JPS5976541A - Catalyst for oxidizing propylene - Google Patents

Catalyst for oxidizing propylene

Info

Publication number
JPS5976541A
JPS5976541A JP57184668A JP18466882A JPS5976541A JP S5976541 A JPS5976541 A JP S5976541A JP 57184668 A JP57184668 A JP 57184668A JP 18466882 A JP18466882 A JP 18466882A JP S5976541 A JPS5976541 A JP S5976541A
Authority
JP
Japan
Prior art keywords
catalyst
bismuth
tungsten
molybdenum
incorporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184668A
Other languages
Japanese (ja)
Other versions
JPH0210695B2 (en
Inventor
Takahisa Sato
高久 佐藤
Masahiro Takada
高田 昌博
Rikuo Uejima
植嶋 陸男
Isao Nagai
永井 勲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP57184668A priority Critical patent/JPS5976541A/en
Priority to US06/543,150 priority patent/US4537874A/en
Priority to DE19833338380 priority patent/DE3338380A1/en
Priority to FR8316871A priority patent/FR2534904B1/en
Publication of JPS5976541A publication Critical patent/JPS5976541A/en
Publication of JPH0210695B2 publication Critical patent/JPH0210695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a titled catalyst which can produce acrolein with high selectivity and high yield by incorporating Bi, W, Fe, Mo, Ni, alkali metals, P, Si, O, etc. at specific atomic ratio and incorporating more particularly Bi and W in the stable bonded state. CONSTITUTION:A titled catalyst is expressed by the general formula; BiaWb FecModAeBfCgDhOx (wherein A: Ni and/or Co, B: >=1 kinds among alkali metals, alkaline earth metals and Tl, C: >=1 kinds among P, As and B; D: >=1 kinds among Si, Al and Ti; suffixes a-x denote the atoms of respective elements, and have the values of a =0.1-10.0, b=0.5-10.0 (where a/b: 0.01- 6.0), c=0.1-10.0, e=2.0-20.0, f=0.001-2.0, g=0-4.0, h=0.5-15 when d=12; and x has the value determined by the valency of each element) and is obtd. by incorporating the Bi component in the form of the oxide obtd. by subjecting beforehand the mixture of a bismuth compd. and a tungsten compd. to a calcination treatment at 600-900 deg.C.

Description

【発明の詳細な説明】 本発明は、プロピレンを分子状酸素含有ガスによ、!7
接触気相酸化せしめアクロレインおよびアクリル酸をえ
るだめの触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for converting propylene into a molecular oxygen-containing gas! 7
This invention relates to a catalyst for the catalytic gas phase oxidation of acrolein and acrylic acid.

詳しく述べれば、本発明はプロピレンを分子状酸素含有
ガスたとえば空気を用いて接触気相酸化し、アクロレイ
ンおよびアクリル酸、とくに主としてアクロレインを高
い選択性かつ高い収率でえるための触媒に関するもので
あり、長期かつ安定して工業的に使用しうる触媒を提供
するものである。
Specifically, the present invention relates to a catalyst for catalytic gas phase oxidation of propylene using a molecular oxygen-containing gas, such as air, to obtain acrolein and acrylic acid, particularly acrolein, with high selectivity and high yield. The present invention provides a catalyst that can be used industrially for a long period of time and stably.

プロピレンを接触気相酸化してアクロレインおよびアク
リル酸を製造するための触媒は数多く提案さhている。
Many catalysts have been proposed for the catalytic gas phase oxidation of propylene to produce acrolein and acrylic acid.

その代表例としてモリブデンおよびビスマスを主体とす
る触媒系がある。具体例をあげれば、特公昭36−35
63号公報明細書にはモリブデン酸ビスマスおよびリン
モリブデン酸ビスマスよりなる触〃i^、特公昭39−
3670号公報明細書には、鉄、ビスマス、リンおよび
モリブデンを構成元素とする触媒組成物、米国特許第3
’52299号明細W K i、J、 、ニッケル、コ
バルト、鉄、ビスマス、モリブデンにリン、砒素、ホウ
素、さらにカリウム、ルビジウム、セシウムを構成元素
とする触媒組成物が開示されている如くである。
A typical example is a catalyst system based on molybdenum and bismuth. To give a specific example, the special public interest
The specification of Japanese Patent Publication No. 63 describes the use of catalysts made of bismuth molybdate and bismuth phosphomolybdate.
No. 3,670 discloses a catalyst composition containing iron, bismuth, phosphorus, and molybdenum as constituent elements, US Pat.
'52299 specification W K i, J. discloses a catalyst composition containing nickel, cobalt, iron, bismuth, molybdenum, phosphorus, arsenic, boron, and further potassium, rubidium, and cesium as constituent elements.

また、一方にはタングステンおよびビスマスを主体とす
る触媒系があり、米国特許第3089909号明細書に
はビスマスのタングステン酸塩、特公昭39−1801
7号公報明細書にはビスマス、コバルト、タングステン
系触媒組成分が提案されている。さらには、モリブデン
、ビスマス、タングステンを主体とする触媒系も提案さ
れている。例えば’r!j開昭49−9490号、lI
f開昭49−14393号があり、特公昭47−422
4]号公報明細書にはモリブデン、コバルト、鉄、ビス
マス、タングステン、ケイ素、アルカリ金属を構成元素
とする触媒組成物が提案されている。
On the other hand, there is a catalyst system mainly composed of tungsten and bismuth, and US Pat. No. 3,089,909 describes bismuth tungstate,
Bismuth, cobalt, and tungsten based catalyst compositions are proposed in the specification of Japanese Patent No. 7. Furthermore, catalyst systems based on molybdenum, bismuth, and tungsten have also been proposed. For example, 'r! j Kai No. 49-9490, lI
There is f Kai No. 14393, Showa 49, and Special Publication No. 47-422.
4] proposes a catalyst composition containing molybdenum, cobalt, iron, bismuth, tungsten, silicon, and an alkali metal as constituent elements.

これら公知の提案になる多数の触媒においては初期の提
案のものにはアクロレインおよびアクリル酸の収率の面
で工業的使用において、いまだ不十分なものが多かった
が、近時に至るにしたがい種々の改良が加えられ、工業
的に使用可能の域に達するものも散見されるようになっ
た。
Among the many catalysts proposed in the public domain, many of the early proposals were still insufficient for industrial use in terms of yields of acrolein and acrylic acid, but in recent years, various catalysts have been proposed. Improvements have been made, and some have reached the stage where they can be used industrially.

しかしながら、これらの提案になる触媒は実際E[業師
に使用されているとはいえ、その明#I閂の実施例に記
載されているよう建アクロレインおよびアクリル酸を高
選択率、高収率でえることはできず、はるかに低い水準
の実績を呈しているKすぎないことも事実である。実際
、工業的に使用する場合、当該接触気相酸化反応が非常
に発熱的であるだめに、触媒層の中にホットスポットと
いう局部的異常高温帯が発生して過度の酸化反応が起っ
たり、融媒の充填層高が太きいために融媒層中での圧力
が触媒層の入L1から出raJに向って)贋次変化して
い〈〆ヒめに理想的な反応からかけはなれること等がそ
の原因となっているのであろう。また一方モリブデンを
主体とする多成分系触媒においては、モリブデンが多数
の元素と容易に反応して複雑なモリブデンの錯塩を生じ
るため均質の触媒をえることが困η(表であり、触媒性
能の再現性&で難点があり、かかる触媒組成を工業的な
触媒製造に用いた場合、製造された全ての触媒性能が上
記文献実施例の如き高い水準を示しえないことは十分納
得のいくところである。
However, although these proposed catalysts are actually used in the E. It is also true that only K has been able to achieve a much lower level of performance. In fact, when used industrially, the catalytic gas phase oxidation reaction is extremely exothermic, so hot spots, local abnormally high temperature zones, may occur in the catalyst layer, causing excessive oxidation reactions. , because the height of the packed bed of the melting medium is large, the pressure in the melting medium bed changes from the inlet L1 of the catalyst layer to the outlet raJ), and the reaction is far from ideal. This may be the cause. On the other hand, in multi-component catalysts mainly composed of molybdenum, it is difficult to obtain homogeneous catalysts because molybdenum easily reacts with many elements to form complex molybdenum salts. There are problems with reproducibility and it is quite understandable that when such a catalyst composition is used for industrial catalyst production, the performance of all the produced catalysts cannot show the high level of performance as in the examples in the above literature. .

本発明者等はモリブデン、ビスマスおよびタングステン
を含む触媒系でのかかる工業的使用における欠点を克服
し、なおかつ工業的触媒製造の規模において触媒性能の
再現性にすぐれた調製方法を鋭意研究の結果本発明を完
成するに至った。
As a result of intensive research, the present inventors have developed a preparation method that overcomes the drawbacks of catalyst systems containing molybdenum, bismuth, and tungsten in industrial use, and that also provides excellent reproducibility of catalyst performance on the scale of industrial catalyst production. The invention was completed.

」−なわち、本発明は一般式 %式% 〔ただしBjはビスマス、Wはタングステン、Feは鉄
、MOはモリブデン、0は酸素であり、Afiニッケル
(Nt)および/またはコバルト(CO)を表わし、B
はアルカリ金属、アルカリ土類金属およびタリウムより
なる群から選ばれた少くともlflの元素を表わし、C
はリン(P)、ヒg(As)およびホウ素(B)よりな
る群から選はれた少くとも1種の元素を表わしそしてD
はケイA (Sl ) 、アルミニウム(AI )およ
びチタニウム(Ti )よシなる群から選ばれた少くと
も1種の元素を表わす。また添字a、 b、 c、 d
、 e。
” - That is, the present invention is based on the general formula % [where Bj is bismuth, W is tungsten, Fe is iron, MO is molybdenum, 0 is oxygen, and Afi is nickel (Nt) and/or cobalt (CO). Representation, B
represents at least lfl elements selected from the group consisting of alkali metals, alkaline earth metals and thallium;
represents at least one element selected from the group consisting of phosphorus (P), arsenic (As) and boron (B), and D
represents at least one element selected from the group consisting of silicon A (Sl), aluminum (AI), and titanium (Ti). Also, subscripts a, b, c, d
, e.

f、 g、 hおよびXは各元素の原子比を表わし、d
−=x2としたとき、a −=: o、t 〜−t o
、o、b=0.5〜IO,0(ただしa/bは0.01
−6.0とする)、Q=0.1〜10.0. e=2.
0〜20.0. f=0.001〜2.0、g =、O
〜4.0およびh=0.5〜15の値をとシ、Xは各々
の元素の原子価によって定まる数値をとる。〕 で表わされ、かっB(成分はビスマス化合物とタングス
テン化合物との混合物をあらかじめ600〜900℃の
温度で焼成処理してえられた酸化物の形で導入されてな
ることを特徴とするプロピレン酸化用触媒組成物および
その製法を提供するものである。
f, g, h and X represent the atomic ratio of each element, and d
When -=x2, a -=: o, t ~-t o
, o, b = 0.5 ~ IO, 0 (however, a/b is 0.01
-6.0), Q=0.1 to 10.0. e=2.
0-20.0. f=0.001~2.0, g=,O
-4.0 and h=0.5-15, and X takes a value determined by the valence of each element. ], and the propylene is characterized in that the component is introduced in the form of an oxide obtained by pre-calcining a mixture of a bismuth compound and a tungsten compound at a temperature of 600 to 900°C. The present invention provides an oxidation catalyst composition and a method for producing the same.

本発明の触媒における特徴は、ビスマスがタングステン
ときわめて安定した結合をなし、しかも長期間にわたる
反応においてもその高い触媒性能全維持することである
。このビスマスとタングステンの安定した結合はビスマ
スとタングステンをあらかじめ600〜900℃の高温
で処理して形成されるものである。このビスマスとタン
グステンとからなる化合物についての学術的研究も近年
行なわれるようになり、たとえばジャーナル オプ ギ
ャタリシ、x (Journal of Cataly
sts )第31巻第200〜208頁(1973年)
では種々のビスマス−タングステートの存在を明らかに
している。
A feature of the catalyst of the present invention is that bismuth forms an extremely stable bond with tungsten and maintains its high catalytic performance even during long-term reactions. This stable bond between bismuth and tungsten is formed by previously treating bismuth and tungsten at a high temperature of 600 to 900°C. Academic research on this compound consisting of bismuth and tungsten has also begun to be conducted in recent years, for example, in the Journal of Catalysis,
sts) Vol. 31, pp. 200-208 (1973)
reveals the existence of various bismuth-tung states.

当発明者等の実験でもこれらは4oo℃を越える高温で
プロピレンの酸化に活性がち多ことが認められたが、そ
の活性の水準は工業的使用にあたつ°Cはとても滴足の
いくものではなく、このビスマスクンゲステートをモリ
ブデン、鉄および他の金属元素とさらに複合的に結合せ
しめることにより熱安定性が良好でしかも低温で触媒性
能にすぐれた、空時収率の高い触媒組成物かえられるこ
とが判明しだのである。たしかに特開昭55−4714
4号公報明細書および特開昭49−9490号公報明細
書の一部にビスマスとタングステンの混合物を別に調製
し、これを残りの触媒成分に加えるという提案がすでに
だされているがこの場合は、あらかじめ安定なビスマス
−タングステン化合物が形成されるような条件での焼成
は行なわれていない。
Experiments conducted by the present inventors have also shown that these compounds tend to be highly active in oxidizing propylene at high temperatures exceeding 40°C, but the level of activity at the temperature required for industrial use is very low. By further combining this bismuth gestate with molybdenum, iron, and other metal elements, we can create a catalyst composition with good thermal stability, excellent catalytic performance at low temperatures, and high space-time yield. It has become clear that it is possible. Certainly, Japanese Patent Publication No. 55-4714
4 and JP-A-49-9490 have already proposed that a mixture of bismuth and tungsten be prepared separately and added to the remaining catalyst components. , firing was not performed under conditions that would form a stable bismuth-tungsten compound in advance.

これに対して本発明による触媒はビスマスとタングステ
ンをあらかじめ高温で処理しておシ、これを用いること
に」:り調製法においてきわめて再現性にすぐれた高水
準の触媒かえられ、従来のビスマスとモリブデンの化合
物を主体とする触媒系に比し、工業的調製法として、き
わめて有利であることが判明した。さらに驚くべきこと
に本発明においてビスマスは実質的にタングステンと極
めて強固に結合しており、多成分系触媒とした後もタン
グステンとの結合を解かれたビスマスの化合物、たとえ
ば三酸化ビスマス、ビスマスーモリプデートなどは生成
しないことがX線回折の分析の結果明らかとなったので
ある。すなわち本発明にかかる触媒はビスマスとタング
ステンとが強固な結合を保ちつつ他の触媒構成元素とさ
らに複合的に結合されているものと認められたのである
。そして長期間にわたるプロピレンの酸化に供した後も
その結合状態にほとんど変化のないことが同じくX線回
折分析の結果確認されたのである。しかも本発明によシ
製造された触媒は反応温度を従来のものにくらべ低くす
ることができ、かつアクロレインとアクリル酸の合計収
率を高めることができたのみならず、とくにメチオニン
などの有用な医草品の原料となるアクロレインの選択性
が高い触媒をえることができたのである。
In contrast, the catalyst of the present invention has bismuth and tungsten treated in advance at high temperatures. It has been found that this method is extremely advantageous as an industrial preparation method compared to catalyst systems based mainly on molybdenum compounds. Furthermore, surprisingly, in the present invention, bismuth is substantially strongly bonded to tungsten, and even after the multi-component catalyst is made, bismuth compounds that have been released from the bond with tungsten, such as bismuth trioxide and bismuth As a result of X-ray diffraction analysis, it became clear that no lipdate was produced. That is, it was recognized that in the catalyst of the present invention, bismuth and tungsten maintain a strong bond and are further combined with other catalyst constituent elements in a complex manner. Similarly, X-ray diffraction analysis confirmed that there was almost no change in the bonding state even after propylene was subjected to oxidation over a long period of time. In addition, the catalyst produced according to the present invention not only was able to lower the reaction temperature compared to conventional catalysts and increase the total yield of acrolein and acrylic acid, but also was able to produce useful substances such as methionine. We were able to obtain a catalyst with high selectivity for acrolein, which is a raw material for medical herbal products.

そして本発明者らの知見によればこのアクロレインへの
高選択性を与える触媒としてはさらに触媒の形状を以下
の如く特定したものが推奨されることが明らかとなった
。すなわち、3.0〜10.0ffiの外径で長さが外
径の0.5〜2.0倍の外形を有しかつ内径が外径の0
.1〜0.7倍となるように長さ方向に開孔を有するリ
ング状触媒であシ、触媒組成物が上記一般式中水されか
つ特定されることを特徴とするプロピレン酸化用触媒で
ある。
According to the findings of the present inventors, it has become clear that as a catalyst that provides high selectivity to acrolein, a catalyst whose shape is further specified as follows is recommended. In other words, it has an outer diameter of 3.0 to 10.0 ffi, a length of 0.5 to 2.0 times the outer diameter, and an inner diameter of 0.0 to 10.0 ffi.
.. A catalyst for propylene oxidation, characterized in that it is a ring-shaped catalyst having openings in the length direction such that the number of holes is 1 to 0.7 times, and the catalyst composition is hydrated in the above general formula and specified. .

このように本発明触媒の形状を特定することは、以下の
如き効果を奏するものであることが判明している。
It has been found that specifying the shape of the catalyst of the present invention in this way has the following effects.

(1)触媒の形状を上記特定になるリング状にしたこと
により、触媒の幾何学的表面積が増大し、それにつれて
プロピレンの転化率が増加し、かつ触媒細孔内で生成し
たアクロレインの細孔内拡散が脱離、拡散時の通路の短
縮とあいまって、円柱状のもの建比べてすみゃかになシ
、遂次反応であるアクロレインからアクリル酸、酢酸、
二酸化炭素、−酸化炭素への反応が低下する。
(1) By making the catalyst into the ring shape specified above, the geometric surface area of the catalyst increases, the conversion rate of propylene increases accordingly, and the pores of acrolein generated within the catalyst pores increase. Internal diffusion, combined with desorption and shortening of the path during diffusion, allows for a more rapid reaction than in a cylindrical structure.
The reaction to carbon dioxide, - carbon oxide is reduced.

(11)  リング状触媒にすることで当然予想される
のであるが、触媒層中での圧力損失が減じ、工業生産に
おけるブロワ−の電力費を低減することが可能となる。
(11) As expected, the use of a ring-shaped catalyst reduces pressure loss in the catalyst layer, making it possible to reduce power costs for blowers in industrial production.

(tii)  まだ、本発明の触媒は触媒寿命が伸びる
という利点を有している。すなわち、一般に接触気相酸
化が非常に発熱的であるために起こる局所異常高温帯の
温度を、リング状触媒にすることによる除熱効果の増大
と、先に述べたアクリル酸、酢酸、二酸化炭素、−酸化
炭素への遂次反応による発熱の減少があいまって、ポッ
トスポットの温度が低下し、反応中に触媒成分の一つで
あるモリブデンの飛散が原因で起こる圧力損失の上昇率
が小さくなり触媒の寿命をのばす結果となる。
(tii) Still, the catalyst of the invention has the advantage of increased catalyst life. In other words, the use of a ring-shaped catalyst increases the heat removal effect in the locally abnormally high temperature zone that occurs because catalytic gas phase oxidation is extremely exothermic, and the above-mentioned acrylic acid, acetic acid, and carbon dioxide , - Combined with the reduction in heat generation due to the sequential reaction to carbon oxide, the temperature of the pot spot decreases, and the rate of increase in pressure drop caused by the scattering of molybdenum, one of the catalyst components, during the reaction becomes smaller. This results in extended catalyst life.

本発明の触媒は上記一般式で示される組成範囲よりなる
ものであるが、その調製法は上記した如き特質を具有−
ピしめれば、種々に選ぶことができる。
The catalyst of the present invention has a composition range shown by the above general formula, and its preparation method has the above-mentioned characteristics.
Once you know how, you can choose from a variety of options.

まずビスマスとタングステンの結合体の生成方法につい
て、好ましい調製法の一例、t−以下妬示す。
First, regarding the method for producing a combination of bismuth and tungsten, an example of a preferred preparation method is shown below.

最初にビスマス化合物、たとえば硝酸ビスマス、水酸化
ビスマス、酸化ビスマスとタングステンの化合物たとえ
ばバラタングスデ/酸アンモニウム、酸化タングステン
とを少量の水と共によく混合し乾燥後600〜900℃
、好ましくは700〜850℃の高温で処理を行ない粉
砕する。粉砕は小さくする方が良いが必要以上の細粉化
は無駄であり、100メツシユ以下程度で充分で2ある
。かくしてビスマス−タングステン化合物をえることが
できる。ついで触媒を調製する一具体例を以下に示す。
First, a bismuth compound such as bismuth nitrate, bismuth hydroxide, bismuth oxide and tungsten compound such as baratungsde/ammonium acid, and tungsten oxide is mixed well with a small amount of water and dried at 600 to 900°C.
, preferably at a high temperature of 700 to 850°C. Although it is better to reduce the size of the powder, it is wasteful to reduce the size of the powder more than necessary. In this way, a bismuth-tungsten compound can be obtained. Next, a specific example of preparing a catalyst is shown below.

あらかじめモリブデンの化合物たとえばモリブデン酸ア
ンモニウムの水溶液に鉄の化合物たとえば硝酸鉄の水溶
液を加え、一般式中で示されるAの元素としてコバルト
を用いる場合はたとえば硝酸コバルトの水溶液を、Bと
してアルカリ金属を用いる場合はアルカリ金属源として
アルカリ金屑水酸化物あるいは銅酸塩を、Cとしてリン
を用いる場合はリン酸水溶液を、Dとしてケイ素を用い
る場合はコロイダルシリカ等を用い各水溶液をよく混合
し、えられた泥状物に対し、先の・・粉砕されたビスマ
スタングステンの結合物を添加し、さらによく混合して
濃縮し、えられた粘土状物質を成形後350℃〜650
℃、好ましくは400℃〜600℃の温度で空気流通下
にて條成し完成触媒をえる。
Add an iron compound such as an aqueous solution of iron nitrate to an aqueous solution of a molybdenum compound such as ammonium molybdate in advance, and when using cobalt as the element A shown in the general formula, use an aqueous solution of cobalt nitrate, for example, and use an alkali metal as B. When using an alkali metal source, use an alkali metal scrap hydroxide or cuprate, when using phosphorus as C, use an aqueous phosphoric acid solution, and when using silicon as D, use colloidal silica, etc., and mix each aqueous solution thoroughly. To the resulting slurry, the previously pulverized bismuth tungsten composite was added, mixed well and concentrated, and the resulting clay-like material was molded and heated at 350°C to 650°C.
C., preferably 400.degree. C. to 600.degree. C., under air flow to obtain the finished catalyst.

なお、必要に応じて粉末状の担体物質を前記泥状物中に
添加して使用することもできる。
Note that, if necessary, a powdered carrier material may be added to the slurry.

471体としては、シリカゲル、アルミナ、シリコンカ
ーバイド、ケイ藻土、酸化チタンおよびセライト(商品
名)などから選ばれるがとくにシリカゲル、酸化チタン
、セラ゛イトが適当である。
The 471 body is selected from silica gel, alumina, silicon carbide, diatomaceous earth, titanium oxide, celite (trade name), etc., and silica gel, titanium oxide, and celite are particularly suitable.

本触媒の特徴であるビスマスとタングステンの酸E<含
有化合物はビスマスのタングステンに対する原子比が0
.O1〜6.0、好ましくは0.1〜4.0の範囲に限
定される。すなわち、6.0を越える原子比のビスマス
−タングステン化合物は安定な結合状態をどりえす、触
媒ll製中あるいは触媒の長aJ[用中にビスマスタン
グステンの結合がこわれビスマスが他の成分と再約合し
て、触媒の各成分の結合バランスを崩し、好ましい結果
をもたらさないからである。もちろんこのような原子比
を満足すると同時に高温処理売件も必須の要件である。
The characteristic of this catalyst is that the atomic ratio of bismuth to tungsten is 0.
.. It is limited to a range of O1 to 6.0, preferably 0.1 to 4.0. That is, a bismuth-tungsten compound with an atomic ratio exceeding 6.0 restores a stable bonding state, and during use, the bismuth-tungsten bond is broken and bismuth reconstitutes with other components. This is because, together, the bonding balance of each component of the catalyst is disrupted, resulting in undesirable results. Of course, in addition to satisfying this atomic ratio, high-temperature processing is also an essential requirement.

形成し、しかも本発明の触媒組成物中に組み込まれるこ
とによってその触媒性能をきわめて高水準に引き」−げ
る。600℃にflたない低温部でのビスマスとタング
ステンとの化合物の熱処理は、たとえその原子比が上記
範囲を満足するものであっても触媒組成物中で安定化せ
ず、触媒調製中あるいは触媒の使用中に、触媒組成物に
おける結合バランスが崩れる原因となり好まし7くない
。また900℃を越える高温での処理もビスマスとタン
グステンとの安定な結合体をえにくく、触媒組成物中に
おいて変化しやすいだめ好ましくはない。
By forming the catalyst and incorporating it into the catalyst composition of the present invention, the catalyst performance can be raised to an extremely high level. Heat treatment of a compound of bismuth and tungsten at a low temperature of less than 600°C will not stabilize the compound in the catalyst composition even if the atomic ratio satisfies the above range, and the compound will not be stabilized during catalyst preparation or during catalyst preparation. This is not preferable because it causes the bond balance in the catalyst composition to collapse during use. Further, treatment at a high temperature exceeding 900° C. is also not preferred because it is difficult to obtain a stable combination of bismuth and tungsten and it is likely to change in the catalyst composition.

本発明における触媒原料としては、上記の化合物に限定
するものではなく、ビスマスおよびタングステンに関し
では塩化ビスマスなどのハロゲン化ビスマス、炭酸ビス
マス、重炭酸ビスマス、水酸化ヒスマス、酢酸ビスマス
などの有機酸ビスマス塩やタングステン酸ナトリウムな
どのタングステン酸のアルカリ金属塩、塩化タングステ
ン類などのハロゲン化タングステン類などが適宜使用さ
れるがハロゲン化物−やアルカリ塩を使用した場合はス
ラリーを濾過した後十分な洗滌が必要であることはいう
までもない。
The catalyst raw materials in the present invention are not limited to the above-mentioned compounds, and in the case of bismuth and tungsten, bismuth halides such as bismuth chloride, bismuth salts of organic acids such as bismuth carbonate, bicarbonate, hismuth hydroxide, and bismuth acetate are used. Alkali metal salts of tungstic acid such as sodium tungstate and tungsten halides such as tungsten chloride are used as appropriate, but when halides or alkali salts are used, sufficient washing is required after filtering the slurry. Needless to say, it is.

モリブデン、鉄およびその他の触媒原料についても、硝
酸塩、有機酸塩は勿論のこと触媒調製に1 各々の酸化物を形成しうるものであれ―いかなる化合物
でも使用可能である。もちろん上記触媒を構成する元素
の2種ないし3種を含有する化合物も同様に使用しうる
Regarding molybdenum, iron, and other catalyst raw materials, any compound can be used in the preparation of the catalyst, including nitrates and organic acid salts, as long as they can form their respective oxides. Of course, compounds containing two or three of the elements constituting the above catalyst may also be used.

そして、触先の調製方法としても、上記のはかに触媒組
成物中の各触媒成分が均一に混合されて存在しうる方法
であれば、いかなる方法でも採用することができ、たと
えばビスマスとタングステンの調製された粉末を、粉末
化されたコバルト、鉄、モリブデン、ケイ素およびアル
カリ金属の酸・化物混合物とともに混合し、焼成によっ
て消滅するカルボキシメチルセルロースなどの結合剤を
添加して均一に混線し上記と同様にして所望の触媒組成
物をえることができる。
Any method can be used to prepare the tip, as long as each catalyst component in the above-mentioned catalyst composition can be uniformly mixed, for example, bismuth and tungsten. The prepared powder is mixed with a mixture of powdered cobalt, iron, molybdenum, silicon and alkali metal oxides and oxides, and a binder such as carboxymethyl cellulose which disappears by firing is added to uniformly cross-wire the mixture. A desired catalyst composition can be obtained in the same manner.

このようにして見られた触媒を用いて250〜450℃
の反応温度、常圧〜10気圧の圧力下、1〜12容i1
のプロピレン、5〜18容月係の酸素、0〜60容量係
の水蒸気および20〜50容量係の窒素ガス、炭酸ガス
などの不活性ガスよりなる原料ガスを接触時間1.0〜
10.0秒で反応    ′せしめる。
250-450℃ using the catalyst found in this way.
reaction temperature, under a pressure of normal pressure to 10 atm, 1 to 12 volumes i1
of propylene, 5 to 18 volumes of oxygen, 0 to 60 volumes of water vapor, and 20 to 50 volumes of nitrogen gas, carbon dioxide, and other inert gases for a contact time of 1.0 to
React in 10.0 seconds.

また、本発明による触媒は固定床式反応においても流動
床式反応においても使用できるもので、その選択も、当
業者が適宜性ないうるところである。
Further, the catalyst according to the present invention can be used in both fixed bed reactions and fluidized bed reactions, and the selection thereof is within the discretion of those skilled in the art.

以下、実施例、比較例を示し本発明をさらに詳細に説明
するが、本発明はその主旨に反しないかぎり以下の実施
例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail by showing examples and comparative examples, but the present invention is not limited to the following examples unless it goes against the gist thereof.

なお、本発明における反応率、選択率および単流収率を
以下のよ゛うに定義するものとする。
Incidentally, the reaction rate, selectivity and single flow yield in the present invention shall be defined as follows.

生成したアクロレインまだは 実施例 1 硝酸ビスマス4869を、濃硝酸104 ml!を加え
て酸性とした蒸留水1000 meに溶解した。この水
溶液に、アンモニア水(28%)1100m/を加え白
色沈殿物をえた。これを炉別水洗し、見られた白色ケー
キ状物質tlc、464fの三酸化タングステンを加え
充分混合したのち、230℃で16時間乾燥させ、さら
に空気流通下750℃で2時間熱処理を行なった。えら
れた黄色塊状物を100メツシユ以下に粉砕し黄色粉体
をえた。この粉体をXm回線分析したところ先の文献に
示されているd=2.973.3.20 ?、2.70
6.1.648.1.915にピークのあるB t 2
 (WO4) sとd=3゜632.3.817.3,
739.2.610にピークのあるWO,の混合物であ
り、酸化ビスマスのピークは全く認められないことが分
った。
The produced acrolein was still Example 1 Bismuth nitrate 4869 was mixed with 104 ml of concentrated nitric acid! It was dissolved in 1000 me of distilled water which was made acidic by adding. To this aqueous solution, 1100ml of aqueous ammonia (28%) was added to obtain a white precipitate. This was washed in a separate furnace with water, and the white cake-like material TLC and 464f of tungsten trioxide were added and thoroughly mixed, dried at 230°C for 16 hours, and further heat-treated at 750°C for 2 hours under air circulation. The obtained yellow lumps were ground to less than 100 meshes to obtain yellow powder. When this powder was analyzed by Xm line, d=2.973.3.20? which is shown in the previous literature. , 2.70
B t 2 with a peak at 6.1.648.1.915
(WO4) s and d=3°632.3.817.3,
It was found that it was a mixture of WO, which had a peak at 739.2.610, and no bismuth oxide peak was observed.

別にモリブデン酸アンモニウム766gを蒸留水80(
10m6に溶解した水溶液に、硝酸コノ(ルト1164
9を800−の蒸留水に溶解した水溶液、硝酸第2鉄1
189を400 meの蒸留水に溶解した水溶液、20
重量係のシリカを含むシリカゾル400vおよび硝酸カ
リウム5.11を100m/の蒸留水に溶解した水溶液
をそれぞれ加え、室温下撹拌した。
Separately, add 766 g of ammonium molybdate to 80 g of distilled water (
Add nitric acid chloride 1164 to the aqueous solution dissolved in 10m6
Aqueous solution of 9 dissolved in 800-distilled water, ferric nitrate 1
Aqueous solution of 189 dissolved in 400 me distilled water, 20
400v of silica sol containing silica by weight and an aqueous solution in which 5.11 parts of potassium nitrate were dissolved in 100m/distilled water were added, and the mixture was stirred at room temperature.

えられた懸濁液を加熱濃縮せしめ乾燥したのち粉砕した
。この粉体に先の黄色粉体を加え十分混合したのち蒸留
水を加えてよく混練し、直径5.5籠、長さ7洞のベレ
ット状に成型し乾燥後空気流通下450℃で6時間焼成
して完成触媒とした。
The resulting suspension was concentrated by heating, dried, and then ground. Add the above yellow powder to this powder and mix thoroughly, then add distilled water and knead well. Form into a pellet shape with a diameter of 5.5 and a length of 7 cavities. After drying, heat at 450℃ under air circulation for 6 hours. It was fired to obtain a finished catalyst.

この触媒の酸素をのぞく組成は原子比で旧−1,2WL
4 F’eOJ5 MO12CO4,81(0,06S
Ll、6であった(以下同様姉触媒組成を表現する。)
The composition of this catalyst, excluding oxygen, is old-1,2WL in atomic ratio.
4 F'eOJ5 MO12CO4,81 (0,06S
Ll, 6 (hereinafter, the sister catalyst composition will be expressed in the same way)
.

できあがった触媒をX線回折分析したところ先のビスマ
スクンゲステートのピークはそのまま認められビスマス
が酸素以外の他の元累と結合した、タトエばビスマスモ
リプデートなどに関するピークに全く認められなかった
When the resulting catalyst was subjected to X-ray diffraction analysis, the peak for bismuth gestate was observed as is, and no peaks for bismuth molypdate, in which bismuth is combined with other elements other than oxygen, were observed at all.

かくしてえられた触媒のうち1520rneを内径25
.4+mn−の鋼鉄製反応管に周長3000Wmで充填
し、外部の熱媒(溶融塩)温度を295℃に加熱し、プ
ロピレン7容景係、酸素12.6容量係、水蒸気10.
0容量係、窒素70.4容f憾からなる組成の原料ガス
を導入し接触時間2.0秒(NTP換3’l )で反応
せしめ第1表に示す結果をえた。
Of the thus obtained catalysts, 1,520rne had an inner diameter of 25
.. A 4+mn- steel reaction tube was filled with a circumferential length of 3000Wm, the external heating medium (molten salt) was heated to 295°C, and 7 volumes of propylene, 12.6 volumes of oxygen, and 10% of water vapor were added.
A raw material gas having a composition of 0 volume and 70.4 volumes of nitrogen was introduced, and the reaction was carried out for a contact time of 2.0 seconds (3'l of NTP exchanged), and the results shown in Table 1 were obtained.

なお、分析はガスクロマトグラフィーおよび酸部定法で
行なった。
The analysis was carried out using gas chromatography and a standard acid method.

この触媒で5000時間反応を行なった後、抜き出して
X線分析を行なったところ、使用前の触媒と変化は認め
られなかった。
After reacting with this catalyst for 5,000 hours, it was extracted and subjected to X-ray analysis, and no changes were observed compared to the catalyst before use.

比較例 1 実施例1においてビスマスとタングステンとの高温処理
物を用いないほかは同様にして行い、下記の組成の触媒
を調製した。
Comparative Example 1 A catalyst having the following composition was prepared in the same manner as in Example 1 except that the high-temperature treated product of bismuth and tungsten was not used.

Fe O,35Mo12 (:o4.B k□、06 
S tl、6見られた触媒を実施例1と同じ条件下で反
応し表1に示す結果をえた。
Fe O,35Mo12 (:o4.B k□,06
The catalyst found in S tl, 6 was reacted under the same conditions as in Example 1 and the results shown in Table 1 were obtained.

比較例 2 実施例1において三酸化タングステンを用いないtlか
は同様に行ない下記の組成の触媒を調製した。
Comparative Example 2 A catalyst having the following composition was prepared in the same manner as in Example 1 except that tungsten trioxide was not used.

旧1.2 F’e0,35 MO12Co4゜B l<
0゜06 Si1゜6えられた触媒を実施例1と同じ条
件で反応し表1に示す結果をえた。
Old 1.2 F'e0,35 MO12Co4゜B l<
0°06 Si1°6 The obtained catalyst was reacted under the same conditions as in Example 1, and the results shown in Table 1 were obtained.

比較例 3 実施例1においてビスマスとタングステンを500℃で
2時間熱処理して行なった以外は同様に行ない、実施例
1における触媒と同じ組成の触媒をえた。えられた触媒
を実施例1と同じ条件下で反応し表1に示す結果をえた
Comparative Example 3 A catalyst having the same composition as the catalyst in Example 1 was obtained by carrying out the same procedure as in Example 1 except that bismuth and tungsten were heat-treated at 500° C. for 2 hours. The obtained catalyst was reacted under the same conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例 2 硝酸ビスマス4051を、濃硝酸80 tnl!を加え
て酸性とした蒸留水920−に溶解し80℃に加熱した
。タングステン酸ナトリウム138fを1700−の水
に溶解し、硝酸でp Hを2.2に調整したのち80℃
に加熱し、上記硝酸ビスマス溶液に()押下に添加した
。見られた白色沈殿物を炉別し、ナトリウムイオンが検
出されなくなるまで水洗した。見られた白色ケーキを実
施例1におけると同様に処理し黄色粉体をえた。
Example 2 Bismuth nitrate 4051 was added to 80 tnl of concentrated nitric acid! It was dissolved in distilled water 920°C which had been made acidic by adding and heated to 80°C. Dissolve sodium tungstate 138f in 1700-degree water, adjust the pH to 2.2 with nitric acid, and then heat at 80℃.
and added to the above bismuth nitrate solution under pressure (). The observed white precipitate was separated by furnace and washed with water until sodium ions were no longer detected. The resulting white cake was treated in the same manner as in Example 1 to obtain a yellow powder.

別にモリブデン酸アンモニウム1766fを8000−
の蒸留水に溶解した水溶液に、硝酸コバルl−970f
を800ゴの蒸留水に溶解した水溶液、硝酸第2鉄33
62を1000 m/!の蒸留水に溶解した水溶液、2
0重量係のシリカを含むシリカゾル4007および硝酸
カリウム5.12を100rneの蒸留水に溶解した水
溶液をそれぞれ加え室漏下攪拌した。
Separately, ammonium molybdate 1766f was added to 8000-
Cobalt nitrate l-970f was dissolved in distilled water.
Aqueous solution of 800 grams of distilled water, ferric nitrate 33
62 to 1000 m/! an aqueous solution dissolved in distilled water, 2
Silica sol 4007 containing 0 weight percent silica and an aqueous solution of potassium nitrate 5.12 dissolved in 100 rne of distilled water were respectively added and stirred in a room.

えられた懸濁液に濃硝酸90meおよび硝酸アンモニウ
ム6002を加えた後、上記黄色粉体を加え、加熱攪拌
下に濃縮せしめ、実施例1におけると同様に成型乾燥後
空気流通下450℃で6時間焼成し下記組成の触媒をえ
た。
After adding concentrated nitric acid 90me and ammonium nitrate 6002 to the obtained suspension, the above yellow powder was added, concentrated under heating and stirring, molded and dried in the same manner as in Example 1, and then heated at 450°C under air circulation for 6 hours. A catalyst having the following composition was obtained by firing.

Btu WO65Fed Mo12 Co4 K□、0
6 Sil、aえられた触媒を実施例1と同じ条件下で
反応し、表1に示す結果をえた。
Btu WO65Fed Mo12 Co4 K□, 0
6Sil,a The obtained catalyst was reacted under the same conditions as in Example 1, and the results shown in Table 1 were obtained.

実施例 3 実施例1の触媒を用い高濃度のプロピレンと空気、水蒸
気を用いて反応を行なって表1に示す結果をえた。
Example 3 Using the catalyst of Example 1, a reaction was carried out using high concentration propylene, air, and water vapor, and the results shown in Table 1 were obtained.

実施例 4〜9 実施例1におけると同様の方法で表1中に示す組成の触
媒を調製した。プロピレンの酸化反応条件および結果は
表1の通りである。
Examples 4 to 9 Catalysts having the compositions shown in Table 1 were prepared in the same manner as in Example 1. The propylene oxidation reaction conditions and results are shown in Table 1.

用いた原料はニッケル、タリウム、バリウム、ストロン
チウム、カルシウム、アルミニウム源トしてはそれぞれ
の硝酸塩をルビジウム源としては水酸化ルビジウムを、
チタニウム源としては二酸化チタニウムを、リン源とし
てはリン酸を、ホウ素源としてはホウ酸をそれぞれ用い
た。
The raw materials used were nitrates of each of the nickel, thallium, barium, strontium, calcium, and aluminum sources, and rubidium hydroxide as the rubidium source.
Titanium dioxide was used as a titanium source, phosphoric acid was used as a phosphorus source, and boric acid was used as a boron source.

実施例 10 実施例1と同じ組成及び調製法による触媒を外径6.0
mm1長さ6.6ガ、穴径1.0調のリング状に成型し
実施例1と同様の反応を行ない表1に示す結果をえた。
Example 10 A catalyst with the same composition and preparation method as Example 1 was used with an outer diameter of 6.0
It was molded into a ring shape with a length of 6.6 mm and a hole diameter of 1.0 mm, and the same reaction as in Example 1 was conducted to obtain the results shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] (1)  一般式が Bi aWbFecMo(I A6 BfCgDhOz
〔ただしBiはビスマス、Wはタングステン、Feは鉄
、Moはモリブデン、0は酸素であり、Aはニッケル(
Nt)および/またはコバル) (Co)を表わし、1
3はアルカリ金属、アルカリ土類金属およびタリウムよ
υなる群から選ばれた少くとも1種の元素を 3゜表わ
し、Cはリン(P)、ヒ素(A s )およびポウ素(
n)よりなる群から選ばれた少くとも1種の元素を表わ
しそしてDはケイ素(Si) 、アルミニウム(AI 
)およびチタニウJ、(’rt)よりなる群から選ばれ
た少くとも1種の元素を表わす。また添字a、 b、 
cld、 e、 f、 g、 hおよびXは各元素の原
子比を表わし、d=12と1〜だとき、a = (1,
1〜10.0、b=0.5〜I O,0(ただしa/b
は0.O1〜6.0とする)、c=0.1〜1O10、
e = 2.0〜20.0、f=0.o O1〜2.0
. g=0〜4.0および)1=Q、5〜15の値をと
り、Xは各々の元素の原子価によって定まる数値をとる
。〕 で表わされ、かつBt酸成分ビスマス化合物とタングス
テン化合物との混合物をあらかじめ600〜900℃の
温度で焼成処理してえられた酸化物の形で導入されてな
ることを特徴とするプロピレン酸化用触媒組成物。
(1) The general formula is Bi aWbFecMo(I A6 BfCgDhOz
[However, Bi is bismuth, W is tungsten, Fe is iron, Mo is molybdenum, 0 is oxygen, and A is nickel (
Nt) and/or Cobal) (Co), 1
3 represents at least one element selected from the group υ such as alkali metals, alkaline earth metals, and thallium, and C represents phosphorus (P), arsenic (A s ), and porium (
n) represents at least one element selected from the group consisting of silicon (Si), aluminum (AI);
) and titanium J, ('rt) represents at least one element selected from the group consisting of. Also, subscripts a, b,
cld, e, f, g, h and X represent the atomic ratio of each element, and when d = 12 and 1~, a = (1,
1 to 10.0, b=0.5 to I O,0 (however, a/b
is 0. O1 to 6.0), c=0.1 to 1O10,
e = 2.0-20.0, f = 0. o O1~2.0
.. g = 0 to 4.0 and ) 1 = Q, taking a value of 5 to 15, and X taking a value determined by the valence of each element. ], and is characterized in that it is introduced in the form of an oxide obtained by pre-calcining a mixture of a Bt acid component bismuth compound and a tungsten compound at a temperature of 600 to 900°C. Catalyst composition for use.
JP57184668A 1982-10-22 1982-10-22 Catalyst for oxidizing propylene Granted JPS5976541A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57184668A JPS5976541A (en) 1982-10-22 1982-10-22 Catalyst for oxidizing propylene
US06/543,150 US4537874A (en) 1982-10-22 1983-10-18 Catalyst for production of unsaturated aldehydes
DE19833338380 DE3338380A1 (en) 1982-10-22 1983-10-21 CATALYST FOR THE PRODUCTION OF UNSATURATED ALDEHYDES
FR8316871A FR2534904B1 (en) 1982-10-22 1983-10-24 CATALYST FOR THE MANUFACTURE OF UNSATURATED ALDEHYDES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184668A JPS5976541A (en) 1982-10-22 1982-10-22 Catalyst for oxidizing propylene

Publications (2)

Publication Number Publication Date
JPS5976541A true JPS5976541A (en) 1984-05-01
JPH0210695B2 JPH0210695B2 (en) 1990-03-09

Family

ID=16157264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184668A Granted JPS5976541A (en) 1982-10-22 1982-10-22 Catalyst for oxidizing propylene

Country Status (1)

Country Link
JP (1) JPS5976541A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200839A (en) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd Propylene oxidizing catalyst and its production with excellent reproducibility
US4812522A (en) * 1987-12-04 1989-03-14 Shell Oil Company Molecularly miscible blends of polyketone with polyvinyl phenol
JPH04337169A (en) * 1991-05-10 1992-11-25 Ckd Corp Spool type switching valve and manufacture of internal pipe used for spool type switching valve
JP2002539101A (en) * 1999-03-10 2002-11-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for catalytic gas phase oxidation of propene to acrylic acid
JP2004298873A (en) * 2003-03-31 2004-10-28 Wugeng Liang Mixed metal oxide catalyst for producing unsaturated aldehyde from olefin
JP2004351295A (en) * 2003-05-28 2004-12-16 Nippon Shokubai Co Ltd Catalyst for manufacture of unsaturated aldehyde and unsaturated carboxylic acid, preparation method therefor, and method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
US7429678B2 (en) 2003-02-27 2008-09-30 Nippon Shokubai Co., Ltd. Composite-oxide catalyst and process for production of acrylic acid using said catalyst
US7579501B2 (en) 2001-11-08 2009-08-25 Mitsubishi Chemical Corporation Composite oxide catalyst and method of producing the same
WO2010001732A1 (en) 2008-06-30 2010-01-07 株式会社日本触媒 Method of packing solid particulate substance into fixed-bed multitubular reactor
US7850928B2 (en) 2001-01-25 2010-12-14 Nippon Shokubai Co., Ltd. Fixed-bed shell-and-tube reactor and its usage
EP2332641A1 (en) 2009-12-09 2011-06-15 Rohm and Haas Company Method for blending and loading solid catalyst material into tubular structures

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200839A (en) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd Propylene oxidizing catalyst and its production with excellent reproducibility
US4812522A (en) * 1987-12-04 1989-03-14 Shell Oil Company Molecularly miscible blends of polyketone with polyvinyl phenol
JPH04337169A (en) * 1991-05-10 1992-11-25 Ckd Corp Spool type switching valve and manufacture of internal pipe used for spool type switching valve
JP2002539101A (en) * 1999-03-10 2002-11-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for catalytic gas phase oxidation of propene to acrylic acid
US7850928B2 (en) 2001-01-25 2010-12-14 Nippon Shokubai Co., Ltd. Fixed-bed shell-and-tube reactor and its usage
EP2343124A2 (en) 2001-11-08 2011-07-13 Mitsubishi Chemical Corporation Method for preparation of a composite oxide catalyst
EP2343123A2 (en) 2001-11-08 2011-07-13 Mitsubishi Chemical Corporation Method for preparation of a composite oxide catalyst
US7579501B2 (en) 2001-11-08 2009-08-25 Mitsubishi Chemical Corporation Composite oxide catalyst and method of producing the same
US7632777B2 (en) 2001-11-08 2009-12-15 Mitsubishi Chemical Corporation Composite oxide catalyst and method for preparation thereof
US7429678B2 (en) 2003-02-27 2008-09-30 Nippon Shokubai Co., Ltd. Composite-oxide catalyst and process for production of acrylic acid using said catalyst
JP2004298873A (en) * 2003-03-31 2004-10-28 Wugeng Liang Mixed metal oxide catalyst for producing unsaturated aldehyde from olefin
JP2004351295A (en) * 2003-05-28 2004-12-16 Nippon Shokubai Co Ltd Catalyst for manufacture of unsaturated aldehyde and unsaturated carboxylic acid, preparation method therefor, and method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
WO2010001732A1 (en) 2008-06-30 2010-01-07 株式会社日本触媒 Method of packing solid particulate substance into fixed-bed multitubular reactor
EP2332641A1 (en) 2009-12-09 2011-06-15 Rohm and Haas Company Method for blending and loading solid catalyst material into tubular structures

Also Published As

Publication number Publication date
JPH0210695B2 (en) 1990-03-09

Similar Documents

Publication Publication Date Title
US4537874A (en) Catalyst for production of unsaturated aldehydes
JP3786297B2 (en) Catalyst production method
JP3896194B2 (en) Catalyst for the ammoxidation of propylene to acrylonitrile.
KR100191368B1 (en) Iron-antimony-molybdenum containing oxide catalyst composition and process for preparing the same
JP4280797B2 (en) Method for producing composite oxide catalyst
JP3584940B2 (en) Ammoxidation catalyst composition
JPH01168344A (en) Production of catalytically active substance for converting propylene to acrolein and acrylic acid by gaseous phase oxidation
JPS6126419B2 (en)
JPS5976541A (en) Catalyst for oxidizing propylene
KR101122346B1 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JPH07328441A (en) Catalyst composition used for ammoxidation and production of acrylonitrile or methacrylonitrile using same
JPS6028824A (en) Catalyst for manufacturing methacrolein
KR19990021570A (en) Preparation of Acrolein and Methacrolein Production Catalyst
JPH0547265B2 (en)
JP4157362B2 (en) Composite oxide catalyst and method for producing the same
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JPH0212619B2 (en)
JP4060578B2 (en) Method for producing composite oxide catalyst
JP2903317B2 (en) Preparation of molybdenum-containing ammoxidation catalyst
JP2520279B2 (en) Method for producing acrylonitrile
JPH0763625B2 (en) Method for producing iron molybdate catalyst for oxidation
JP4385587B2 (en) Method for producing composite oxide catalyst
JP2004141823A (en) Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
JPS6322536A (en) Production of formaldehyde