JPS5972764A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5972764A
JPS5972764A JP18291782A JP18291782A JPS5972764A JP S5972764 A JPS5972764 A JP S5972764A JP 18291782 A JP18291782 A JP 18291782A JP 18291782 A JP18291782 A JP 18291782A JP S5972764 A JPS5972764 A JP S5972764A
Authority
JP
Japan
Prior art keywords
region
passivation film
regions
voltage
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18291782A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18291782A priority Critical patent/JPS5972764A/en
Publication of JPS5972764A publication Critical patent/JPS5972764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a highly reliable, high voltage resisting, lateral type semiconductor device, by alleviating the concentration of an electric field on the surface of a base region, and providing a means by which elongation of a depletion region or a channel is stopped without imparing the characteristics of other elements. CONSTITUTION:An n<-> type island region 1, which is separated by dielectric, has an n<+> embedded layer 4. In an Si wafer having the island region 1, n regions 11 and 12 are formed by selective ion implantation and diffusion, with a passivation film 7 as a mask. Then, p regions 2 and 3 are formed. Contact through holes and Al electrodes 5 and 6 and a second passivation film 8 are formed. The opening parts for forming the n regions are formed into the passivation film 7 by photoetching when the n regions 11 and 12 are selectively formed. In this process, the passivation film on the n regions 11 and 12 becomes inevitably thin. Therefore, field plate effect is sufficiently applied, and adequate electric field distribution can be formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に信頼性の高い高耐圧ラ
テラル型半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a highly reliable high voltage lateral type semiconductor device.

〔従来技術〕[Prior art]

半導体技術の進歩に伴い、従来個別素子で構成していた
高耐圧回路を集積化した高耐圧ICの開発が活発化して
いる。これらの高耐圧ICにおいてはラテラル構造の高
耐圧素子(トランジスタやサイリスタ、FET等)が用
いられることが多い。
BACKGROUND OF THE INVENTION As semiconductor technology advances, development of high voltage ICs that integrate high voltage circuits that were conventionally composed of individual elements is becoming more active. These high voltage ICs often use lateral structure high voltage elements (transistors, thyristors, FETs, etc.).

しかし従来のこれらの高耐圧ラテラル素子では耐圧を上
げると高信頼性の実現が困難になるという欠点があった
However, these conventional high-voltage lateral elements have a drawback in that increasing the breakdown voltage makes it difficult to achieve high reliability.

第1図はフィールドプレート構造を用いた従来の高耐圧
ラテラルpnp)ランジスタラ示ス。この図を用いて従
来技術の欠点を詳しく述べる。
Figure 1 shows a conventional high-voltage lateral pnp transistor using a field plate structure. The drawbacks of the prior art will be described in detail using this figure.

第1図において、1はn型導電性の半導体基体(Si)
、2.aは上方主表面に拡散により設けたp型導電性の
コレクタ領域(PC)、エミッタ領域(Pg)、4は下
側主表面に設けたn型導電性の高不純物濃度領域(”)
、5.6はパッシベーション膜(8i02)7の開孔を
通してコレクタ、エミツタ両頭域2,3の各々に低抵抗
接触させたコレクタ、エミッタ電極(At)、8は第2
のパッシベーション膜、9は半導体基体1の下側主表面
に設けた絶縁膜である、 同、半導体基体1の不純物が拡散されなかった領域はベ
ース領域(n、 ) 1 aとして働き、この領域1a
に低抵抗接触させたベース電極は図示されていない。
In FIG. 1, 1 is a semiconductor substrate (Si) with n-type conductivity.
, 2. a is a p-type conductive collector region (PC) and an emitter region (Pg) provided by diffusion on the upper main surface, and 4 is an n-type conductive high impurity concentration region ('') provided on the lower main surface.
, 5.6 is a collector and emitter electrode (At) which is brought into low resistance contact with each of the collector and emitter double-headed areas 2 and 3 through the opening of the passivation film (8i02) 7, and 8 is the second
The passivation film 9 is an insulating film provided on the lower main surface of the semiconductor substrate 1. Similarly, the region of the semiconductor substrate 1 where impurities are not diffused functions as a base region (n, ) 1a, and this region 1a
The base electrode in low resistance contact with is not shown.

一般にICのパッシベーション膜7中KidNa等の正
電荷が存在する。又ベース領域1aとパッシベーション
膜7の界面付近には正電荷をもつ界面準位や固定電荷が
存在する。高耐圧を実現するためにベース領域1aの不
純物濃度を小さくして電圧を印加した場合に空乏層が拡
がシやすくなるようにしても、上記の正電荷がパッシベ
ーション膜7中に存在するためにベース領域1a表面付
近に負のチャージが誘起され表面付近はバルクよりも高
濃度になシ耐圧が小さい値におさえられてしまう。
Generally, positive charges such as KidNa are present in the passivation film 7 of an IC. Further, near the interface between the base region 1a and the passivation film 7, there are interface states and fixed charges with positive charges. Even if the impurity concentration in the base region 1a is reduced in order to achieve a high breakdown voltage so that the depletion layer expands more easily when a voltage is applied, the above positive charges exist in the passivation film 7. Negative charges are induced near the surface of the base region 1a, and the concentration near the surface is higher than that of the bulk, and the breakdown voltage is suppressed to a small value.

コレクタ電極5をコレクタ領域2の表面接合端よシも張
9出したいわゆるフィールドプレート構造にすると、コ
レクタ電域2に電圧を印加した時にフィールドプレート
部からの電界により81表面付近に誘起された負の゛電
荷が排斥され、ベース領域1a表面付近の空乏層を点緋
にて示すように拡がり易くでき電界集中を緩和できる。
If the collector electrode 5 has a so-called field plate structure in which the surface junction end of the collector region 2 is also extended 9, when a voltage is applied to the collector voltage region 2, the negative energy induced near the surface 81 by the electric field from the field plate portion is generated. The electric charges are excluded, and the depletion layer near the surface of the base region 1a can be easily expanded as shown by dotted scarlet, and electric field concentration can be alleviated.

高耐圧を実現するにはパッシベーションM7f:薄<シ
フイールドプレート効果をベース領域1a表面によシ大
きく作用させるとともにバルク内のコレクタ接合の電界
集中緩和にも寄与させるようにするとよい。しかしパッ
シベーション膜7を薄くしすぎるとフィールドプレート
端直下付近のベース領域1a表面付近で電界集中が激し
くなり逆に耐圧が低下してしまう。従ってパッシベーシ
ョン膜7の厚さはある適正範囲の値にする必要が必る。
In order to realize a high breakdown voltage, it is preferable to make the passivation M7f:thin<Shifield plate effect exert a large effect on the surface of the base region 1a, and also to contribute to the relaxation of electric field concentration at the collector junction in the bulk. However, if the passivation film 7 is made too thin, the electric field will be concentrated near the surface of the base region 1a directly under the edge of the field plate, and the withstand voltage will decrease. Therefore, the thickness of the passivation film 7 must fall within a certain appropriate range.

上記のパッシベーション膜7及びベース領域1aとの界
面の正電荷が大きいと上記の適正パッシベーション膜厚
の範囲はきわめて狭まるので、正電荷は少なくする必要
がある。
If the positive charge at the interface between the passivation film 7 and the base region 1a is large, the range of the above-mentioned appropriate passivation film thickness will be extremely narrow, so the positive charge must be reduced.

フィールドプレートを用いてより高耐圧を実現するには
上記の点を考慮しつつベース領域1aの不純物濃度を下
げるとよい。しかしこの場合、不純物濃度を下げるに伴
い下記■、■の影響が顕著になる。
In order to realize a higher breakdown voltage using a field plate, it is preferable to lower the impurity concentration in the base region 1a while taking the above points into consideration. However, in this case, as the impurity concentration is lowered, the following effects (1) and (2) become more pronounced.

■ 時間とともに第2パツシベーシヨン膜8上にこぼれ
チャージ10(通常負電荷)が蓄積してゆき、ベース領
域111.表面が空乏層化もしくは反転してp型化する
(チャネル形成)。
(2) Over time, spilled charges 10 (usually negative charges) accumulate on the second passivation film 8, and the base region 111. The surface becomes a depletion layer or is inverted to become p-type (channel formation).

■ ベース領域18表面の空乏)f4では電子がパッシ
ベーション膜7中に飛び込みトラップされ、ベース領域
18表面に正電荷を誘起する層 ので、ベース領域1a表面が空乏化する。
(2) Depletion on the surface of the base region 18) At f4, electrons jump into the passivation film 7 and are trapped, and as this layer induces positive charges on the surface of the base region 18, the surface of the base region 1a becomes depleted.

八 との■、■の現象は時間がたつにつれて進行する。この
ため素子に一定電圧を印加しておくと、時間がたつにつ
れてベース領域1a表面の空乏層がエミッタ領域3方向
にのびてゆきベース幅が小さくなってゆく。この結果ト
ランジスタの電流増幅率hyi+やリーク電流が増大し
、機能が損われる。
The phenomena of 8 and ■ and ■ progress over time. Therefore, if a constant voltage is applied to the element, as time passes, the depletion layer on the surface of the base region 1a extends toward the emitter region 3, and the base width becomes smaller. As a result, the current amplification factor hyi+ and leakage current of the transistor increase, and the function is impaired.

極端な場合は空乏層がエミッタ領域3に達しショートシ
てしまう。
In an extreme case, the depletion layer reaches the emitter region 3 and short-circuits.

このような空乏層やチャネルののびをおさえる手段とし
て高濃度領域すなわちチャネルカットが有効である。し
かしチャネルカットを設けるとベース幅が大きくなる。
A high concentration region, ie, a channel cut, is effective as a means of suppressing the growth of such a depletion layer or channel. However, providing a channel cut increases the base width.

高耐圧ICの場合、パッシベーション膜7は厚くなるの
でチャネルカット形成精度が悪くなシチャネルカットの
幅は10μm以上に及ぶ。又フィールドプレート端が高
濃度のチャネルカット上に及ぶとより一層電界集中が激
しくなってしまい初期耐圧が低下する。このためフィー
ルドプレートとチャネルカットの間には一定の距離を確
保する必要があシベース幅はさらに大きくなる。この結
果電流増幅率hFlの低下やしゃ新局波数の低下をまね
く。
In the case of a high voltage IC, the passivation film 7 is thick, so the width of the channel cut is 10 μm or more, which results in poor channel cut formation accuracy. Furthermore, if the edge of the field plate extends over a highly doped channel cut, the electric field concentration will become even more intense and the initial withstand voltage will drop. Therefore, it is necessary to maintain a certain distance between the field plate and the channel cut, which further increases the width of the base. This results in a decrease in the current amplification factor hFl and a decrease in the new station wave number.

以上のごとく不純物濃度の低い半導体基体1を用いて所
定の初期特性をもつ高耐圧ICを実現する場合、従来技
術では高信頼性の実現が困難である。
As described above, when realizing a high voltage IC with predetermined initial characteristics using the semiconductor substrate 1 with a low impurity concentration, it is difficult to achieve high reliability with the conventional technology.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来技術の欠点を解消した高信頼性の高
耐圧ラテラル型半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable, high voltage lateral type semiconductor device that eliminates the drawbacks of the prior art.

〔発明の概要〕[Summary of the invention]

本発明はベース領域表面の電界集中を緩和し、且つ他の
素子特性を損ねることなく空う層やチャネルののびを停
止できる手段を具備せしめることにより上記の目的を達
成するものである。
The present invention achieves the above object by providing means for alleviating electric field concentration on the surface of the base region and stopping the growth of empty layers and channels without impairing other device characteristics.

本発明の主要な構成は次のとうりである。The main configuration of the present invention is as follows.

ベース領域表面においてベース領域と同タイプの高濃度
領域を工9ミッタ又は(及び)コレクタ領域に接して設
けること。
A high concentration region of the same type as the base region is provided on the surface of the base region in contact with the collector region.

上記によシロベース幅を拡げることなく空乏層やチャネ
ルをストップできるのでトランジスタの電流増幅率hF
lやしゃ断層波数等を損ねることなく、高信頼性を実現
できる。高濃度領域がない場合はベース領域表面での再
結合によシ注入したキャリアが消失してしまい伝達効率
が小さかった。
As described above, the depletion layer and channel can be stopped without increasing the white base width, so the current amplification factor of the transistor hF
It is possible to achieve high reliability without impairing the wave number of the fault wave number, etc. If there was no high concentration region, the injected carriers would disappear due to recombination on the surface of the base region, resulting in low transfer efficiency.

高濃度領域はキャリアを反射し、消失させることはない
ので、この部分に接したエミッタ接合での注入効率は低
下するが、従来の伝達効率の低下と同程度であり電流増
幅率hFlの低下にはいたらない。
Since the high concentration region reflects the carriers and does not cause them to disappear, the injection efficiency at the emitter junction in contact with this region decreases, but this is about the same level as the conventional decrease in transfer efficiency, resulting in a decrease in the current amplification factor hFl. I don't need it.

さらにフィールドプレートを設け、高濃度領域上のパッ
シベーション膜を薄くすれば高電圧印加時に高濃度領域
にフィールドプレートをより効果的に作用させることが
できるので、この領域を空乏層化(もしくは一部をP反
転)できこの領域に適度の電界集中をもたらし分担電圧
を従来例よシも大きくできる。この結果従来例に比ベフ
ィールドプレート端直下の電界集中を緩和でき高耐圧を
実現できる。
Furthermore, if a field plate is provided and the passivation film on the high concentration region is thinned, the field plate can act more effectively on the high concentration region when a high voltage is applied. (P inversion) brings about an appropriate electric field concentration in this region, and the shared voltage can be made larger than in the conventional case. As a result, electric field concentration directly below the edge of the field plate can be alleviated compared to the conventional example, and a high withstand voltage can be achieved.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明になる実施例であり順・逆両方向の耐圧
が必要とされる高耐圧ラテラルpnpトランジスタであ
る。比抵抗30Ω・副のn型Si半導体基体1に拡散に
よりp型のコレクタ領域2とエミッタ領域3を形成し、
Asのイオン打込みにより半導体基体1より高不純物濃
度のn領域11.12を形成しである。コレクタ、エミ
ッタ両領域2.3の深さは約8μm、n領域11゜12
の深さは約5μmである。n領域の表面濃度Id約3 
X 1016cm−”である。パッシベーション膜7は
熱酸化膜にPSG−CVD膜を重ねた多層膜である。電
極5,6端下のパッシベーション膜厚は約3μmXn領
域x 1.12上のパッジベージE ン1lltn約1
.5μmである。パッシベーション膜の表面電荷密度N
FIは0.8〜2 X 1 o”crrl−2である。
FIG. 2 shows an embodiment of the present invention, which is a high voltage lateral pnp transistor that requires voltage resistance in both forward and reverse directions. A p-type collector region 2 and an emitter region 3 are formed by diffusion in a secondary n-type Si semiconductor substrate 1 with a specific resistance of 30Ω,
N regions 11 and 12 having a higher impurity concentration than the semiconductor substrate 1 are formed by As ion implantation. The depth of both the collector and emitter regions 2.3 is approximately 8 μm, and the n region is 11°12
The depth is approximately 5 μm. Surface concentration Id of n region approximately 3
The passivation film 7 is a multilayer film consisting of a thermal oxide film and a PSG-CVD film.The passivation film thickness under the ends of the electrodes 5 and 6 is approximately 3 μm. 1lltn approx. 1
.. It is 5 μm. Surface charge density N of passivation film
FI is 0.8-2 X 1 o" crrl-2.

コレクタ・エミッタ両領域2,3の間隔は約50μm1
n領域11.12の幅は各々約13μm、n領域11.
12にはさまれたn−ベース領域1aの表面露出領域は
約24μm、n領域11.12の先端から電極5,6の
先端までのそれぞれの距離が約7μm1電極間隔が約1
0μmである。
The distance between collector and emitter regions 2 and 3 is approximately 50 μm1
The width of each n-region 11.12 is approximately 13 μm.
The surface exposed area of the n-base region 1a sandwiched between the n-base regions 11 and 12 is about 24 μm, and the distance from the tip of the n-type region 11.12 to the tips of the electrodes 5 and 6 is about 7 μm.The electrode spacing is about 1.
It is 0 μm.

本実施例はICの一般的な製法で作製したn+埋込層4
を有する訪電体分離されたn−型島領域1 ’に有スル
S i ウェハに、パッシベーション膜7をマスクとし
た選択イオン打込みと拡散によJn領域11.12を形
成し、ついでp領域2.3を形成し、コンタクト用スル
ホール・At電極5゜(9) 6・第2パツシベーシヨン膜8を形成スルドイツた順序
で作製する。この製法で特長的なことはn領域11.1
2を選択的に形成する際ホトエツチングでn領域形成用
の開口部をパッシベーション膜7に形成するが、この工
程でn領域11.12上のパッシベーション膜は必然的
に薄くなることである。
In this example, the n+ buried layer 4 was manufactured using a general IC manufacturing method.
Jn regions 11 and 12 are formed on the Si wafer having a through hole in the n-type island region 1' separated from the current visitor body by selective ion implantation and diffusion using the passivation film 7 as a mask, and then the p region 2 .3 is formed, and a through hole for contact, an At electrode 5° (9) 6, and a second passivation film 8 are formed in the following order. The feature of this manufacturing method is that the n region 11.1
2, an opening for forming the n region is formed in the passivation film 7 by photoetching, but the passivation film on the n region 11, 12 inevitably becomes thinner in this step.

本装置ではn領域11.12をp領域2.3に接して形
成し、フィールドプレート先端下のパッシベーション膜
厚をn領域を具備しない第1図の従来例よシも若干薄く
したにもかかわらす450■の順・逆両方向の高耐圧を
実現できた。これはn領域11.12上のパッシベーシ
ョン膜ヲ薄くしフィールドプレート効果を十分効かせた
ことによシ適度の電界分布を形成できたことによる。す
なわち高電圧を印加した際、n領域11も空乏層化する
がn−ベース領域1aよりも高濃度なためこのn領域1
1の電界強度は高くな部分担電圧が大きくなる。この結
果n−ベース領域13表面の空乏層の分担電圧は低減し
フィールドプレート先(10) 端子のn−ベース領域18表面の電界強度も低減するた
めである。
In this device, the n-region 11.12 is formed in contact with the p-region 2.3, and the thickness of the passivation film under the tip of the field plate is slightly thinner than that of the conventional example shown in Fig. 1, which does not include the n-region. A high withstand voltage of 450■ in both forward and reverse directions was achieved. This is because the passivation film on the n-regions 11 and 12 is made thinner, and the field plate effect is made sufficiently effective, thereby making it possible to form an appropriate electric field distribution. That is, when a high voltage is applied, the n region 11 also becomes a depletion layer, but since it has a higher concentration than the n-base region 1a, this n region 1
1, the higher the electric field strength, the greater the partial charge voltage. As a result, the shared voltage of the depletion layer on the surface of the n-base region 13 is reduced, and the electric field strength on the surface of the n-base region 18 at the field plate tip (10) is also reduced.

高耐圧素子の主要な信頼性試験に高温耐圧ブロッキング
試験がある。この試験を湿度の高い状況下で実施した場
合、耐圧劣化を示す湿度の高さが信頼度の1つの目安と
なる。プラスチックモールドした本装置は85tZ’、
85%の湿度下で200Vの電圧印加を3000hr実
施したが耐圧劣化はみられなかった。同じプラスチック
モールドした第1図に示す従来例の場合は上記の試験で
は大半が耐圧劣化を示した。本装置の場合雰囲気の湿度
の影曽によりn−ベース領域表面に容易に空乏層が形成
されるので、高電圧を印加した際、空乏層がエミッタ領
域側に延びてくるが、第2図に点線で示したごとくn領
域12で停止されエミッタ領域3には達しないので高信
頼性を実現できたものである。
The main reliability test for high voltage devices is the high temperature voltage blocking test. When this test is conducted in a humid environment, the high humidity that indicates pressure resistance deterioration is one measure of reliability. This plastic molded device is 85tZ',
A voltage of 200V was applied for 3000 hours under 85% humidity, but no deterioration in voltage resistance was observed. In the case of the conventional example shown in FIG. 1, which was made of the same plastic mold, most of the cases showed deterioration in pressure resistance in the above test. In the case of this device, a depletion layer is easily formed on the surface of the n-base region due to the influence of atmospheric humidity, so when a high voltage is applied, the depletion layer extends toward the emitter region. As shown by the dotted line, the light is stopped at the n region 12 and does not reach the emitter region 3, thus achieving high reliability.

また、導通時にはエミッタ領域3から注入されたキャリ
アはn領域11.12で反射されるのでパッシベーショ
ン膜7との界面付近で再結合消失(11) するものが少なく、従って高い電流増幅率が得られ、し
ゃ新局波数は向上する。
Furthermore, during conduction, the carriers injected from the emitter region 3 are reflected by the n-region 11, 12, so there is less recombination and disappearance (11) near the interface with the passivation film 7, and therefore a high current amplification factor can be obtained. , the new station wave number will improve.

次に第2の実施例として第2図の実施例において、p領
域2にn+領領域具備せしめた構成でありその他は第1
の実施例と同じである。このn+呟域はラテラルサイリ
スタのnエミッタ、p領域2はpベース領域として機能
する。本装置でp領域2とn1領域の間に並列抵抗5に
Ωを接続した場合、順逆両方向の耐圧が450V、オン
・トリガ・電流が80μA1保持電流が170μAであ
υn領域11.12を形成しない従来装置より優れた特
性を示した。但しフィールドプレート下のバソ/ベーシ
ョン膜7は約3.2μmであり、従来装置よシも0,4
μm薄くせしめである。本装置は第1の実施例と同条件
の高温耐圧ブロッキングテストを行ったが耐圧劣化を示
さず高信頼性を確認できた。
Next, as a second embodiment, in the embodiment shown in FIG.
This is the same as the embodiment. This n+ region functions as the n emitter of the lateral thyristor, and the p region 2 functions as the p base region. In this device, when Ω is connected to the parallel resistor 5 between the p region 2 and the n1 region, the withstand voltage in both forward and reverse directions is 450 V, the on-trigger current is 80 μA, the holding current is 170 μA, and the υn region 11.12 is not formed. It showed better characteristics than conventional equipment. However, the batho/vation film 7 under the field plate has a thickness of about 3.2 μm, and the thickness is 0.4 μm compared to the conventional device.
The thickness should be μm. This device was subjected to a high-temperature pressure blocking test under the same conditions as the first example, and showed no deterioration in pressure resistance, confirming high reliability.

〔発明の効呆〕[Efficacy of invention]

以上説明した如く、本発明によれば、高信頼性、高耐圧
のラテラル半導体装置を得ることができる。
As explained above, according to the present invention, a lateral semiconductor device with high reliability and high breakdown voltage can be obtained.

(12)(12)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2チラルトランジスタを示す部分的縦断
面図、第2図は本発明の一実施例を示すラテラルトラン
ジスタの部分的縦断面図である。 1・・・半導体基体、1a・・・ベース領域、2・・・
コレクタ領域、3・・・エミッタ領域、5.6・・・電
極、7゜(13) 第7図 第?図
FIG. 1 is a partial vertical cross-sectional view showing a conventional bichral transistor, and FIG. 2 is a partial vertical cross-sectional view of a lateral transistor showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor base, 1a... Base region, 2...
Collector region, 3... Emitter region, 5.6... Electrode, 7° (13) Fig. 7? figure

Claims (1)

【特許請求の範囲】 1、一方導電型の半導体基体の一生表面にある距離を隔
てて2個の他方導電型の拡散領域が設けられ、各拡散領
域に上記−主表面上に設けられた第一の絶縁膜の開孔を
通して電極がそれぞれ低抵抗接触し、第二の絶縁膜が上
記第一の絶縁膜および電極上に設けられた半導体装置に
おいて、上記半導体基体の一生表面に各拡散領域の少な
くとも一方と隣接して該拡散領域の拡散深さよシ浅い拡
散深さをもって、該半導体基体と同導電型でよシ高不純
物濃度の拡散領域が設けられていることを特徴とする半
導体装置。 2、第1項において、各電極は第一の絶縁膜上を一方導
電型高不純物濃度拡散領域が設けられている領域を越え
て半導体基体と対応する位置まで延在されていることを
特徴とする半導体装置。
[Claims] 1. Two diffusion regions of the other conductivity type are provided at a certain distance on the surface of the semiconductor substrate of the other conductivity type, and each diffusion region has the above-mentioned diffusion region provided on the main surface. In a semiconductor device in which electrodes are in low-resistance contact through openings in a first insulating film, and a second insulating film is provided on the first insulating film and the electrodes, each diffusion region is formed on the surface of the semiconductor substrate. A semiconductor device characterized in that a diffusion region having the same conductivity type as the semiconductor substrate and having a higher impurity concentration is provided adjacent to at least one of the semiconductor substrates and having a diffusion depth shallower than the diffusion depth of the diffusion region. 2. In item 1, each electrode is characterized in that each electrode extends over the first insulating film beyond a region where one conductivity type high impurity concentration diffusion region is provided to a position corresponding to the semiconductor substrate. semiconductor devices.
JP18291782A 1982-10-20 1982-10-20 Semiconductor device Pending JPS5972764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18291782A JPS5972764A (en) 1982-10-20 1982-10-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18291782A JPS5972764A (en) 1982-10-20 1982-10-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5972764A true JPS5972764A (en) 1984-04-24

Family

ID=16126639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18291782A Pending JPS5972764A (en) 1982-10-20 1982-10-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5972764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774560A (en) * 1983-01-28 1988-09-27 U.S. Philips Corp. High voltage guard ring with variable width shallow portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774560A (en) * 1983-01-28 1988-09-27 U.S. Philips Corp. High voltage guard ring with variable width shallow portion

Similar Documents

Publication Publication Date Title
KR100886883B1 (en) Method for fabricating forward and reverse blocking devices
US20040166637A1 (en) Manufacturing method of semiconductor device
US6570229B1 (en) Semiconductor device
JPH03250670A (en) Semiconductor device and its manufacture
JPH037149B2 (en)
JPH0347593B2 (en)
US4051506A (en) Complementary semiconductor device
JPH0715006A (en) Integrated structure protective device
US6448588B2 (en) Insulated gate bipolar transistor having high breakdown voltage in reverse blocking mode
JP2950025B2 (en) Insulated gate bipolar transistor
KR0163875B1 (en) A semiconductor device and method for fabricating thereof
US6404012B1 (en) Semiconductor device having a reverse conductive type diffusion layer in an extended drain diffusion layer
JPH023266A (en) Bipolar semiconductor device having conductive recombination layer
JPH0648691B2 (en) Semiconductor device and manufacturing method thereof
US4520382A (en) Semiconductor integrated circuit with inversion preventing electrode
JPS61137368A (en) Semiconductor device
JPH0888290A (en) Semiconductor device and using method therefor
JPS5972764A (en) Semiconductor device
JPS584829B2 (en) semiconductor integrated circuit
JPH01149464A (en) Semiconductor device
JP2550702B2 (en) Power semiconductor device
JP2003508900A (en) Power semiconductor module structured vertically
JPS6327865B2 (en)
JPH04192366A (en) Semiconductor device
KR100356792B1 (en) Silicon on insulator device and method for fabricating the same