JPS5974275A - Manufacture of composite member consisting of welded cast iron and steel - Google Patents

Manufacture of composite member consisting of welded cast iron and steel

Info

Publication number
JPS5974275A
JPS5974275A JP18568982A JP18568982A JPS5974275A JP S5974275 A JPS5974275 A JP S5974275A JP 18568982 A JP18568982 A JP 18568982A JP 18568982 A JP18568982 A JP 18568982A JP S5974275 A JPS5974275 A JP S5974275A
Authority
JP
Japan
Prior art keywords
gear
cast iron
composite
clutch cone
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18568982A
Other languages
Japanese (ja)
Other versions
JPH0210223B2 (en
Inventor
Takeshi Okazaki
健 岡崎
Yasushi Asai
裕史 浅井
Kazuyoshi Hanano
花野 一義
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP18568982A priority Critical patent/JPS5974275A/en
Publication of JPS5974275A publication Critical patent/JPS5974275A/en
Publication of JPH0210223B2 publication Critical patent/JPH0210223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve the bonding strength of a composite member obtd. by welding the 1st member made of cast iron to the 2nd member made of carburizing steel and to toughen the composite member by treating the composite member under prescribed conditions to austemper the 1st member and to carburize and harden the 2nd member. CONSTITUTION:The 1st cast member made of cast iron and the 2nd member made of carburizing steel are prepared, and the parts of the members to be welded are mechanically worked. The worked parts to be welded are brought into contact with each other and welded to manufacture a composite member. The composite member is heated at 850-950 deg.C in a carburizing atmosphere for 0.5-10hr, and it is held at 220-300 deg.C for 0.1-3hr. By the treatment the 1st member is austempered to form a bainite structure. At the same time, the 2nd member is carburized and hardened to form a carburized layer on the surface. Thus, the bonding strength of the composite member is improved, and the member is toughened.

Description

【発明の詳細な説明】 この発明は、鋳鉄と鋼とを浴接してなる複合部品の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a composite part made by bath-welding cast iron and steel.

従来、第1図に示すような自動車用ミッションギヤlを
製造する場合、該ミッションギヤlを一体的に加工しよ
うとすると刀日工工具が干渉し、長尺のミッションギヤ
1しか加工できないことから、ミッションギヤlのギヤ
s2及びクラッチコーン部3をそれぞれ別個に形成し、
それらを結8させるようにしていた。そしてこのギヤ2
とクラッチコーン3との結合方法としては、次のようす
(1)〜01Dの方法が採用されていた。即ち、(1)
  ギヤ2の向状の突出部2a外面及びクラッチコーン
3の内面3aにそれぞれセレーション〃u工を施こし、
両者を圧入によって結合させる。
Conventionally, when manufacturing a transmission gear 1 for an automobile as shown in Fig. 1, Tonichi Kogyo tools would interfere if the transmission gear 1 were to be machined in one piece, and only the long transmission gear 1 could be machined. , the gear s2 of the mission gear l and the clutch cone portion 3 are formed separately,
I tried to tie them together. And this gear 2
The following methods (1) to 01D have been used to connect the clutch cone 3 and the clutch cone 3. That is, (1)
Serrations are applied to the outer surface of the protruding portion 2a of the gear 2 and the inner surface 3a of the clutch cone 3, respectively.
The two are connected by press fitting.

(11)  ギヤ2の突出部2aにセレーション加工を
施こし、クラッチコーン3の内面3aに浸炭焼入れ後高
周波焼なましを行ない、両者を圧入によって結合させる
(11) The protruding portion 2a of the gear 2 is subjected to serration processing, the inner surface 3a of the clutch cone 3 is carburized and quenched, and then induction annealed, and the two are coupled by press fitting.

(11−ギヤ2とクラッチコーン3とを嵌合させた後、
両者の当接部4を電子ビーム浴接やレーザビーム浴接に
よって結合させる。
(11-After fitting gear 2 and clutch cone 3,
Both abutting portions 4 are coupled by electron beam bath contact or laser beam bath contact.

しかるにこのような従来の製造方法で(i、l、Nずれ
も鯛を用いて2つ、しかもそれらを浸炭燥入・焼戻しす
るようにしていたので、製造コスト力(Aく、しかも鋼
を用いていることから、ギヤの熱処理変形が大きく、又
ギヤノイズか大きl、)等の欠点があった。このような
欠点を解ン肖するため番こ(i、クラッチコーン3は強
靭性が必要なことから鋼を用い、またギヤ2は振動吸収
性能及びコスト等を考慮して鋳鉄を用い、両者をそれぞ
れ熱処理した後、嵌合して溶接によって結合する方法力
S方えられるか、この方法では浴接部にチル(遊離セメ
ンタイト〕が生成し、溶接割れを生じたり、溶接部の衝
撃強さが低い等の欠点があった。
However, with this conventional manufacturing method (i, l, and n), two sea breams were used, and they were also carburized, dried, and tempered, so the manufacturing cost was low (A), and steel was used. Because of this, there were drawbacks such as large heat treatment deformation of the gear and large gear noise.In order to solve these drawbacks, the clutch cone 3 is For this reason, steel is used, and gear 2 is made of cast iron in consideration of vibration absorption performance and cost, and after heat treating both parts, they are fitted and welded together. There were drawbacks such as the formation of chill (free cementite) in the bath contact area, which caused weld cracks and the impact strength of the welded area was low.

本件発明者は、かかる問題点に艦み、鋭意研究の結果、
鋳鉄と鋼の複合部品を製造する場合、浴接後に熱処理を
行なうようにすれ番ま、浴接部の遊離セメンタイトが分
解することを知見し、これ番こより大きな接合強度を得
ることができるととも(こ母材の強靭化を達成でき、し
かもそれを1回の熱処理蚤こよって行なえるようにした
、鋳鉄と鉤とを溶接してなる複合部品の製造方法を発明
するに到ったものである。
The inventor of the present invention was aware of this problem, and as a result of intensive research,
When manufacturing composite parts of cast iron and steel, it was discovered that heat treatment after bath welding decomposes the free cementite in the bath welding area, and that it is possible to obtain greater joint strength than this. (This led to the invention of a method for manufacturing composite parts made by welding cast iron and hooks, which made it possible to strengthen the base material and to do this with a single heat treatment.) be.

即ち本発明は、鋳鉄製の第1部品と浸炭鋼製の第2部品
とを電子ビーム溶接@によって接合して複2合部品を製
作した後、それを浸炭雰囲気中で850〜950’Cに
て0.5〜10時間加熱した41に220〜300℃に
て0.1〜3時間保持することによって第1部品を恒温
処理にてベイナイト41織にするオーステンパ処理と第
2部品を浸炭焼入する処理とを同時にできるようにした
ことを特徴としている。
That is, the present invention manufactures a composite part by joining a first part made of cast iron and a second part made of carburized steel by electron beam welding, and then heats it to 850 to 950'C in a carburizing atmosphere. The first part is heated at 220 to 300°C for 0.1 to 3 hours to form a bainite 41 weave through austempering treatment, and the second part is carburized and quenched. It is characterized by being able to perform both processing at the same time.

以下本発明の一実施例を図番こついて詳細に説明する。An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図ないし第4図は本発明の一実施例方法による鋳鉄
と鋼とを浴接してなる複合部品の製造工程を示し、これ
は自動車用ミッションギヤの製造に通用した例である。
FIGS. 2 to 4 show the manufacturing process of a composite part made by bath-welding cast iron and steel according to an embodiment of the present invention, and this is an example commonly used in manufacturing transmission gears for automobiles.

本方法によって複合部品であるミッションギヤlを製造
する場倚、まず第1部品であるギヤ2及びvJJ2部品
であるクラッチコーン3を製造する。即ちギヤ2につい
ては、鋳鉄材料FCD45 (C: 3.60%+ S
 i : 2.55% +Ivin l U、24%、
S:0.010九1Mg:0.041%)を用いてギヤ
2の素材を鋳造しく鋳遁工程5)、続いてこの素材のギ
ヤ部2b及び浴接償合丁べき部分である向状の突出部2
aを機械加工する(カロエ工程6)。またクラッチコー
ン3については、浸炭@ scr 420 (に : 
0.20%。
When manufacturing the transmission gear 1, which is a composite part, by this method, first, the gear 2, which is the first part, and the clutch cone 3, which is the vJJ2 part, are manufactured. That is, for gear 2, cast iron material FCD45 (C: 3.60% + S
i: 2.55% +Ivin l U, 24%,
The material for the gear 2 is cast using S: 0.01091Mg: 0.041% (casting step 5), and then the gear part 2b of this material and the facing part, which is the part to be joined in the bath, are cast. Projection part 2
Machine a (Kaloe step 6). In addition, for clutch cone 3, carburizing @ scr 420 (to:
0.20%.

st:o、zs%、Mn:0.72%、cr:1.13
%〕を用いて冷間鍛迫によりクラッチコーン3の素材を
形成しく鍛造工程8)、この素材3の溶接接合すべき部
分である円面3aを機械加工する(加工工程9)。なお
上述のギヤ2の鋳鉄材料FC;l)45は鋳放しの硬度
がビッカース硬ざ(Vi(N ) 175の非合金球状
黒鉛鋳鉄であり、艮好な力ロエ性を有するが、鋳放し硬
度がブリネル硬さくBHN)220以上の他の鋳鉄材料
を用いる場合には歯切り加工性を同上させるため、鋳造
工程5と加工工程6との間において通常のフェライト化
焼鈍を行なうようにすれはよい(焼鈍工程7)。
st: o, zs%, Mn: 0.72%, cr: 1.13
%] is used to form a material for the clutch cone 3 by cold forging (forging step 8), and the circular surface 3a of this material 3, which is the portion to be welded, is machined (processing step 9). The cast iron material FC; l) 45 of the gear 2 mentioned above is a non-alloyed spheroidal graphite cast iron with an as-cast hardness of Vickers hardness (Vi(N)) of 175, and has excellent force Loe properties, but the as-cast hardness is When using other cast iron materials with a Brinell hardness (BHN) of 220 or higher, it is advisable to perform normal ferritization annealing between casting step 5 and working step 6 in order to improve gear cutting workability. (Annealing step 7).

次にこのようにして製造したギヤ2とクラッチコーン3
とを圧入あるいはルーズフィツト散会によって結合しく
嵌合工程10)、両者の当接部4を溶接しく溶接工程1
1)、ミッションギヤlを製作する。乙こで上述のルー
ズフィツト散会を行なう場合は、クリアランスをギヤ2
突出s2aの外径の0.3%以下とするのが好ましい。
Next, gear 2 and clutch cone 3 manufactured in this way
A fitting step 10) in which the two are connected by press-fitting or loose fit dispersion, and a welding step 1 in which the abutting portion 4 of both is welded.
1) Manufacture the mission gear l. If you perform the above-mentioned loose-fit dispersion at this point, change the clearance to gear 2.
It is preferable to set it to 0.3% or less of the outer diameter of the protrusion s2a.

これは後の熱処理上程12甲にギヤ2の突出部2aが0
,3〜0.35%膨張するのに対し、クラッチコーン3
はほとんど変形せず、熱処理後向者が強固に嵌合するか
らである。また溶接方法としては、゛電子ビーム?g接
、レーザービーム浴接あるいはアーク溶接等を用いれば
よい。
This is because the protruding part 2a of gear 2 is 0 at the later heat treatment stage 12A.
, 3 to 0.35% expansion, whereas the clutch cone 3
This is because there is almost no deformation, and the heat-treated parts are firmly fitted together. Also, as a welding method, ``electron beam?'' G welding, laser beam bath welding, arc welding, etc. may be used.

そして最後にこのようにして製作したミッションギヤl
を熱処理する(熱処理上程12)。即ち、バッチ炉をプ
ロパン、ブタン、メタン等をキャリアガスで希釈した平
衡炭素濃度(カーボンポテンシャル)0.80%以上の
戊炭性ガス雰囲気、あるいはこれ番こアンモニアガスを
加えた浸炭窒化性昇囲気とし、該バッチ炉内lこおいて
ミッションギヤ1を850〜950℃の温度で0.5〜
10R闇〃l熱しくwI4図のλ部裕照)、次にンルト
浴炉において該ミッションギヤlを220〜300℃の
1M度で0.1〜3時間保持した後(第4図のb部参照
)、空冷すると、ギヤ2を恒温処理にてベイナイト組織
にするオーステンパー理と、クラッチコーン3の表面に
浸炭層を形成しそれを焼入する浸炭焼入処理とを同時に
行なうことができる。
And finally, the mission gear l made in this way
(heat treatment step 12). In other words, the batch furnace is placed in a carbonitriding gas atmosphere with an equilibrium carbon concentration (carbon potential) of 0.80% or more in which propane, butane, methane, etc. are diluted with a carrier gas, or in a carbonitriding raising atmosphere in which ammonia gas is added. The mission gear 1 was heated at a temperature of 850 to 950° C. in the batch furnace at a temperature of 0.5 to 950°C.
10R in the dark (lambda section in Figure 4), then held the mission gear l at 220-300°C and 1M degrees in a bath furnace for 0.1-3 hours (section b in Figure 4). ), air cooling allows simultaneous austempering of the gear 2 to form a bainitic structure through constant temperature treatment and a carburizing and quenching process of forming a carburized layer on the surface of the clutch cone 3 and hardening it.

次(と上述のような熱処理を行なう理由について説明す
る。
Next, the reason for performing the heat treatment as described above will be explained.

(1)  バッチ炉内の平衡炭素a度を0.8′)6以
上としたのは、球状黒鉛鋳鉄製ギヤ2の脱炭防止を図り
、かつクラッチコーン3の浸炭又は浸炭′窒化を行なお
うとしたためである。即ち、平衡炭素濃度が0.8%以
下ではギヤ2の表面に脱炭層が生成されるとともに、ク
ラッチコーン3の浸炭又は浸炭窒化も不十分となる。非
合金球状黒鉛鋳鉄に’ CLi2Sの場合、920℃の
温度でオーステナイトに向浴する炭A畠度は0.9〜0
.92wt%であり、雰囲気中の平衡炭素濃度がこれ以
下になると脱炭を生ずる。マタ加熱温度によって平衡炭
素濃度を調整する必要もあり、従って上記非合金球状黒
鉛鋳鉄FUi)45の場合は850℃のJjO熱温度で
少なくとも0.75%の平衡炭素濃度であれはよい。し
かし−万で、クラッチコーン3あ表面を浸炭焼入によっ
て強化する必要上、平衡炭素濃度か低いのは機能上好ま
しくなく、0.8%以下では熱処理後のクラッチコーン
3表面の硬度か増大せす、所望の強度及び耐摩耗性が得
られず、従って平衡炭素濃度を08%以上としているの
であるが、より好ましくはこれは0.85%以上がよい
(1) The reason why the equilibrium carbon a degree in the batch furnace is set to 0.8')6 or more is to prevent decarburization of the spheroidal graphite cast iron gear 2, and to perform carburization or carburization/nitridation of the clutch cone 3. This is because he tried to do so. That is, if the equilibrium carbon concentration is 0.8% or less, a decarburized layer is generated on the surface of the gear 2, and carburization or carbonitriding of the clutch cone 3 becomes insufficient. In the case of CLi2S for non-alloyed spheroidal graphite cast iron, the degree of carbon A that bathes austenite at a temperature of 920°C is 0.9 to 0.
.. This is 92 wt%, and decarburization occurs when the equilibrium carbon concentration in the atmosphere becomes less than this. It is also necessary to adjust the equilibrium carbon concentration depending on the heating temperature, so in the case of the above-mentioned unalloyed spheroidal graphite cast iron FUi) 45, it is sufficient that the equilibrium carbon concentration is at least 0.75% at a JJO heating temperature of 850°C. However, since it is necessary to strengthen the clutch cone 3 surface by carburizing and quenching, a low equilibrium carbon concentration is not desirable from a functional standpoint, and if it is less than 0.8%, the hardness of the clutch cone 3 surface after heat treatment will increase. However, the desired strength and wear resistance cannot be obtained, and therefore the equilibrium carbon concentration is set at 0.8% or more, more preferably 0.85% or more.

(11)  バッチ炉内での加熱温度を850〜950
 ℃としたのは、ギヤ2のオルステナイト固溶体の炭素
濃度を0.75〜l、QwL%にm整して続く焼入恒温
処理でギヤ2の組織を艮好な耐摩耗性及び疲労強度を有
する針状ベイナイト組織にできるようlこすると同時に
、クラッチコーン3の表面に対する浸炭を容易ならしめ
るためであり、またぎら番こ大事なことはこの時削工程
11の溶接9番こl6接ビー)′都4に生成した遊離セ
メンタイトを分解するためである。即ち、通常、オース
テンパー処理して強化するギヤ2と浸炭焼入して強化す
るクラッチコーン3とを複合化する場合、それぞれの熱
処理):i:終了した完成品を接合するのか普通である
が、制炭素材料である鋳鉄を溶接で接合する場合、浴接
ビード部4における遊離セメンタイトの生成を避けるこ
とができす、接合強度不足をきたす。そこで本件発明者
は850〜950℃で0.5〜lO時間加熱甲に遊離セ
メンタイトが分解することを知見し、ギヤ2とクラッチ
コーン3とを浴接した後、熱処理することを考えついた
ものである。以上の説明から分かるように加熱温度か8
50℃以下ではギヤ2の硬度が増大せず、耐摩耗性が劣
り、又クラッチコーン3表面への浸炭速度が遅くなって
熱処理に長時間を要し、さらには溶接接合s4の遊離セ
メンタイトの分解が不十分となる。逆に加熱1M反が9
50℃以上ではクラッチコーン3の結晶粒が粗大化し、
クラッチコーン3のチャンファ−3bがミスシフトによ
って加わる回撃に耐え得なくなる。
(11) The heating temperature in the batch furnace is 850 to 950.
℃ was determined because the carbon concentration of the orstenite solid solution of gear 2 was adjusted to 0.75 to 1, QwL%, and the subsequent constant temperature quenching treatment gave the structure of gear 2 excellent wear resistance and fatigue strength. This is to make it easier to carburize the surface of the clutch cone 3 at the same time as to form an acicular bainite structure. 'This is to decompose the free cementite formed in the 4th section. That is, when combining the gear 2, which is normally strengthened by austempering, and the clutch cone 3, which is strengthened by carburizing and quenching, the respective heat treatments are: When joining cast iron, which is a carbon control material, by welding, it is possible to avoid the formation of free cementite in the bath weld bead 4, which results in insufficient joint strength. Therefore, the inventor of the present invention discovered that free cementite decomposes in the former when heated at 850 to 950°C for 0.5 to 10 hours, and came up with the idea of heat-treating the gear 2 and clutch cone 3 after bath-welding them. be. As you can see from the above explanation, the heating temperature is 8
If the temperature is below 50°C, the hardness of the gear 2 will not increase, the wear resistance will be poor, and the carburizing speed of the clutch cone 3 surface will be slow, requiring a long time for heat treatment, and furthermore, free cementite in the weld joint s4 will decompose. becomes insufficient. Conversely, heating 1M is 9
At temperatures above 50°C, the crystal grains of the clutch cone 3 become coarse,
The chamfer 3b of the clutch cone 3 becomes unable to withstand the repeated impact caused by the misshift.

(119バッチ炉内での〃0熱時間を0.5〜10時間
としたのは、0,5時間以トの加熱ではクラッチコーン
3に対する浸炭か十分でなく、浸炭深さ及び表面硬さが
不足し、又浴接接合部4のi離セメンタイトの分解が不
十分となるからであり、悪に10時間以上の加熱ではク
ラッチコーン3の結晶粒の粗大化及び過剰浸炭によって
チャンファ−3bの衝撃強度が著しく低下するからであ
る。
(The reason why we set the zero heat time in the 119 batch furnace to 0.5 to 10 hours is because heating for more than 0.5 hours will not carburize the clutch cone 3 sufficiently, and the carburization depth and surface hardness will deteriorate. This is because the cracked cementite in the bath weld joint 4 is insufficiently decomposed, and worse, if heated for more than 10 hours, the crystal grains of the clutch cone 3 will become coarse and excessive carburization will cause impact on the chamfer 3b. This is because the strength is significantly reduced.

慟す  焼入恒温処理の温度を220〜300℃とした
のは、ギヤ2を耐摩耗性及び耐疲労強度のすぐれた針状
ベイナイトに変態させるためであるが、こ(7)時クラ
ッチコーン3も同時に硬化する。これはクラッチコーン
3の表面が浸炭されているためにこの処理によって強靭
性を有する針状ベイナイト\ に変態し、内部は炭素濃度が低く、変態点Msが400
〜450℃と制く、この処理温度で低炭素マルテンサイ
)Al[に変態するからである。なおりラッチコーン3
は変態後も引き続いて局温にさらされるため、通常行な
われるような焼入れ後の焼戻しは必要としない。また処
理温度が220℃以)ではギヤ2にマルテンサイト相が
析出し、特に疲労強度及び衝撃強度が著しく低士する。
The temperature of the constant temperature quenching treatment was set at 220 to 300°C in order to transform the gear 2 into acicular bainite with excellent wear resistance and fatigue resistance. hardens at the same time. This is because the surface of the clutch cone 3 is carburized, so this treatment transforms it into tough acicular bainite, and the interior has a low carbon concentration, with a transformation point Ms of 400.
This is because at this treatment temperature, which is controlled at ~450° C., it transforms into low carbon martensitic martensitic acid (Al). Naori latch cone 3
Since it continues to be exposed to local temperature even after transformation, there is no need for tempering after quenching, which is usually done. Furthermore, if the treatment temperature is 220° C. or higher, a martensite phase will precipitate in the gear 2, and the fatigue strength and impact strength will be significantly lowered.

逆に処理浴温度か300℃以上ではギヤ2及びクラッチ
コーン3の表面硬さが増大せず、耐摩耗性が損なわれる
On the other hand, if the treatment bath temperature is 300° C. or higher, the surface hardness of the gear 2 and clutch cone 3 will not increase, and the wear resistance will be impaired.

(望 焼入恒温処理時間を0.1〜3時間としたのは、
0.1時間以−トではクラッチコーン3内部のマルテノ
サイl−f態が完rせす、3時間以上では焼入恒温処理
を続けてもそれ以上の機械的性質の改善が得られないか
らである。
(The desired quenching constant temperature treatment time was set to 0.1 to 3 hours because
If the temperature is longer than 0.1 hours, the martenocytic l-f state inside the clutch cone 3 will be completed, and if it is longer than 3 hours, no further improvement in mechanical properties will be obtained even if the constant temperature quenching treatment is continued. be.

また第5図ないし第7図はミッンヨンギャl各部の金属
組織を示し、135図(a)及び(blは、第3図(b
Jのギヤ2の内部Aに2ける篭手ビーム浴接後でかつ熱
処理前及び熱処理後の組織、第6図(a)及び(LQは
、第3図(blのクラッチコーン3の表面Bにおける浴
接後で熱処理前及び熱処理後の組織、第6図(C1は、
第3図(b)のクラッチコーン3の内部Cにおける熱処
理後のm城、第7図(剖及び(b)は浴接ビード部4に
おける溶接後で熱処理−J及び熱処理後のI#i織を示
す。これによれは、溶接後で熱処理前においては、ギヤ
2は第5図(a)のように白色のフェライトと灰色のパ
ーライトとそれらの甲に点圧する球状黒鉛とからなる鋳
造組織となっており、クラッチコーン3は第6図(a)
のように白色のフェライトと灰色のパーライトとからな
る共晶mlPaと11っており、浴接ビード都4は第7
図(ajのように灰色のパーライトと、該パーライト間
に生成した白色の遊離セメンタイトと、微細な黒鉛とか
らなる組織となっている。これに対し熱処理後には、ギ
ヤ2は第5図(b)のように白色の残留オーステナイト
とその甲に生成した針状ベイナイトと球状黒鉛とからな
る組織に変化してあり、上記クラッチコーン3の表面B
は第6図(b)のように残留オーステナイトと針状ベイ
ナイトとからなる組織に変化して2つ、その内部Cは第
6図(C)のように低炭某マルテンサイト組織に変化し
て詔り、浴接ビード部4は第7図(b)のように残協オ
ーステナイトと針状ベイナイトと微細な球状黒鉛とから
なる組織に変化している。このように本方法の熱処理に
より、溶接時にビード$4に生成した遊離セメンタイト
は熱処理のオーステナイト化の隙に見金に分解すること
ができ、又ギヤ2は恒温11i−Nによって針状ベイナ
イト組織に、クラッチコーン3は浸炭焼入・焼戻し組織
にすることができる。
In addition, Figures 5 to 7 show the metal structure of each part of Minyongya l, and Figures 135 (a) and (bl) are shown in Figure 3 (b).
Figures 6(a) and (LQ are the structures of the gauntlet beam bath on the surface B of the clutch cone 3 in Figure 3(bl) before and after heat treatment and after contact with the gauntlet beam bath in the interior A of the gear 2 in Figure 3 (BL). Structures before and after heat treatment after bonding, Figure 6 (C1 is
Fig. 3(b) shows the internal structure C of the clutch cone 3 after heat treatment; This shows that after welding and before heat treatment, the gear 2 has a cast structure consisting of white ferrite, gray pearlite, and spheroidal graphite with point pressure on their insteps, as shown in Figure 5(a). The clutch cone 3 is as shown in Fig. 6(a).
The eutectic mlPa consisting of white ferrite and gray pearlite is 11, and the bath contact bead capital 4 is the 7th
As shown in Figure (aj), the structure consists of gray pearlite, white free cementite formed between the pearlite, and fine graphite.On the other hand, after heat treatment, gear 2 has a structure as shown in Figure 5 (b). ), the structure has changed to a structure consisting of white retained austenite, acicular bainite formed on its instep, and spherical graphite, and the surface B of the clutch cone 3
As shown in Figure 6(b), the C changes into a structure consisting of retained austenite and acicular bainite, and the internal C changes into a low-carbon martensitic structure as shown in Figure 6(C). As shown in FIG. 7(b), the bead portion 4 exposed to the bath has changed into a structure consisting of residual austenite, acicular bainite, and fine spherical graphite. As described above, by the heat treatment of this method, the free cementite generated in the bead $4 during welding can be decomposed into metal during the austenitization process during the heat treatment, and the gear 2 has an acicular bainite structure due to the constant temperature of 11i-N. , the clutch cone 3 can have a carburized, quenched and tempered structure.

また第8図は恒温処理温度に対する溶接と一ド部4の機
械的性質の変化を実験により求めた結果を示している。
Further, FIG. 8 shows the results of experiments on changes in the mechanical properties of welding and the lead portion 4 with respect to the constant temperature treatment temperature.

これによれは、浴接ビード部4の引張強さは図中実線で
示すように、恒温処理温度が篩くなるに伴って次第に増
大し、はぼ250 ’Cで厳尚値約150階・E/−に
達し、その後滑らかに減少している。また溶接ビード部
4の伸びは図中1点順線で示すように、温度が高(なる
に伴って単調1こ増力目し、300℃でほぼ4%になる
。ざらにγ6接ビード部4の硬度は図中2点鎖線で示す
ように、温度が尚くなるに伴ってロックウェル硬さHk
c 5Qぐらいから40ぐらいまで単調に減少している
This is because, as shown by the solid line in the figure, the tensile strength of the bath welding bead 4 gradually increases as the constant temperature treatment temperature increases, and at approximately 250'C, the tensile strength is approximately 150 degrees Fahrenheit. It reaches E/- and then decreases smoothly. In addition, as shown by the one-point line in the figure, the elongation of the weld bead 4 monotonically increases by one point as the temperature increases, reaching approximately 4% at 300°C. As shown by the two-dot chain line in the figure, the hardness of Hk increases as the temperature increases.
c It decreases monotonically from around 5Q to around 40.

このように本方法の熱処理により、浴接ビード部4は引
張強ざ120〜150印・f/−8伸び2〜5%となり
、球状黒鉛鋳鉄母材と昆本的に同等の機械的性質を発揮
し、これにより接合部の強度が確保される。
As described above, by the heat treatment of this method, the bath welded bead part 4 has a tensile strength of 120 to 150 marks and f/-8 elongation of 2 to 5%, and has mechanical properties equivalent to those of the spheroidal graphite cast iron base material. This ensures the strength of the joint.

またミッションギヤl各部の熱処理前及び熱処理後の硬
度を測定したところ、熱処理前には、上記ギヤ2の内部
Aにおいては、ビッカース硬さくVHN)1750g接
ビー ドビーにjal+Nて41VHN620、上記ク
ラッチコーン3の表面BにおいてはVHN l 55で
あったが、熱処理後には、ギヤ2はVHN492、浴接
ビ )’部4はVHN480(oツクウェル硬3HRC
47)、上記クラッチコーン3の内部CにおいてはVH
N359となった。ざらに熱処理後のクラッチコーン3
の表面Bの位置において該表面からの焼入深さを見るた
め表面からの各深さにおける硬度を測定したところ、第
9図に示す結果か得られた。これによれば、表面がら0
.1mmのところで最高の硬度V)iN 750となり
、又表面から0.33amまでの部分がVHN 513
以上となって0.33順の浸炭深さが得られた。このよ
うに本方法の熱処理により、クラッチコーン3の十分な
浸炭焼入深さと、通常の浸炭焼入処理と同等の硬度とを
得ることができる。
In addition, when we measured the hardness of each part of the transmission gear l before and after heat treatment, we found that before heat treatment, the internal A of the gear 2 had a Vickers hardness of 1750 g (JAL+N), and the clutch cone 3 The surface B of the gear was VHN 55, but after heat treatment, the gear 2 was VHN 492, and the bath wetted part 4 was VHN 480 (otsukwell hard 3HRC).
47), in the inside C of the clutch cone 3, VH
It became N359. Clutch cone 3 after rough heat treatment
When the hardness at each depth from the surface was measured to see the quenching depth from the surface at the position of surface B, the results shown in FIG. 9 were obtained. According to this, the surface roughness is 0.
.. The highest hardness is V)iN 750 at 1mm, and VHN 513 from the surface to 0.33am.
As a result, a carburization depth of 0.33 was obtained. As described above, by the heat treatment of the present method, it is possible to obtain a sufficient depth of carburization and quenching of the clutch cone 3 and a hardness equivalent to that of a normal carburization and quenching treatment.

以上のような本冥施例の製造方法では、ミッションギヤ
を鋳鉄と鋼とからなる複合部品としたので、高価な鋼の
瀘を低減でき、製造コストが安価となり、しかも軽菫化
を達成できる。またギヤに鋳鉄材料を用いているので、
ギヤの熱処理変形及びギヤノイズの発生を軽減できる。
In the manufacturing method of this embodiment as described above, the mission gear is made into a composite part made of cast iron and steel, so the waste of expensive steel can be reduced, the manufacturing cost is low, and light phosphorescence can be achieved. . In addition, since cast iron material is used for the gear,
Heat treatment deformation of gears and occurrence of gear noise can be reduced.

さらにギヤ及びクラッチコーンの熱処理を同時に行なっ
ており、しかも従来のような浸炭焼入れ後の焼戻し処理
が不要となるので、熱処理作業を(社)単化でき、これ
によっても装態コストを安価にできる。
Furthermore, the gear and clutch cone are heat-treated at the same time, and the conventional tempering process after carburizing and quenching is no longer necessary, so the heat treatment process can be simplified, which also reduces installation costs. .

また本製造方法では、浴接ビード部に生成した遊離セメ
ンタイトを分解することができ、大きな接合強度が得ら
れる。またギヤをベイナイト組織に、クラッチコーンを
浸炭焼入・焼廃し組織にしたので、ミッションギヤの強
靭化を達成でき、信頼性を向上できる。
Furthermore, in this manufacturing method, free cementite generated in the bath weld bead can be decomposed, and a large bond strength can be obtained. In addition, the gear has a bainite structure and the clutch cone has a carburized, quenched, and burned structure, making the transmission gear tougher and improving reliability.

なお上記実施例では自動車用ミッションギヤの製造方法
について説明したが、本発明は勿調ミッションギヤ以外
の鋳鉄と鋼の複合部品の製造に適用できるものである。
Although the above embodiment describes a method for manufacturing an automobile transmission gear, the present invention can of course be applied to manufacturing composite parts of cast iron and steel other than transmission gears.

以上のように本発明によれは、鋳鉄製の第1部品とべ炭
鋼製の第2部品とを電ナビーム溶接等によって接合して
複合部品を製作した後、それを浸炭雰囲気中で850〜
950℃にて0.5〜10時間〃口熱しだ後220〜3
00℃にて0.1〜3時間保持することによって第1部
品を恒温処理をごてベイナイト組織にするオーステンパ
処理と第2部品を浸炭焼入する処理とを同時にできるよ
うにしたので、大きな接合強度を得ることができるとと
もに、母材の強靭化を達成でき、しかも熱処理が1回で
すむという効果を得ることができる。
As described above, according to the present invention, after a composite part is manufactured by joining a first part made of cast iron and a second part made of carbon steel by electric beam welding or the like, the composite part is heated to
0.5-10 hours at 950℃ッ220-3 after the mouth starts to heat up
By holding the first part at 00°C for 0.1 to 3 hours, the first part can be subjected to constant temperature treatment to create a bainite structure, and the second part can be carburized and quenched at the same time, resulting in large joints. In addition to being able to obtain strength, it is also possible to achieve the toughening of the base material, and furthermore, it is possible to obtain the effect that only one heat treatment is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al及び(blはそれぞれ従来の自動車用ミッ
ションギヤの側面図及び1lTllili図、第2図は
本発明の一実施例方法による自動車用ミッションギヤの
製造工程を示す図、第3図(a)及び(b)はそれぞれ
上それぞれ上記自動軍用ミッションギヤ各部の金属組織
の顕微鏡写真であり、第5図(al及び゛(b)はそれ
ぞれギヤ2の浴接後でかつ熱処理及び゛熱処理後の金属
組織の顕微蜆や写真、第6図(ス)及び(b)はそれぞ
れクラッチコーン3表面の浴接段でかつ熱処理前及び熱
処理後の金属組織の顕微鏡写真、第6図(C)はクラッ
チコーン3内部の熱処理後の金属組織の顕微蹴写真、第
7図(a)及び(b)はそれぞれ浴接ビード部4の浴接
後でかつ熱処理前及び熱処理後の金属組織の顕微蜆写真
、第8図は恒温処理温度に対する上記自動車用ミッショ
ンギヤの浴接ビード部の引張強さ・伸び及び硬度の関係
を示す図、第9図は上記目動車用ミッションギヤにおけ
るクラッチコーン3の浸炭深さの測定結果を示す図であ
る。 1・・・ミッションギヤ(複合部品)、2・・・ギヤ(
第1#部品)、3・・・クラッチコーン(第2番部品)
。 特許出願人 東洋工業株式会社
FIG. 1 (al and (bl) are respectively a side view and a side view of a conventional transmission gear for an automobile; FIG. 2 is a diagram showing the manufacturing process of an automobile transmission gear according to an embodiment of the present invention; Figures a) and (b) are micrographs of the metal structure of each part of the above-mentioned automatic military mission gear, respectively. Figure 6 (S) and (b) are microscopic photographs of the metal structure of the clutch cone 3 surface before and after heat treatment at the bath contact stage, respectively, and Figure 6 (C) is a microscopic photograph of the metal structure. FIGS. 7(a) and 7(b) are microscopic photographs of the metal structure inside the clutch cone 3 after heat treatment, and FIGS. 7(a) and (b) are microscopic photographs of the metal structure of the welded bead portion 4 after bath welding, before and after heat treatment, respectively. , FIG. 8 is a diagram showing the relationship between the tensile strength, elongation, and hardness of the bath-welded bead of the above transmission gear for an automobile with respect to the constant temperature treatment temperature, and FIG. 9 is a diagram showing the carburization depth of the clutch cone 3 in the above mission gear for a driven wheel. It is a diagram showing the measurement results of 1...Mission gear (composite part), 2...Gear (
1st part), 3...Clutch cone (2nd part)
. Patent applicant: Toyo Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)2つの部品を溶接してなる複合部品の製造方法で
あって、鋳鉄材料にて第1部品を鋳造した後該第1部品
の溶接接合すべき部分を機械加工する一方、浸炭鋼製の
第2部品の溶接接合すべ゛き部分を機械加工し、この機
械加工された第1部品と第2部品の両者の溶接接合すべ
き部分を当接させて浴接して複合部品を製作し、この複
合部品を浸炭雰囲気内で850〜950℃にて0.5〜
10時間加熱した後220〜300℃にて0.1〜3時
間保持し第1部品を恒温処理にてベイナイト組織にする
オーステンパ処理と第2部品の表向に浸炭1−を形成し
それを焼入する浸炭焼入処理とを同時番こ行なうこ′と
を特徴とする鋳鉄と鋼とを溶接してなる複合部品の製造
方法。
(1) A method for manufacturing a composite part made by welding two parts, in which the first part is cast with cast iron material, and then the part of the first part to be welded is machined, while the part made of carburized steel is machined. Machining the part of the second part that should be welded together, and making the parts of the machined first part and second part that should be welded together come into contact with each other to produce a composite part, This composite part was processed at 850 to 950℃ in a carburizing atmosphere to
After heating for 10 hours, the first part is kept at 220 to 300°C for 0.1 to 3 hours, and the first part is subjected to an austempering treatment to form a bainite structure through constant temperature treatment, and a carburized layer 1- is formed on the surface of the second part, which is then sintered. A method for manufacturing composite parts made by welding cast iron and steel, characterized in that a carburizing and quenching treatment is carried out simultaneously.
JP18568982A 1982-10-20 1982-10-20 Manufacture of composite member consisting of welded cast iron and steel Granted JPS5974275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18568982A JPS5974275A (en) 1982-10-20 1982-10-20 Manufacture of composite member consisting of welded cast iron and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18568982A JPS5974275A (en) 1982-10-20 1982-10-20 Manufacture of composite member consisting of welded cast iron and steel

Publications (2)

Publication Number Publication Date
JPS5974275A true JPS5974275A (en) 1984-04-26
JPH0210223B2 JPH0210223B2 (en) 1990-03-07

Family

ID=16175137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18568982A Granted JPS5974275A (en) 1982-10-20 1982-10-20 Manufacture of composite member consisting of welded cast iron and steel

Country Status (1)

Country Link
JP (1) JPS5974275A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589485A1 (en) * 1985-11-05 1987-05-07 Nippon Telegraph & Telephone Surface-treated magnesium or magnesium alloy and process for the surface-treatment of magnesium or of a magnesium alloy
JP2007170622A (en) * 2005-12-26 2007-07-05 Gkn ドライブライン トルクテクノロジー株式会社 Joint structure of torque transmission member, joining method for torque transmission member, and power transmission device using them
WO2012026587A1 (en) * 2010-08-27 2012-03-01 株式会社エフ・シ-・シ- Integrated member and manufacturing method therefor
CN102796852A (en) * 2012-07-16 2012-11-28 鑫光热处理工业(昆山)有限公司 Carburizing reinforced isothermal quenching workpiece and processing method thereof
CN102941392A (en) * 2012-11-15 2013-02-27 大连船舶重工集团装备制造有限公司 Method suitable for welding low alloy high strength plate and low alloy steel casting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589485A1 (en) * 1985-11-05 1987-05-07 Nippon Telegraph & Telephone Surface-treated magnesium or magnesium alloy and process for the surface-treatment of magnesium or of a magnesium alloy
JP2007170622A (en) * 2005-12-26 2007-07-05 Gkn ドライブライン トルクテクノロジー株式会社 Joint structure of torque transmission member, joining method for torque transmission member, and power transmission device using them
WO2012026587A1 (en) * 2010-08-27 2012-03-01 株式会社エフ・シ-・シ- Integrated member and manufacturing method therefor
JP2012045592A (en) * 2010-08-27 2012-03-08 F C C:Kk Integrated member, and method of manufacturing the same
US9346117B2 (en) 2010-08-27 2016-05-24 Kabushiki Kaisha F.C.C. Method of manufacturing an integrated member
CN102796852A (en) * 2012-07-16 2012-11-28 鑫光热处理工业(昆山)有限公司 Carburizing reinforced isothermal quenching workpiece and processing method thereof
CN102941392A (en) * 2012-11-15 2013-02-27 大连船舶重工集团装备制造有限公司 Method suitable for welding low alloy high strength plate and low alloy steel casting

Also Published As

Publication number Publication date
JPH0210223B2 (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US5019182A (en) Method of forming hard steels by case hardening, shot-peening and aging without tempering
JP3387427B2 (en) Heat treatment method for steel
KR20070108569A (en) Carburized induction-hardened component
CN101233247A (en) Steel members, method for heat treatment of the same, and process for production thereof
US4222793A (en) High stress nodular iron gears and method of making same
KR100208151B1 (en) Heating treatment for steel
GB2337271A (en) A method of manufacturing hardened steel components
JPS5974275A (en) Manufacture of composite member consisting of welded cast iron and steel
JPH0432537A (en) Member for high strength machine structural use excellent in bearing strength
US6019857A (en) Carburized hardening process and carburized hardened power transmission members
US6187118B1 (en) Method for heat-treating steel work pieces
JPH0313522A (en) Heat treatment of cast iron
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP4219863B2 (en) High-strength bainite-type nitrided parts and manufacturing method thereof
US8388767B2 (en) Carbonitriding low manganese medium carbon steel
JPH1136060A (en) Quenching method for preventing heat treating strain in case hardening steel
JP2001131688A (en) Air-hardened low or medium carbon steel for improving heat treatment
JPH06192737A (en) Method for heat-treating joined body constituted of different kinds of material
JPH1136016A (en) Quenching method for case hardening steel capable of preventing heat treatment strain
JPH0679541A (en) Method for forming torque transmitting shaft for induction hardening
JPH09302411A (en) Production of non-decarburized and wear resistant spheroidal graphite cast iron casting parts
JPH06271941A (en) Method for hardening surface of steel
JPH024990A (en) Method for hardening surface of steel
JPS63210287A (en) Method for carbonitriding steel member