JPS597520B2 - Continuous freezing treatment equipment for sludge liquid - Google Patents

Continuous freezing treatment equipment for sludge liquid

Info

Publication number
JPS597520B2
JPS597520B2 JP1540077A JP1540077A JPS597520B2 JP S597520 B2 JPS597520 B2 JP S597520B2 JP 1540077 A JP1540077 A JP 1540077A JP 1540077 A JP1540077 A JP 1540077A JP S597520 B2 JPS597520 B2 JP S597520B2
Authority
JP
Japan
Prior art keywords
sludge
cooling cylinder
frozen
sludge liquid
solid wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1540077A
Other languages
Japanese (ja)
Other versions
JPS53100658A (en
Inventor
功 野村
清 山川
定二郎 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP1540077A priority Critical patent/JPS597520B2/en
Publication of JPS53100658A publication Critical patent/JPS53100658A/en
Publication of JPS597520B2 publication Critical patent/JPS597520B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、スラツジ液の連続凍結処理装置、詳しくは
円筒状冷却筒をスラツジ液槽にその1部が浸漬するごと
くして回転自由に支持し、スラツジ液面下の冷却筒表面
でスラツジ液を凍結付着させ、スラツジ液面上で凍結付
着したスラツジを剥取るごと《した処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a continuous freezing treatment apparatus for sludge liquid, in particular, a cylindrical cooling cylinder is partially immersed in a sludge liquid tank so that it can be freely rotated, and This invention relates to a treatment device that freezes and adheres sludge liquid on the surface of a cooling cylinder and peels off the sludge that has frozen and adhered to the surface of the sludge liquid.

スラツジ液を凍結、融解して脱水すれば、その脱水性が
著し《向上することが知られており、またその効果を充
分に発揮させるにはスラツジ液を完全に凍結させる必要
があることも知られている。
It is known that if sludge liquid is dehydrated by freezing and thawing, its dehydration properties will be significantly improved, and it is also necessary to completely freeze the sludge liquid in order to fully demonstrate its effect. Are known.

この種スラツジ液の凍結処理装置として、従来では第1
図に示す如くスラツジ液槽a内に円筒状冷却筒bをその
略半分を槽a内のスラツジ液面下に浸漬させて回転自由
に支持し、この冷却筒bを所定の低温に保持して回転さ
せることにより、スラツジ液槽a内のスラツジ液Cを冷
却筒bの液面下周面において凍結付着させ、冷却筒bの
回転中に凍結スラツジdの厚みを遂次生長させ、かつス
ラツジ液面を出てからは前記スラツジdの凍結率を高め
、この後冷却筒b上の凍結スラツジdを掻取刃eにより
掻取って、スラツジ液槽aの側方に設ける融解槽に送り
、ここで前記凍結スランジdを融解して脱水槽へと送る
べくされている。
Conventionally, this type of sludge liquid freezing treatment equipment was
As shown in the figure, a cylindrical cooling cylinder b is supported in a sludge liquid tank a with approximately half of it immersed below the sludge liquid surface in the tank a, and is freely rotatable, and this cooling cylinder b is maintained at a predetermined low temperature. By rotating, the sludge liquid C in the sludge liquid tank a is frozen and adhered to the circumferential surface below the liquid level of the cooling cylinder b, and the thickness of the frozen sludge d is gradually increased during the rotation of the cooling cylinder b, and the sludge liquid After leaving the surface, the freezing rate of the sludge d is increased, and then the frozen sludge d on the cooling tube b is scraped off with a scraping blade e and sent to a thawing tank provided on the side of the sludge liquid tank a. The frozen slang d is then thawed and sent to a dehydration tank.

ところでこのような凍結処理装置において、冷却筒b上
に生成される凍結スラツジdの凍結パターンは、冷却筒
bの凍結面近《でスラツジ固形物を余り含まない比較的
きれいな氷が生成され、この凍結面の外周にスラツジ固
形物が濃縮された濃縮層fが生成されるのであるが、こ
の濃縮層fは液槽a内のスラツジ液Cと接触されている
ので、層内水分は半凍結或は未凍結状態にあって、濃縮
層fはドロドロしたペースト状態となっており、従って
冷却筒bの回転時に前記濃縮層fの一部が氷層から剥離
し、スラツジ液C中に落下して再分散し、スラツジ液面
から出た凍結スラツジはスラツジ液の固形物濃度より低
くなり、つまり液槽内で濃縮スラツジが生成される不都
合を生じる。
By the way, in such a freezing processing apparatus, the freezing pattern of the frozen sludge d generated on the cooling cylinder b is that relatively clean ice that does not contain much sludge solids is generated near the freezing surface of the cooling cylinder b, and this A concentrated layer f in which sludge solids are concentrated is generated on the outer periphery of the frozen surface, but since this concentrated layer f is in contact with the sludge liquid C in the liquid tank a, the moisture in the layer is semi-frozen or frozen. is in an unfrozen state, and the concentrated layer f is in a mushy paste state. Therefore, when the cooling cylinder b is rotated, a part of the concentrated layer f peels off from the ice layer and falls into the sludge liquid C. The frozen sludge that is redispersed and comes out from the sludge liquid surface has a solid concentration lower than that of the sludge liquid, which causes the disadvantage that concentrated sludge is produced in the liquid tank.

しかもこのような半凍結或は未凍結状態にある凍結スラ
ツジを融解、脱水しても、その脱水性を向上させること
はできなかったのである。
Furthermore, even if such semi-frozen or unfrozen frozen sludge is thawed and dehydrated, its dehydration properties cannot be improved.

本発明は以上の点に鑑みて発明したもので、冷却筒の外
周囲に該簡に沿う固体壁を設けて、該壁により冷却筒の
周面に生成される凍結スラツジの固形物濃縮層がスラツ
ジ液中に再分散するのを防止し、且つまた固体壁の存在
により冷却筒の冷却作用が及ぼされる範囲を冷却筒と固
体壁間の狭い範囲に限定して、それだけ冷却筒のスラン
ジ液に対する冷却作用を強力に行ない、これによって凍
結スラツジの濃縮層の凍結率を高めて、該濃縮層が冷却
筒の回転時に剥離したりするのを防止すると同時に、融
解、脱水時における脱水性を著しく向上させるべくなし
たものである。
The present invention was invented in view of the above points, and includes a solid wall along the outer periphery of the cooling cylinder, and the solid matter concentration layer of frozen sludge generated on the circumferential surface of the cooling cylinder is prevented by the wall. This prevents redispersion into the sludge liquid, and also limits the cooling effect of the cooling cylinder to a narrow area between the cooling cylinder and the solid wall due to the presence of the solid wall. Powerful cooling effect increases the freezing rate of the concentrated layer of frozen sludge, prevents the concentrated layer from peeling off when the cooling cylinder rotates, and at the same time significantly improves dewatering performance during thawing and dewatering. This is what I did to make this happen.

以下本発明を図の実施例に基いて説明する。The present invention will be explained below based on the embodiments shown in the drawings.

先ず第2,3図において1はスラツジ液2を貯溜するス
ラツジ液槽であって、該液槽1内に所定の低温に保持す
べ《した円筒状の冷却筒3を、その略半分がスラツジ液
面の下方に浸漬すべ《して回転自由に支持すると共に、
前記スラツジ液槽1の側方上部で冷却筒3の回転後方側
には冷却筒3上に凍結付着された凍結スラツジ4を掻取
る掻取刃5を設げている。
First, in Figures 2 and 3, reference numeral 1 denotes a sludge liquid tank for storing sludge liquid 2. Inside the liquid tank 1, there is a cylindrical cooling cylinder 3 which is to be maintained at a predetermined low temperature, and about half of it is filled with sludge liquid. It is immersed below the surface to support rotation freely, and
A scraping blade 5 for scraping off the frozen sludge 4 frozen and adhered to the cooling cylinder 3 is provided at the upper side of the sludge liquid tank 1 and at the rear side of the rotation of the cooling cylinder 3.

6は前記スラツジ液槽1の側部で掻取刃5の下方に形成
した融解槽で、該槽6の外周囲には加熱管7を巻回装備
し、前記掻取刃5から供給される凍結スラテ,ジ4を融
解すべくなすと共に、融解槽6の底部にはバルブ8を設
けて、該槽6内で融解したスラツジを下方に別途設置す
る脱水機(図示なし)に供給するようにしている。
6 is a melting tank formed below the scraping blade 5 on the side of the sludge liquid tank 1; a heating tube 7 is wound around the outer circumference of the tank 6, and the melting tank 6 is supplied from the scraping blade 5; In addition to melting the frozen sludge 4, a valve 8 is provided at the bottom of the melting tank 6 to supply the sludge melted in the tank 6 to a dehydrator (not shown) separately installed below. ing.

しかして前記スラツジ液槽1内において、そのスラツジ
液面下で前記冷却筒3に沿う外周面には、本発明の特徴
をなす断面ほぼ半円形状をなす下記熱絶縁性の固体壁9
を設けて、該固体壁9の内周面と前記冷却筒3の外周面
との間隔を冷却筒3表面に凍結付着する凍結ヌラツジ4
の生長厚さと略同寸法の2〜6mmに調整するのである
In the sludge liquid tank 1, below the sludge liquid level, on the outer circumferential surface along the cooling cylinder 3, there is a thermally insulating solid wall 9 having a substantially semicircular cross section, which is a feature of the present invention.
The distance between the inner circumferential surface of the solid wall 9 and the outer circumferential surface of the cooling tube 3 is determined by a freezing nurutsu 4 that freezes and adheres to the surface of the cooling tube 3.
The thickness is adjusted to 2 to 6 mm, which is approximately the same as the growth thickness.

このとき高さ方向の取付スペースに余裕がある場合は、
前述の如き構成とするのであるが、高さ方向に余裕がな
い場合には下記のとと《構成するものとする。
At this time, if there is sufficient installation space in the height direction,
The above-mentioned configuration is adopted, but if there is no room in the height direction, the following configuration will be adopted.

即ち第4,5図に示すようにスラツジ槽1を浅くかつ横
方向に長く形成すると共に、その液槽1の底壁1aを半
円形状となして、該底壁1aを前記固体壁9に代用させ
るようにしてもよい。
That is, as shown in FIGS. 4 and 5, the sludge tank 1 is formed to be shallow and long in the horizontal direction, and the bottom wall 1a of the liquid tank 1 is formed into a semicircular shape, and the bottom wall 1a is attached to the solid wall 9. It may be substituted.

尚前記固体壁9及びこれを代用する液槽底壁1aは、凍
結スラツジ4との離脱性を良くするため、合成樹脂又は
合成樹脂例えばフッ素樹脂をコーティング処理した金属
材料を用いるとよい。
For the solid wall 9 and the liquid tank bottom wall 1a which is substituted for the solid wall 9, it is preferable to use a synthetic resin or a metal material coated with a synthetic resin, such as a fluororesin, in order to improve the detachability from the frozen sludge 4.

更に前記固体壁9及び液槽底壁1aはコーテイング処理
を厚《するなどして熱絶縁性を高めることが望ましく、
これにより冷却筒3による冷熱量のロスが少な《でき、
特に固体壁9を用いる第2図実施例の場合はその外面側
にスラツジが凍結付着するのが防止できるのである。
Furthermore, it is desirable that the solid wall 9 and the liquid tank bottom wall 1a be coated with a thicker coating to improve thermal insulation.
As a result, the loss of cooling energy due to the cooling cylinder 3 can be reduced.
Particularly in the case of the embodiment shown in FIG. 2 which uses the solid wall 9, it is possible to prevent sludge from freezing and adhering to the outer surface thereof.

又第2,3図において10は、前記スラツジ液槽1の内
側に、外部浸入熱を防止するために貼付した防熱材であ
り、11は、冷却筒3に氷が生成されて固体壁9からの
反力が冷却筒3に作用し、該冷却筒3の軸受けや軸の破
損をなくするために前記固体壁9を弾性的に支持するば
ねである。
Further, in FIGS. 2 and 3, 10 is a heat insulating material attached to the inside of the sludge liquid tank 1 to prevent heat from penetrating from the outside, and 11 is a heat insulating material attached to the inside of the sludge tank 1 to prevent heat from penetrating from the outside. The reaction force acts on the cooling cylinder 3, and the spring elastically supports the solid wall 9 to prevent damage to the bearing or shaft of the cooling cylinder 3.

又第4図に示した構成においては、前記実施例と相違し
、前記スラツジ液槽1の底壁1aを間隙を介して前記冷
却筒3の外周面に沿わせる如《形成し、この底壁1a内
面に弾力性のある防熱材から成る固体壁9を形成してい
る。
In addition, in the configuration shown in FIG. 4, unlike the embodiment described above, the bottom wall 1a of the sludge liquid tank 1 is formed so as to run along the outer circumferential surface of the cooling cylinder 3 through a gap, and this bottom wall A solid wall 9 made of an elastic heat insulating material is formed on the inner surface of 1a.

尚、この固体壁9に弾力性をもたせた理由は、前記スラ
ツジの凍結による膨張を固体壁9に吸収させるためであ
る。
The reason why the solid wall 9 is made to have elasticity is to allow the solid wall 9 to absorb the expansion caused by freezing of the sludge.

ところで前記の如き凍結処理装置において、凍結処理能
力及び凍結スラツジ厚みの関係は近似的に次式で表わさ
れる。
By the way, in the freezing processing apparatus as described above, the relationship between the freezing processing capacity and the frozen sludge thickness is approximately expressed by the following equation.

G−60×πθNxlxa×γ ・・・・・・(
1)ここに G:処理能力(kg/h)λ:氷熱伝導率(kcaJ/
mI{’C )θ:冷却筒径(m) α:冷媒熱伝導
率転漏h′C:l=冷却筒幅(m) L:凝固熱(
一1Φ)N:冷却筒回転数(rpり γ:比重量(ky
/m’)a:最終氷厚(m) tr:冷却面表面温
度(℃ψ:冷却筒浸漬角(ラジアン) 上記(2)式において、Nが大きくなるとJ一内は小さ
くなり、従って最終氷厚aは小さ《なる。
G-60×πθNxlxa×γ ・・・・・・(
1) Here, G: Processing capacity (kg/h) λ: Ice thermal conductivity (kcaJ/
mI{'C ) θ: Cooling cylinder diameter (m) α: Refrigerant thermal conductivity leakage h'C: l = Cooling cylinder width (m) L: Solidification heat (
-1Φ) N: Cooling cylinder rotation speed (rp) γ: Specific weight (ky
/m')a: Final ice thickness (m) tr: Cooling surface surface temperature (℃ψ: Cooling tube immersion angle (radian)) In the above equation (2), as N increases, J becomes smaller, so the final ice thickness Thickness a becomes small.

しかし(2)式を(1)式に代入すれば、処理能力Gは
GαJK ・・・・・・・(3)の
関係となり、Nを大きくすることGの増加に結びつ《。
However, if equation (2) is substituted into equation (1), the processing capacity G becomes the relationship GαJK (3), and increasing N leads to an increase in G《.

しかしながらNを大きくすれば、(2式の関係によりa
は小さくなる。
However, if N is increased, (a
becomes smaller.

ところが現実には凍結スラツジの掻取機構の問題と、凍
結速度と脱水性の関係によりa=2〜6mm程度にする
ことが望ましい。
However, in reality, it is desirable to set a to approximately 2 to 6 mm due to problems with the mechanism for scraping frozen sludge and the relationship between freezing speed and dewatering performance.

従って前記固体壁9と冷却筒3との間隔も2〜6朋程度
にするのが良い。
Therefore, it is preferable that the distance between the solid wall 9 and the cooling tube 3 is about 2 to 6 mm.

以上の如き凍結処理装置において、先ずスラツジ液槽1
内に貯溜されたスラツジ液2は、冷却筒3の回転に伴な
いその周面に凍結付着され、回転中にその凍結スラツジ
4の厚みが遂次生長し、スラツジ液2を出てからは前記
スラツジ4の凍結率が高められ、冷却筒3の回転後方側
に至ったときに5により掻取られるのである。
In the freezing treatment apparatus as described above, first, the sludge liquid tank 1
The sludge liquid 2 stored in the cooling cylinder 3 is frozen and adhered to the circumferential surface of the cooling cylinder 3 as it rotates, and the thickness of the frozen sludge 4 gradually increases during rotation, and after leaving the sludge liquid 2, the thickness of the frozen sludge 4 increases. The freezing rate of the sludge 4 is increased, and when it reaches the rotational rear side of the cooling cylinder 3, it is scraped off by the sludge 5.

以後凍結スラツジ4は融解槽6内に落下供給されて、こ
こで融解さされることとなり、この融解スラツジは下方
の脱水機に送られて脱水処理されるのである。
Thereafter, the frozen sludge 4 is dropped into the melting tank 6 and is thawed there, and this molten sludge is sent to a dehydrator below to be dehydrated.

ところで前記の凍結処理作業中において、冷却筒3の外
周囲には熱絶縁性の固体壁9が設けられているので、冷
却筒3の冷却作用を及ぼす範囲が冷却筒3と固体壁9間
の狭い範囲に限定され、それだけ冷却筒3の冷却作用が
前記範囲内のスラッジ液2に対して強力に及ぼされ、換
言すれば冷却筒3の凍結面がより低温に冷却保持される
こととなり、従って冷却筒3上に凍結付着される凍結ス
ラツジ4の外層部における固形物濃縮層は、その凍結率
が高められてほぼ完全に凍結面側の氷層と一体状に凍結
されるのである。
By the way, during the above-mentioned freezing treatment work, since the thermally insulating solid wall 9 is provided around the outer circumference of the cooling cylinder 3, the area where the cooling cylinder 3 exerts its cooling effect is the area between the cooling cylinder 3 and the solid wall 9. It is limited to a narrow range, and the cooling action of the cooling cylinder 3 is more strongly exerted on the sludge liquid 2 within the range, in other words, the frozen surface of the cooling cylinder 3 is kept cooled at a lower temperature, and therefore The solid matter concentration layer in the outer layer of the frozen sludge 4 that is frozen and adhered onto the cooling cylinder 3 has a high freezing rate and is almost completely frozen integrally with the ice layer on the frozen surface side.

然して冷却筒3の回転時に前記濃縮層が剥離したりする
ことがなく、例え一部が剥離しても固体壁9によりスラ
ツジ槽1内に再拡散することが阻止されるのである。
As a result, the concentrated layer does not peel off when the cooling cylinder 3 rotates, and even if a portion of the concentrated layer peels off, the solid wall 9 prevents it from re-diffusion into the sludge tank 1.

また前記のごとく凍結スラツジ4をほぼ完全に凍結する
ことにより、融解後脱水処理時にその脱水性が著し《向
上されるのである。
Further, by freezing the frozen sludge 4 almost completely as described above, its dehydration properties are significantly improved during dehydration treatment after thawing.

原液含水率96.7%の工業用水浄水場スラッジ液を用
いて、2.5、4.5及び6.0朋厚さの凍結スラツジ
を生成し、融解後真空脱水を行なったところ、何れも含
水率50〜60係台の脱水ケーキを得た。
Frozen sludge with a thickness of 2.5, 4.5, and 6.0 mm was produced using industrial water purification plant sludge liquid with a raw water content of 96.7%, and vacuum dehydration was performed after thawing. A dehydrated cake with a water content of 50 to 60 was obtained.

この結果からも脱水性を著しく向上させ得ることが明ら
かである。
It is clear from this result that the dehydration properties can be significantly improved.

以上の如く本発明は、スラツジ液槽の液面下で冷却筒の
外周面に沿う位置に、断面ほぼ半円状の;内周面をもつ
熱絶縁性の固体壁を設け、該壁の内周壁と冷却筒の外周
面との間隔を、冷却筒表面に凍結付着する凍結スラツジ
の生長厚さと略同寸法に調整したので、凍結スラツジの
固形物濃縮層の凍結率を高め得て、該層が冷却筒の回転
により剥離したりするのを防止することができ、しかも
凍結率を高めたことにより凍結スラツジを融解して脱水
するときに、その脱水性を著しく高めることができるの
である。
As described above, the present invention provides a thermally insulating solid wall having an inner circumferential surface with an approximately semicircular cross section at a position below the liquid level of the sludge tank and along the outer circumferential surface of the cooling cylinder, and Since the distance between the peripheral wall and the outer circumferential surface of the cooling cylinder is adjusted to be approximately the same as the growth thickness of the frozen sludge that freezes and adheres to the surface of the cooling cylinder, the freezing rate of the solid matter concentration layer of the frozen sludge can be increased, and this layer It is possible to prevent the sludge from peeling off due to the rotation of the cooling cylinder, and by increasing the freezing rate, when the frozen sludge is thawed and dehydrated, the dehydration performance can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の処理装置を示し、第2,3図は夫々本発
明に係る処理装置の側断面図及びその一部欠截正面図、
第4,5図は他の実施例を示す図面である。 1・・・・・・液槽、2・・・・・・スラツジ液、3・
・・・・・冷却筒、4・・・・・・凍結スラツジ、9・
・・・・・固体壁。
FIG. 1 shows a conventional processing device, and FIGS. 2 and 3 are a side sectional view and a partially cutaway front view of the processing device according to the present invention, respectively.
4 and 5 are drawings showing other embodiments. 1...Liquid tank, 2...Sludge liquid, 3.
...Cooling cylinder, 4...Frozen sludge, 9.
...Solid wall.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状冷却筒をスランジ液槽にその1部が浸漬する
ごとく回転自由に支持し、スラツジ液面下の冷却筒表面
でスラツジ液を凍結付着させ、スラツジ液面上で、凍結
付着したスラツジを剥取るごとくした連続凍結処理装置
において、前記スラツジ液槽の液面下で、前記冷却筒の
外周面に沿う方向に、固体壁を設け、該固体壁内周面と
前記冷却筒外周面との間隔を、該冷却筒表面に凍結付着
する凍結スラツジの生長厚さと略同寸法に調整したこと
を特徴とするスラツジ液の連続凍結処理装置。
1. Support a cylindrical cooling cylinder so that it can rotate freely so that a part of it is immersed in a sludge liquid tank, freeze the sludge liquid on the surface of the cooling cylinder below the sludge liquid level, and freeze and adhere the sludge above the sludge liquid level. In a continuous freezing treatment device that is designed to be peeled off, a solid wall is provided below the liquid level of the sludge liquid tank in a direction along the outer circumferential surface of the cooling cylinder, and a solid wall is provided between the inner circumferential surface of the solid wall and the outer circumferential surface of the cooling cylinder. A continuous freezing treatment apparatus for sludge liquid, characterized in that the interval is adjusted to be approximately the same as the growth thickness of frozen sludge that is frozen and adhered to the surface of the cooling cylinder.
JP1540077A 1977-02-14 1977-02-14 Continuous freezing treatment equipment for sludge liquid Expired JPS597520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1540077A JPS597520B2 (en) 1977-02-14 1977-02-14 Continuous freezing treatment equipment for sludge liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1540077A JPS597520B2 (en) 1977-02-14 1977-02-14 Continuous freezing treatment equipment for sludge liquid

Publications (2)

Publication Number Publication Date
JPS53100658A JPS53100658A (en) 1978-09-02
JPS597520B2 true JPS597520B2 (en) 1984-02-18

Family

ID=11887672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1540077A Expired JPS597520B2 (en) 1977-02-14 1977-02-14 Continuous freezing treatment equipment for sludge liquid

Country Status (1)

Country Link
JP (1) JPS597520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612860B2 (en) * 1986-07-28 1997-05-21 ゲーエーツェー アルストホム テーウントデー アーゲー Rotary switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2612860B2 (en) * 1986-07-28 1997-05-21 ゲーエーツェー アルストホム テーウントデー アーゲー Rotary switch

Also Published As

Publication number Publication date
JPS53100658A (en) 1978-09-02

Similar Documents

Publication Publication Date Title
JP4976879B2 (en) Ice making equipment
JP2751008B2 (en) Ice making equipment
SE450075B (en) PROCEDURE FOR MICROPOROS MAKING, STRUCTURED FREEZE DRIED COFFEE PRODUCT
JPS597520B2 (en) Continuous freezing treatment equipment for sludge liquid
US6619067B2 (en) Cooling unit
FR2426876A1 (en) Drinking vessel for cooled drinks - is made by moulding vessel from ice and subsequently coating with plastics
WO2018212335A1 (en) State change control device and state change control method
US2461636A (en) Self-defrosting refrigeration system
US4936102A (en) Method and apparatus for cooling fish on board a ship
JP2004053142A (en) Ice water producer
EP0382730B1 (en) Method and apparatus for cooling fish on board a ship
JP4622173B2 (en) Cold storage device
JP6886696B2 (en) Ice machine
JPS597519B2 (en) Continuous processing equipment for sludge liquid
KR930000306Y1 (en) Apparatus for making shaved ice
CN112728826A (en) Ice maker and refrigerator
US4114287A (en) Acid resistant freeze drying trap
RU2306498C2 (en) Cooling agent evaporator
CN207204397U (en) A kind of evaporator of refrigerated centrifuge
JPS59184095A (en) Device for preventing freezing of tank in ice breaker
CN217005015U (en) Slice ice machine adopting double-bearing ice blade
JPH0213074Y2 (en)
FI78778B (en) FOERFARANDE FOER TILLVARATAGANDE AV VATTNETS TILLFRYSNINGSVAERME MED VAERMEPUMPPROCESS.
JP3092445B2 (en) Vacuum ice making method and apparatus
RU2002130134A (en) METHOD FOR CONTINUOUS FREEZING AND OBTAINING OF SCALED ICE WITH ACCUMULATION OF REFRIGERANT HEAT AND INSTALLATION FOR ITS IMPLEMENTATION