 which also serves as jl and i is not as short as that of the contact tank 4A shown in FIG.
A function that combines +172 and ``Bakuki Nu d''? However, the condition is similar to that of a contact tank only during limited periods of time when the inflow water load is extremely large. Furthermore, unlike the stabilization tank 8 in Fig. 2, the sludge aeration tank 29 is intended to store sludge, and requires a long residence time in the stabilization tank. There's no need to. To improve the quality of treated water, the total capacity of the aeration tank is often increased before adjusting the flow rate. In such a case, a treatment process using a biological removal method should be placed downstream of the system shown in Figure 5. 7. High-level processing can be achieved in a reasonable manner. If the high-level treatment is carried out using the activated sludge method instead of using the biological removal method, please refer to the sixth example of the second embodiment.
The flow sheet shown in the figure can be assembled. Figure 6 shows a combination of all the methods shown in Figures 1 and 5. Method F in Figure 5 is also expected to have an effect on the number of biological treatment stages, and is effective in reducing the size of the equipment. It is possible.

次に本発明の用途についてのべる。本発明の各実施例は
通常の方法である第1図に比べてフローは複雑であるた
め、設置面積が多くとれる所ではメリットがない。しか
しながら土地価格の高感から敷地の手当や、空間の利用
価値の比較VCよって排水処理施設の小形化が優先され
る所では極めて効果的である。即ち、都心のビル排水の
処理ないしは中水の造水施設、密集地の工場排水処理、
既設排水処理の有枦件汚濁物質負荷の増加時の改造、排
水全公共下水道へ放流する時の除害設備などへの応用が
有効であると考えられる。特にビルの個別中水造水設備
への応用は、注目すべきである。
Next, the uses of the present invention will be described. Each embodiment of the present invention has a more complicated flow than the conventional method shown in FIG. 1, so it is not advantageous in a place where a large installation area is available. However, it is extremely effective in places where downsizing of wastewater treatment facilities is prioritized due to land allowances due to high land prices and VC comparison of space usage value. In other words, treatment of building wastewater in urban areas or gray water production facilities, factory wastewater treatment in densely populated areas,
It is thought that it would be effective to modify existing wastewater treatment facilities when the load of pollutants increases, or to apply them to abatement equipment when discharging wastewater into public sewers. Particular attention should be paid to the application to individual gray water generation equipment for buildings.

ビルの最低1シ:々床下には通割空胴部分かあシその容
積に、かなりの量[なる。この空胴部分ヶ利用して、排
水の貯留槽や、流量調整槽に使われる部分を通常のばつ
気イν1・に利用すると、水深が浅V、ため沈でん糟の
水位エフ低(なり自然流下が不可能となる。
At least one floor of a building: There is a hollow space under the floor, and the volume of the space is quite large. If this hollow part is used as a wastewater storage tank or a flow rate adjustment tank for normal air flow, the water depth will be shallow and the water level of the sedimentary sediment will be low (becoming natural flow). becomes impossible.

従ってビルの最低階の有効な床面積を巨大なばつ気槽の
ためVC@貸にしなければならない。本発明の場合、流
量調整前ばつ気槽が、最低階床に点検に心火な蓋付人孔
全於けることに、Cり最低階床下の空胴部分に収めるこ
とが出来〆、本来他の目的に有効に使用できるはずの床
面積の造水設備V?−よる占有を、極力狭くできるメリ
ットかある。
Therefore, the effective floor space on the lowest floor of the building must be rented out for the huge aeration tank. In the case of the present invention, the aeration tank before flow rate adjustment can be housed in the hollow part under the lowest floor, in addition to the entire manhole with a lid that is convenient for inspection on the lowest floor. Water generation equipment V with floor space that could be effectively used for the purpose of? -There is an advantage in that the amount of space occupied by the vehicle can be kept as narrow as possible.

次に本発明の実施VCよる実験結果について説明する。Next, experimental results obtained by implementing VC of the present invention will be explained.

第6図に示すフローシートに従って実験装置を作成し、
2つの簡単な流入水量負荷パターンを設定して処理実験
全実施した。実験lスケールは日当〕の処理水量110
!■ペンチスケールであって以下に結果を要約で示す。
Create an experimental device according to the flow sheet shown in Figure 6,
All treatment experiments were conducted by setting two simple inflow water flow load patterns. The scale of the experiment is the amount of water processed per day: 110
! ■This is a pliers scale, and the results are summarized below.

(実験1) 流入水が1日のうち8時fAで流入し、流入開始と同時
に16時間連続処理。
(Experiment 1) Inflow water entered at 8:00 fA during the day and was continuously treated for 16 hours at the same time as the start of inflow.

第6図の70−シートで、放流raJ能な処理水質を得
ること金目的とし流量調整前t;fpiれ![1・の容
量を必要容量の2倍程度に取った場合、第7図に水量負
荷の状態金、第8図に水質を示す。これら全要約して、
第1表に示した。なお第8図、第1表に示したBODは
生物化学的必要酸素用?意味し5−BODはザンゾルを
口紙で濾過処理して測定したBOD′ff、意味し、C
ODは化学的必要酸素量?意味し、5−CODは5−B
ODと同様な処理tした後測定し* COD f意味う
゛ろ。
In the 70-sheet in Figure 6, the objective is to obtain a quality of treated water that is capable of being discharged, and before adjusting the flow rate. When the capacity of [1. Summarizing all these,
It is shown in Table 1. Is the BOD shown in Figure 8 and Table 1 for biochemically required oxygen? 5-BOD means BOD'ff measured by filtering Xansol with a mouth paper, and C
Is OD the chemically required amount of oxygen? 5-COD means 5-B
Measured after performing the same treatment as OD * COD f I don't know what it means.

流入水BOD平均濃度が150mg/A程度に対し、処
理水のBOD濃度は20.mp / 、e以下であジ、
十分な処理能力が認められた。
The average BOD concentration of influent water is about 150 mg/A, while the BOD concentration of treated water is 20. mp/, below e,
Sufficient processing capacity was confirmed.

(実験2 ) 流入水が1日のうち4時面で流入し、流入開始と四〇r
i [処理葡初め16時間で処理する”AJ合。
(Experiment 2) The inflow water entered at 4 o'clock in the day, and the inflow started and 40 o'clock in the day.
i [AJ case to be processed in 16 hours for the first time.

流量N11′41vS兼ばつ気槽の最低貯留水厭が最高
貯留水」「1、の16タ6の4”z f+で実験全行っ
た。々19図に氷霜、負りjのパターンを、第10図に
水質を図示した。
All experiments were conducted at flow rate N11'41vS and aeration tank's lowest stored water was the highest stored water. Figure 19 shows the patterns of ice and frost, and Figure 10 shows the water quality.

これらの要約そ化2表に示した。処理水はかなり明瞭な
ピーク金示す。しかしながらBOD除去率は第2表に示
すように比較的高い値を示し、水質規制のゆるい場J)
「でt」、この−まま放流処置ケ行ってもよい場合があ
る。この場合VCは一般的に水質は厳しく、第6図のよ
うなフロー全組む〃)、簡単な生物膜法(回転円板、接
触酸化等)による後処理が必要である。
A summary of these is shown in Table 2. The treated water shows a fairly distinct peak of gold. However, the BOD removal rate is relatively high as shown in Table 2, and water quality regulations are lenient.
In some cases, it may be possible to carry out the discharge treatment as is. In this case, the water quality of VC is generally severe, and post-treatment by a simple biofilm method (rotating disk, catalytic oxidation, etc.) is required.

1別昭59−76595(5) 以上の実験結果をもとに、通常の方法である第1図の7
0−と本発明によるシ16図によるフローについて、上
記「実験2」の流入条件に対して、比較して計画金試み
る。
1 Betsu 59-76595 (5) Based on the above experimental results, the normal method 7 in Figure 1
0- and the flow shown in Figure 16 according to the present invention, the planned funds will be compared against the inflow conditions of "Experiment 2" above.

(条件) 流入水量負荷(i、第9図の流入排水量ケ比例拡大し1
日娼シ、100i、4時間で一定流速で流入するものと
する。処理時間は、24時間/日で処理するものとする
。流入水の平均B OD ti+、250rtrg /
 A (!: L、処Fl水B ODV;J: 20 
■/4以下とする。
(Conditions) Inflow water volume load (i, the inflow drainage volume in Figure 9 is expanded proportionally to 1
It is assumed that the water flows at a constant flow rate for 4 hours at 100 i per day. The processing time shall be 24 hours/day. Average BOD ti+ of influent water, 250rtrg/
A (!: L, place Fl water B ODV; J: 20
■It should be less than /4.

(開直) a)第1図に↓る処理の場合。(Kaisei) a) In the case of the process shown in Figure 1 below.

a)−1流量調整槽の容量 式(2) VC従ツーcH−ド算”3’ ルト(’83
 n? )a)−2ばつ気槽の容量 処理水質のグレーrから、長時間けっ 気が必要であるBOD容積負荷率を 0.2ky/−日とする (125nI)a)−3その
他のものは、同等としてその槽容僻をK n?とじ、a
)−1とa)−2を合算するとlX+′、iの全容t 
rj、(208yyI′+に、)mWとなる。
a) Capacity formula of the -1 flow rate adjustment tank (2)
n? )a)-2 Based on the gray r of the water quality treated by the aeration tank, the BOD volumetric loading rate that requires long-term aeration is set to 0.2ky/-day (125nI)a)-3 Others: K n? Binding, a
)-1 and a)-2 add up to lX+', the total value of i t
rj, (at 208yyI'+) becomes mW.

1))第4図VCよる処理の場合 1)) −1流量調整率ばつ気IIX%iの容量この(
費への汚泥返送Jηを流入排水量の2596とすると、
上記説明の通り、 a)−1で求めた容量會(1+0.25)倍して、(1
04u/ )となる。
1)) Fig. 4 In the case of processing by VC 1)) -1 flow rate adjustment rate variation IIX%i capacity this (
If the sludge return Jη to the cost is 2596 of the inflow wastewater volume, then
As explained above, the capacity calculated by a) -1 is multiplied by (1+0.25), and (1
04u/ ).

b)−2ばつ気111にの秤量 B OD容積負荷率ケ、a)−2と同様とする。b)−
1−?’(7) B OD除去率r、1:実験エフ、8
5%程度期待できることと、 水Jiが、流入水引゛に対して1.25倍になっている
ので槽容量は(19η?)となる。
b)-2 Weighing B OD volume load rate to the aeration 111 Same as a)-2. b)-
1-? '(7) B OD removal rate r, 1: Experiment F, 8
About 5% can be expected, and the water Ji is 1.25 times the inflow water drawdown, so the tank capacity is (19η?).

b)−3,汚泥ばつ気(L−容量 b)−1でa)−1↓り増加した分の容量が必要だから
(21m”)となる。
b)-3, sludge vapor (L-capacity b)-1, a)-1↓, the increased capacity is required (21 m'').

b)−4その他のものは共通であるから前記の通ジK 
tr?とすると全槽容伶−1、(144+K)、/とな
る。
b)-4 Other things are common, so the above communication path K
tr? Then, the total tank volume is −1, (144+K), /.

従ってa ) 、b )の計画での槽容量の差は(64
−)となり、第1図の方式党流量調整任:1・とばつ気
槽の合算槽容量に対してそれに置き換る第6図の方式の
流量調整等ばつ気(:1jii、ばつ気槽、汚泥ばつ気
槽の合算容量は約30%減となり本発明の方式VCより
効果的に処理装置を小形化できることになる。
Therefore, the difference in tank capacity between plans a) and b) is (64
-), and the flow rate adjustment using the method shown in Fig. 1 is replaced by the method shown in Fig. 6 for the total tank capacity of the air tank. The total capacity of the sludge aeration tank is reduced by about 30%, which means that the processing equipment can be more effectively downsized than the VC system of the present invention.

尼l上訝、明した如く本発明に係る活性汚泥処理装置は
併合槽、定流量化装置、同一液分離装置、汚泥ばつ気槽
お工び汚泥供給装置とを有して汚泥ばつ気槽“で1ll
li縮きれた活性汚泥を排水流入のタイミングに合わせ
て併合槽へ返送するので、流入排水量の変化に適切に対
処し、しかも装置の設置f5jスペースを減少すること
が可能となる優れた効果を有ブーる。
As mentioned above, the activated sludge treatment apparatus according to the present invention includes a merging tank, a constant flow rate device, a liquid separation device, a sludge aeration tank, and a sludge supply device. So 1ll
Since the shrunk activated sludge is returned to the merging tank at the same time as the inflow of wastewater, it has the excellent effect of appropriately dealing with changes in the amount of inflowing wastewater and reducing the space required to install the equipment. Bool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の活性汚泥処理装置金示す系統
図、第3図は団地汚水の流入排水量゛)ξターンを示す
線図、(「小規模下水処理施設)・ンドブツク:産業用
水n周査会」エフ抜すい)、第4図は工場排水の水ガト
負荷ノ々ターン金示す線図(「小規模下水処理施設)・
ンドブツク:産業用水調査会」より抜すい)、第5図は
水元−に係る活性汚泥処理装置の第1実施例を示す系統
図、s!r6図は同第2実施例を示す系統図、第7図及
び第8図は本発明の実験1の結果を示す線図であシ、第
7図は時間変化に対する水量負荷の状態を、第8A図及
び第8B図は時間変化に対ブーる水質状態全示しており
、第9図及び第10図は実験2の結果を示す線図であり
、第9図は時間変化に対する水量負荷の状態を、第1<
)A図及び第10B図は時間変化に対する水質状態を示
している。 11・・・・・・流入排水  12・・・・・・ばつ気
槽13・・・・・・定流量化装置14・・・・・・固−
液分離装置15・・・・−・処理水   16・・・−
・・引抜き汚泥17・・・・・・汚泥ばつ気槽18・−
・・・・活性汚泥24・・・・・・ばつ気PFj  2
5・・・・・・固−液分離装置26・・・・・・処理水
   27・・・・−・引抜き汚泥29・・・・・・汚
泥ばつ気槽 30・・・・・・活併汚泥代理人 弁理士
  中 島  淳 第1図 第2図 第3図 呵 間 (晴) 第4図 E1間 第5図
Figures 1 and 2 are system diagrams showing conventional activated sludge treatment equipment, and Figure 3 is a diagram showing the inflow and drainage volume of sewage from housing complexes. Fig. 4 is a diagram showing the water load of industrial wastewater (small-scale sewage treatment facility).
Figure 5 is a system diagram showing the first embodiment of the activated sludge treatment equipment related to Mizumoto. Figure r6 is a system diagram showing the second embodiment, Figures 7 and 8 are diagrams showing the results of Experiment 1 of the present invention, and Figure 7 shows the state of water volume load with respect to time changes. Figures 8A and 8B show all water quality conditions as a function of time changes, Figures 9 and 10 are diagrams showing the results of Experiment 2, and Figure 9 shows the state of water volume load as a function of time changes. , the first <
) Figure A and Figure 10B show water quality conditions over time. 11...Inflow wastewater 12...Aeration tank 13...Constant flow rate device 14...Solid
Liquid separation device 15...-- Treated water 16...-
... Pulled sludge 17 ... Sludge aeration tank 18 -
... Activated sludge 24 ... Exposure PFj 2
5... Solid-liquid separator 26... Treated water 27... - Pulled sludge 29... Sludge aeration tank 30... Combination Sludge agent Patent attorney Atsushi Nakajima Figure 1 Figure 2 Figure 3 A (Haru) Figure 4 E1 Figure 5

Claims (1)

【特許請求の範囲】 (])  流流入水の流量調整及びばつ気紫行う併合槽
と、この併合槽からの原水?定量ずつ供給する定流量化
装置と、この定流量化装置からの原水を処理水と活性汚
泥に分離する固−液分離装置と、固−液分離&置からの
活性汚泥孕げつ気する汚泥ばつ気槽と、汚泥ばつ気槽か
らの濃縮さtした活性汚泥弦前記併合1jjj7への排
水流入のタイミングに合せて必要量だけ併合槽へ返送す
る汚泥供給装置と?有う゛ること全特徴とした活性汚泥
処理装置。 (2)前記定流量を化装置と同一液分離装置バとの間へ
ばつ気IIi’ノに設けると共に、同−液分離装置又は
汚泥ばつ気槽から濃縮汚泥の一部紫前記ばつ気槽へ返送
するとと牙特徴とした特許請求の範囲記1項の活性汚泥
処理装置。
[Scope of Claims] (]) A merging tank for adjusting the flow rate of inflowing water and controlling the flow rate, and raw water from this merging tank? A constant flow rate device that supplies a fixed amount of water, a solid-liquid separation device that separates the raw water from the constant flow rate device into treated water and activated sludge, and a sludge containing activated sludge from solid-liquid separation and storage. An aeration tank, and a sludge supply device that returns the concentrated activated sludge from the sludge aeration tank to the merging tank in the required amount in accordance with the timing of the wastewater flowing into the merging tank 1jjj7. Activated sludge treatment equipment with all the features. (2) The constant flow rate is provided between the oxidation device and the same liquid separation device, and a part of the thickened sludge is transferred from the same liquid separation device or the sludge aeration tank to the aeration tank. Activated sludge treatment apparatus according to claim 1, characterized in that it has a tooth when returned.
JP57187126A 1982-10-25 1982-10-25 Treating apparatus by activated sludge Pending JPS5976595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187126A JPS5976595A (en) 1982-10-25 1982-10-25 Treating apparatus by activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187126A JPS5976595A (en) 1982-10-25 1982-10-25 Treating apparatus by activated sludge

Publications (1)

Publication Number Publication Date
JPS5976595A true JPS5976595A (en) 1984-05-01

Family

ID=16200565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187126A Pending JPS5976595A (en) 1982-10-25 1982-10-25 Treating apparatus by activated sludge

Country Status (1)

Country Link
JP (1) JPS5976595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463198A (en) * 1990-06-28 1992-02-28 Nippon Kentetsu Co Ltd Activated sludge treating equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298354A (en) * 1976-02-13 1977-08-18 Mitsubishi Petrochemical Co Method of treating waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298354A (en) * 1976-02-13 1977-08-18 Mitsubishi Petrochemical Co Method of treating waste water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463198A (en) * 1990-06-28 1992-02-28 Nippon Kentetsu Co Ltd Activated sludge treating equipment

Similar Documents

Publication Publication Date Title
Deleris et al. Minimization of sludge production in biological processes: an alternative solution for the problem of sludge disposal
Vanhooren et al. Development of a simulation protocol for evaluation of respirometry-based control strategies
US20040222150A1 (en) Process for removing phosphorus from wastewater utilizing a triple basin wastewater treatment system
JP6845775B2 (en) Water treatment control device and water treatment system
JP4298405B2 (en) Wastewater treatment method
JP2009131854A (en) Sewage treatment apparatus
van Kempen et al. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality
JP7039201B2 (en) Air volume control device, air volume control method and computer program
US10351457B2 (en) Dual return activated sludge process in a flow-equalized wastewater treatment system
JPS5976595A (en) Treating apparatus by activated sludge
JP2841131B2 (en) Activated sludge treatment method for sewage
Carrio et al. Practical considerations for design of a step-feed biological nutrient removal system
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
JP2018118184A (en) Water treatment control device and water treatment system
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP4478002B2 (en) Sewage treatment method and sewage treatment control device
JP7103598B2 (en) Water treatment control device and water treatment system
EP3527539B1 (en) Wastewater treatment system and process
KR200344882Y1 (en) Advanced treatment system for removing nitrogen and phosphorus
JPS6128397B2 (en)
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
Kayser New German design guideline for single stage activated sludge plants
JP3017077B2 (en) Organic wastewater treatment method and apparatus
JP2022046280A (en) Prediction method and apparatus for water quality of treated water in sewage treatment plant