JPS5973679A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPS5973679A
JPS5973679A JP18171082A JP18171082A JPS5973679A JP S5973679 A JPS5973679 A JP S5973679A JP 18171082 A JP18171082 A JP 18171082A JP 18171082 A JP18171082 A JP 18171082A JP S5973679 A JPS5973679 A JP S5973679A
Authority
JP
Japan
Prior art keywords
rotor
spindle
nozzle
pulse
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18171082A
Other languages
Japanese (ja)
Inventor
Teruo Maruyama
照雄 丸山
Minoru Tanaka
實 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18171082A priority Critical patent/JPS5973679A/en
Publication of JPS5973679A publication Critical patent/JPS5973679A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To provide a flow amount control valve excellent in response characteristics, by using, for example, a pulse motor as a drive source for a spindle through utilizing a thrust exerted on an electric current or a magnetic body placed in a magnetic field. CONSTITUTION:A stator 12 is provided with windings at three poles A, B, C, and when an input is provided in A phase, a rotor 13 is moved to the position indicated by (b). When a pulse input is provided in B phase, the rotor 13 is rotated counterclockwise by 30 deg., and is stopped. When a pulse is inputted into the C-phase winding, the rotor 13 is rotated in the same direction as above by 30 deg., and by repeating these operations, the rotor 13 is maintained at an arbitrary position. The rotor 13 is connected directly to the spindle 10, so that the spindle 10 is moved in the axial direction by the rotation of the rotor 13, and the degree of opening of a nozzle 15 is varied. By sufficiently reducing the pitch angle of a screw 11, reduction ratio of the axial displacement of the spindle 10 to the angle of rotation of the rotor 13 can be enlarged. Accordingly, even when the number of poles of the pulse motor is small, the open area of the nozzle 15 can be varied in a wide range, and a sufficiently high accuracy can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍空調機器、あるいはガス機器等に用いる
流量制御弁に関するものである。以下、本発明を、冷凍
サイクルの膨張弁に適用した実施例について説明する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flow control valve used in refrigeration and air conditioning equipment, gas equipment, and the like. Hereinafter, an embodiment in which the present invention is applied to an expansion valve of a refrigeration cycle will be described.

従来例の構成とその問題点 近年の省エネの動向により、冷凍空調機器の高効率化は
、大きな社会的ニーズとなっている。冷凍サイクルの最
適化を図る上で、膨張弁の占める2べ− 位置は大きく、近年、従来から用いられていたキャピラ
リーチー−プや温度式膨張弁に変わり第1図で示す様な
熱電式膨張弁が用いられる様になってきた。1はスピン
ドル、2はノ(ネ、3はケース、4は端子、5はヒータ
、6は駆動用)くイメタル、7はプレート、8は補正用
バイメタルである。゛上記熱伝式膨張弁は、温度検出セ
ンサーと電子制御部を組み合せることによシ、スーツぐ
−ヒート制御をはじめとする各種機能を有し、使用負荷
範囲の拡大や、圧縮機の能力可変の動向に対応すること
ができる。しかし、冷凍サイクルの熱負荷の条件が急峻
に変化する場合、例えば、カーエアコンの冷凍サイクル
に上記熱電膨張弁を適用した場合、その作動原理から決
まる追従性(応答性)の遅れが、冷凍サイクルの最適化
を図る上で、大きな問題点となった。熱電式膨張弁の応
答性は、ヒーターに印加した電圧に対する冷媒流量特性
から得られる。例えば、上記膨張弁に瞬時定電圧を印加
したとき、冷媒流量になるまで、t−2〜6分の時間を
必要とした。追従性の遅れのために、制御系の閉ループ
ゲインを大きくとれず、冷凍能力は設定値(目標値)を
基準とした周期的な変動をともなう。また、カーエアコ
ンの場合、熱負荷の条件は、車両の走行状態(エンジン
の回転数)によって、大幅、かつ、急峻に変化する。そ
れゆえ、上記膨張弁の追従性の遅れは、車両のスタート
時のクールダウン時の十分な対応が難しい等の問題点が
あった。
Conventional configurations and their problems Due to recent trends in energy conservation, increasing the efficiency of refrigeration and air conditioning equipment has become a major social need. In optimizing the refrigeration cycle, the expansion valve occupies a large role, and in recent years, the conventionally used capillary cheep and thermoelectric expansion valves have been replaced by thermoelectric expansion valves as shown in Figure 1. Valves have come to be used. 1 is a spindle, 2 is a case, 4 is a terminal, 5 is a heater, and 6 is a bimetal for driving, 7 is a plate, and 8 is a bimetal for correction.゛By combining a temperature detection sensor and an electronic control unit, the heat transfer type expansion valve has various functions such as suit heat control, expanding the operating load range and increasing the compressor capacity. Able to respond to variable trends. However, when the heat load conditions of the refrigeration cycle change rapidly, for example, when the thermoelectric expansion valve described above is applied to the refrigeration cycle of a car air conditioner, a delay in followability (responsiveness) determined by its operating principle will cause the refrigeration cycle to change rapidly. This became a major problem in optimizing the process. The responsiveness of the thermoelectric expansion valve is obtained from the refrigerant flow rate characteristics with respect to the voltage applied to the heater. For example, when an instantaneous constant voltage was applied to the expansion valve, it took t-2 to 6 minutes to reach the refrigerant flow rate. Due to the delay in followability, the closed loop gain of the control system cannot be increased significantly, and the refrigerating capacity is accompanied by periodic fluctuations based on the set value (target value). Further, in the case of a car air conditioner, the heat load conditions change significantly and sharply depending on the driving condition of the vehicle (engine speed). Therefore, the delay in follow-up performance of the expansion valve poses problems such as difficulty in adequately responding to the cool-down period at the time of starting the vehicle.

発明の目的 本発明は、従来制御弁に係るこれらの問題点を解消した
ものである。
OBJECTS OF THE INVENTION The present invention solves these problems associated with conventional control valves.

発明の構成 本発明は磁界中におかれた電流、あるいd、磁性体が受
ける推力を利用して、例えばパルスモータをスピンドル
の駆動源とすることにより、応答性の極めてすぐれた流
量制御弁を提供するものである。
Structure of the Invention The present invention provides a flow control valve with extremely high responsiveness by using a current placed in a magnetic field, or a thrust force exerted by a magnetic body, for example, by using a pulse motor as a drive source for a spindle. It provides:

実施例の説明 第2図は、本発明の一実施例を示すもので、電気変位変
換の手段であるパルスモータの回転子にスピンドルを直
結し、かつスピンドルに、回転運動を直線運動に変換す
るネジ部を形成することにより、入力パルス数に比例し
て、ノズルの開閉度を制御出来る様にした膨張弁である
。1oはスピンドル、11はネジ部、12はパルスモー
タの固定子、13は回転子、14はスペーサ、16はノ
ズル、16は流出孔、17は流入孔、18は空隙部、1
9は上部フタである。固定子12はA、B。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an embodiment of the present invention, in which a spindle is directly connected to the rotor of a pulse motor, which is a means of electrical displacement conversion, and the spindle converts rotational motion into linear motion. By forming a threaded portion, this expansion valve can control the degree of opening and closing of the nozzle in proportion to the number of input pulses. 1o is a spindle, 11 is a screw part, 12 is a stator of a pulse motor, 13 is a rotor, 14 is a spacer, 16 is a nozzle, 16 is an outflow hole, 17 is an inflow hole, 18 is a gap, 1
9 is an upper lid. The stators 12 are A and B.

C3極に巻線があり、A相に入力が入れば第2図イで示
される位置に回転子13がくる。次のパルス入力がB相
に入れば、回転子13は300  反時計方向に動いて
靜市する。次にC相巻線にパルスがくれば、同方向に3
oO動く、これをくりかえすことにより、回転子13は
任意の位置を保つことが出来る。回転子1′3はスピン
ドル1oに直結しており、回転子13の回転によって、
スピンドル10は軸方向に移動し、ノズル16の開閉度
が変わる。ネジ11のピッチ角を十分小さくすることに
より、回転子13の回転角度に対するスピンドル10の
軸方向変位の縮小率を大きくすることが出来る。したが
って、パルスモータの極数(固定子12の個数)は十分
粗くても、ノズル16の開口面積は広い範囲でかつ、十
分な高い精度を得ることが出来る。スピンドル10i1
、空隙部18の間隙の範囲で軸方向に自由に移動出来る
が、通常流量制御に必要なノズルの変位は数頗であり、
回転子13と固定子12の間で形成される磁気回路には
、はとんど影響を与えない。したがって、第2図で示し
た実施例ではノズルの開口面積の制御範囲では、回転子
13を駆動するトルクはほと ゛んど一定であった。熱
負荷変動の激しい、例えば、カーエアコンの冷凍サイク
ルの膨張弁に、応答性の優れたサーボ弁等を適用した実
験の結果、冷凍サイクルの過渡的な状態における圧力変
動のために、パルプがチャタリング現象を発生し、冷凍
サイクルの制御が不可能となる問題点があった。チャタ
リング現象は、圧力の変化に対するパルプの追従特性が
時間の遅れをともなうがゆえに発生する自励振動である
が、本発明の実施例である膨張弁では、スピンドル1o
の軸方向剛性が十分に大6/、 ′ きいために、前述したチャタリング現象は回避出来る。
There is a winding at the C3 pole, and when input is applied to the A phase, the rotor 13 comes to the position shown in FIG. 2A. When the next pulse input enters the B phase, the rotor 13 moves 300 degrees counterclockwise and becomes silent. Next, when a pulse comes to the C phase winding, 3
By repeating the oO movement, the rotor 13 can be maintained at any desired position. The rotor 1'3 is directly connected to the spindle 1o, and as the rotor 13 rotates,
The spindle 10 moves in the axial direction, and the degree of opening and closing of the nozzle 16 changes. By making the pitch angle of the screw 11 sufficiently small, the reduction ratio of the axial displacement of the spindle 10 with respect to the rotation angle of the rotor 13 can be increased. Therefore, even if the number of poles of the pulse motor (the number of stators 12) is sufficiently small, the opening area of the nozzle 16 can be within a wide range and sufficiently high accuracy can be obtained. spindle 10i1
, the nozzle can move freely in the axial direction within the gap of the cavity 18, but normally the displacement of the nozzle required for flow rate control is several orders of magnitude.
The magnetic circuit formed between the rotor 13 and the stator 12 is hardly affected. Therefore, in the embodiment shown in FIG. 2, the torque driving the rotor 13 was almost constant within the control range of the nozzle opening area. As a result of an experiment in which a highly responsive servo valve was applied to the expansion valve of a car air conditioner's refrigeration cycle, where the heat load fluctuates rapidly, for example, the pulp chattered due to pressure fluctuations during the transient state of the refrigeration cycle. There was a problem in that this phenomenon occurred, making it impossible to control the refrigeration cycle. The chattering phenomenon is a self-excited vibration that occurs because the follow-up characteristic of the pulp to pressure changes is accompanied by a time delay.
Since the axial rigidity of 6/,' is sufficiently large, the chattering phenomenon described above can be avoided.

ノズル部に加わる圧力によって、スピンドル1oは矢印
:Dの軸方向に力を受けるが、ネジ部11のピッチ角が
十分小さいために、回転子13の駆動トルクは十分に小
さくてよい。
The spindle 1o receives a force in the axial direction of arrow D due to the pressure applied to the nozzle portion, but since the pitch angle of the threaded portion 11 is sufficiently small, the driving torque of the rotor 13 may be sufficiently small.

第3図は、本発明の他の実施例を示すもので、20はス
ピンドル、21はネジ部、22はパルスモータの固定子
、23は回転子、24はスペーサ、25はノズル、26
は流入孔、27は流出孔、28はスラスト軸受、29は
スラスト支持球、3oは回転防止剛球、31はミゾ部、
32は止メネジである。第3図の構造では、回転子23
の回転運動は、回転子23内部に形成されたネジ部とス
ピンドル2oに形成されだオネジ部のかん台部分で軸方
向の運動に変換される。回転子23の軸方向は、上下に
設置されたスラスト支持球29とスラスト軸受28によ
って規制される。スピンドル2oの側面には、回転防止
剛球3oがミゾ部31に一部収納された形で設置されて
おり、それゆえ、スピンドル2oは回転せず軸方向のみ
に変位する。本実施例は、前述した様に、回転子23は
軸方向に移動しないために、回転子23と固定子22の
間で形成される磁気回路は、スピンドル2oの変位によ
って何ら影響を受けない。それゆえ、スピンドル2oの
可動ストロークを十分大きくとることが出来る。
FIG. 3 shows another embodiment of the present invention, in which 20 is a spindle, 21 is a threaded portion, 22 is a stator of a pulse motor, 23 is a rotor, 24 is a spacer, 25 is a nozzle, and 26 is a stator of a pulse motor.
is an inflow hole, 27 is an outflow hole, 28 is a thrust bearing, 29 is a thrust support ball, 3o is a rotation prevention hard ball, 31 is a groove,
32 is a set screw. In the structure of FIG. 3, the rotor 23
The rotational motion is converted into axial motion by the threaded portion formed inside the rotor 23 and the pedestal portion of the male threaded portion formed on the spindle 2o. The axial direction of the rotor 23 is regulated by a thrust support ball 29 and a thrust bearing 28 installed above and below. A rotation-preventing rigid ball 3o is installed on the side surface of the spindle 2o so as to be partially housed in a groove 31, so that the spindle 2o does not rotate but is displaced only in the axial direction. In this embodiment, as described above, since the rotor 23 does not move in the axial direction, the magnetic circuit formed between the rotor 23 and the stator 22 is not affected by the displacement of the spindle 2o. Therefore, the movable stroke of the spindle 2o can be made sufficiently large.

発明の効果 以上、本発明によると、入力パルスの数に比例して、冷
媒流量を制御出来るために、従来アナログ信号を用いて
流量を制御した熱電式等と比べて、信号の処理が極めて
容易である。加えて、シンプル、コンパクトに構成出来
、その効果は顕著なものがある。
As described above, according to the present invention, since the refrigerant flow rate can be controlled in proportion to the number of input pulses, signal processing is extremely easy compared to conventional thermoelectric type systems that control the flow rate using analog signals. It is. In addition, it can be configured simply and compactly, and its effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例である熱電式膨張弁の正面断面図、第2
図イは本発明の一実施例であるパルスモータによる膨張
弁の同正面断面図、第2図口は同膨張弁のxX断面図、
第3図は本発明の他の実施例を示す膨張弁の正面断面図
である。 13・・・・・・可動部、16・・・・・・ノズル、1
7・・・・・流入孔、16・・・・・・流出孔。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Figure 1 is a front sectional view of a conventional thermoelectric expansion valve;
Figure A is a front sectional view of an expansion valve using a pulse motor, which is an embodiment of the present invention, and Figure 2 is an xX sectional view of the same expansion valve.
FIG. 3 is a front sectional view of an expansion valve showing another embodiment of the present invention. 13...Movable part, 16...Nozzle, 1
7... Inflow hole, 16... Outflow hole. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 磁界中におかれた電流に働く力によって、可動部に推力
を与え、かつ、デジタル的な入力信号によって制御され
る電気・変位変換の手段と、前記可動部の変位によって
流体流通路の開口面積が変化するノズルと、流体の流入
孔、流出孔より構成される流量制御弁。
Electricity/displacement conversion means that applies thrust to a movable part by the force acting on a current placed in a magnetic field and is controlled by a digital input signal, and an opening area of a fluid flow path by the displacement of the movable part. A flow control valve consisting of a nozzle that changes the flow rate, and a fluid inlet and outlet hole.
JP18171082A 1982-10-15 1982-10-15 Flow control valve Pending JPS5973679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18171082A JPS5973679A (en) 1982-10-15 1982-10-15 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18171082A JPS5973679A (en) 1982-10-15 1982-10-15 Flow control valve

Publications (1)

Publication Number Publication Date
JPS5973679A true JPS5973679A (en) 1984-04-25

Family

ID=16105499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18171082A Pending JPS5973679A (en) 1982-10-15 1982-10-15 Flow control valve

Country Status (1)

Country Link
JP (1) JPS5973679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976227A (en) * 1990-04-16 1990-12-11 Draper David J Internal combustion engine intake and exhaust valve control apparatus
WO1996008687A1 (en) * 1994-09-12 1996-03-21 Bianchi International Competition holsters
CN1046975C (en) * 1994-09-16 1999-12-01 皮克诺尔公司 Throttle valve for compressed air or similar mediums and the use thereof in an air jet loom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976227A (en) * 1990-04-16 1990-12-11 Draper David J Internal combustion engine intake and exhaust valve control apparatus
WO1996008687A1 (en) * 1994-09-12 1996-03-21 Bianchi International Competition holsters
CN1046975C (en) * 1994-09-16 1999-12-01 皮克诺尔公司 Throttle valve for compressed air or similar mediums and the use thereof in an air jet loom

Similar Documents

Publication Publication Date Title
US4593881A (en) Electronic expansion valve
US4807445A (en) Refrigeration system
EP2227723B1 (en) Low power electric operated thermostatic mixing valve
US4616483A (en) Diffuser wall control
JPS60140075A (en) Method of controlling refrigeration cycle
JPS5973679A (en) Flow control valve
JPS58191383A (en) Electronic expansion valve
JPS63154891A (en) Theread groove type vacuum pump
JPH0245104B2 (en)
JPH08312821A (en) Sealed type flow rate regulating valve
JPS6325398A (en) Centrifugal compressor and control method thereof
JPS5973680A (en) Flow control valve
Cai et al. EM servo control for axial force balance of scroll compressors without online force sensors
JPS6130127Y2 (en)
JPH01275977A (en) Proportional flow control valve and indoor temperature control system
JPH08284792A (en) Flowing water controller for waterwheel
JP3908843B2 (en) Refrigeration / refrigeration cycle equipment and differential pressure regulating valve
JPH08270538A (en) Water flow control device for water turbine
JPH0136026B2 (en)
JPH0354274B2 (en)
JPH035608B2 (en)
WO2022186075A1 (en) Vacuum pump
KR19990080511A (en) Piezoelectric displacement expansion valve and cooling control system using the same
JPH025317Y2 (en)
JP2977340B2 (en) gas turbine