JPS597259B2 - Kouatsuhatsu Seisouchi - Google Patents

Kouatsuhatsu Seisouchi

Info

Publication number
JPS597259B2
JPS597259B2 JP14506075A JP14506075A JPS597259B2 JP S597259 B2 JPS597259 B2 JP S597259B2 JP 14506075 A JP14506075 A JP 14506075A JP 14506075 A JP14506075 A JP 14506075A JP S597259 B2 JPS597259 B2 JP S597259B2
Authority
JP
Japan
Prior art keywords
voltage
flyback transformer
waveform
order
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14506075A
Other languages
Japanese (ja)
Other versions
JPS5269523A (en
Inventor
光治 赤津
満雄 大津
正 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14506075A priority Critical patent/JPS597259B2/en
Priority to FI763461A priority patent/FI61377C/en
Priority to US05/747,324 priority patent/US4112337A/en
Priority to CA267,235A priority patent/CA1081844A/en
Priority to MX767903U priority patent/MX3504E/en
Priority to AR265751A priority patent/AR216753A1/en
Priority to AU20307/76A priority patent/AU499222B2/en
Priority to GB51005/76A priority patent/GB1573808A/en
Priority to TR19271A priority patent/TR19271A/en
Priority to FR7636843A priority patent/FR2335112A1/en
Priority to DE2655466A priority patent/DE2655466B2/en
Priority to IT69923/76A priority patent/IT1072145B/en
Priority to PH19213A priority patent/PH12818A/en
Publication of JPS5269523A publication Critical patent/JPS5269523A/en
Priority to HK591/81A priority patent/HK59181A/en
Priority to MY184/82A priority patent/MY8200184A/en
Publication of JPS597259B2 publication Critical patent/JPS597259B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Television Scanning (AREA)

Description

【発明の詳細な説明】 本発明ぱテレビジョン受信機に用いられる高圧レギユレ
ーシヨンを改善した高圧発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high voltage generator with improved high voltage regulation used in a television receiver.

従来より高圧レギユレーシヨンを改善する手段として種
々の方法が知られている。
Various methods have been known to improve high pressure regulation.

例えば、可飽和リアクターを使用して高圧負荷変動に従
いパルス巾を変化して高圧を安定化する方法、高圧負荷
変動に従い直流電源電圧を変化てせる方法、高圧整流器
の後にブリーダー抵抗を接続する方法等がある。しかし
、これらの方法でぱ無駄な消費電力を必要以上に要した
ヤ、部品点数が多くコスト高になる等の欠点があつた。
以下ブリーダー抵抗を接続する方法を例にとり説明する
。第1図ぱ一般的な水平出力回路を示し、ここで1ぱ水
平出力トランジスター、2ぱダンパーダイオード、3ぱ
共振コンデンサー、4ぱ偏向ヨーク、5ぱS字補正及び
直流カットコンデンサー、6ぱフライバックトランス、
□ばフライバックトランプ スの一次巻線、8ぱ二次巻
線、9ぱ高圧整流ダイオードをそれぞれ示す。
For example, a method of using a saturable reactor to stabilize high voltage by changing the pulse width according to high voltage load fluctuations, a method of changing the DC power supply voltage according to high voltage load fluctuations, a method of connecting a bleeder resistor after a high voltage rectifier, etc. There is. However, these methods have drawbacks such as unnecessary power consumption and high cost due to the large number of parts.
The method of connecting a bleeder resistor will be explained below as an example. Figure 1 shows a general horizontal output circuit, where 1 is a horizontal output transistor, 2 is a damper diode, 3 is a resonant capacitor, 4 is a deflection yoke, 5 is an S-curve correction and DC cut capacitor, and 6 is a flyback. Trance,
□ indicates the primary winding of the flyback transceiver, 8 indicates the secondary winding, and 9 indicates the high voltage rectifier diode.

これを等価回路で表わすと第2図の如くなる。This can be expressed as an equivalent circuit as shown in FIG.

ここでSWぱ水平トランジスター1とダンパーダイオー
ド2に相当し、L7は偏向ヨーク4とフラ麿 イバツク
トランス6の一次巻線7のインダクタンスを並列接続し
た等価インダクタンス、Clぱ共振コンデンサー、L2
ぱ一次巻線と二次巻線との間のリーケージインダクタン
ス、C2ぱ二次巻線の対地容量である。第2図の等価回
路において、ク SWが開いた時の対地容量C2の両端
に発生する電圧VC2ぱ(1式で表わされる。EBTS
Ict2β2 VC2=−−〔sin(αを−φ1)2 α(β”−α
’)5 α 一 −sin(βを−φ2)〕 ・・・・・・・・・(
1)βただし ここで、α,βはこの共振回路の共振角周波数、αぱ基
本角周波数、βは高調波角周波数を表わし、β/αが奇
数のNにおいて(2)式を満足する値の時走査期間にリ
ンギング電圧が生じないというのが良く知られた高調波
同調理論である。
Here, SW corresponds to the horizontal transistor 1 and damper diode 2, L7 is the equivalent inductance obtained by connecting the inductance of the primary winding 7 of the deflection yoke 4 and the horizontal back transformer 6 in parallel, and Cl is the resonant capacitor.
P is the leakage inductance between the primary winding and the secondary winding, and C2 is the ground capacitance of the secondary winding. In the equivalent circuit of Fig. 2, the voltage VC2 generated across the ground capacitance C2 when the switch is open is expressed by the following equation: EBTS
Ict2β2 VC2=--[sin(α-φ1)2 α(β”-α
') 5 α - sin (β - φ2)] ・・・・・・・・・(
1) β Here, α and β are the resonant angular frequencies of this resonant circuit, α is the fundamental angular frequency, β is the harmonic angular frequency, and β/α is a value that satisfies equation (2) for an odd number of N. According to the well-known harmonic tuning theory, no ringing voltage occurs during the scanning period when .

(2)式に訃いて、N=3が3次同調、N=5が5次同
調であ!),.Nによ.!2N次同調と呼ばれている。
Based on equation (2), N = 3 is 3rd order tuning, and N = 5 is 5th order tuning! ),. To N. ! This is called 2N-order tuning.

各次数によりβ/αはTrTsの比によつて変化する。
例えば、Tr−12μSll4μsの場合(水平繰返し
周期は63.5μsとする)各次数でのβ/αは表1の
ようになる。上記(1)式かられかるように出力VC2
の基本波成分と高調波成分の比はα/βとなV1表1か
られかるように同調次数により決定されるほぼ一定の値
を持つ。
For each order, β/α changes depending on the ratio of TrTs.
For example, in the case of Tr-12μSll4μs (the horizontal repetition period is 63.5μs), β/α at each order is as shown in Table 1. As can be seen from the above equation (1), the output VC2
The ratio of the fundamental wave component to the harmonic component is α/β, which is determined by the tuning order and has a substantially constant value as seen from V1 Table 1.

又、出力波形についてIj(1)式かられかるように3
,7,11次同調では第3図aの如くノ(3次同調の場
合を図示)VC2の波形の中心では凸状波形となVl5
,9,l3次同調では第3図bの如く(5次同調の場合
を図示)凹状波形となる。
In addition, as for the output waveform, as can be seen from equation Ij (1), 3
, 7th and 11th order tuning, the center of the VC2 waveform is a convex waveform, as shown in Figure 3a (the case of 3rd order tuning is shown).
, 9, l Third-order tuning results in a concave waveform as shown in FIG. 3b (the case of fifth-order tuning is shown).

ここでは3次,5次同調の場合を例にとv両者の比較と
レギユレーシヨンの関係を説明する。第3図Aij3次
同調、bは5次同調の場合の出力波形を示したもので、
波形を見ても明らかなように5次同調波形は3次同調波
形に比べて幅が広い。この為、負荷を取つた時5次同調
の方が3次同調と比較してダイオード流通角が広くな勺
高圧レギユレーシヨンが良い事は明らかである。このよ
うに、レギユレーシヨンを良くする方法として5,9次
同調を用いる事が多くなつて来た。しかし、このままで
は第3図bかられかるように波形が双峰となつている為
、小電流領域では双峰部が第4図のようにけずり取られ
るまでの電圧変動率が大きい欠点があつた。
Here, a comparison of both v and the relationship between regulation will be explained using the cases of third-order and fifth-order tuning as examples. Figure 3 shows the output waveform for Aij third-order tuning, and b shows the output waveform for fifth-order tuning.
As is clear from the waveform, the fifth-order tuned waveform has a wider width than the third-order tuned waveform. Therefore, when the load is removed, it is clear that 5th-order tuning is better than 3rd-order tuning because it has a wider diode flow angle and higher voltage regulation. In this way, 5th and 9th order tuning has been increasingly used as a method to improve regulation. However, as it is, the waveform becomes double peaks as shown in Figure 3b, so in the small current region there is a drawback that the voltage fluctuation rate is large until the double peaks are cut off as shown in Figure 4. Ta.

この影響を無くす為、第5図に示すように高圧ダイオー
ドの後にブリーダー抵抗10を挿入して常に一定電流を
流し双峰部を切v取つた状態で用いなければ十分な効果
を得る事は出来ない。この模様を第6図に示す。Aがブ
リーダー抵抗の無い場合、Bはブリーダー抵抗有の場合
のレギユレーシヨン特性である。このように、ブリーダ
ー抵抗を入れればブラウン管電流以外の電流を流す為、
ブリーダー抵抗10の抵抗値をRとし高圧をEHTとす
るとEHT2/Rの電力損失を生じる事となる。その上
高圧部よりアースに抵抗を接続する為、十分な耐圧を持
つた高圧抵抗を使用しなければならず、絶縁にも十分な
考慮を払わなければならないから当然コストも上がv信
頼性にも欠ける事となる。本発明の目的は上記した従米
技術の欠点を無くし、有効に高圧レギユレーシヨンを改
善することにある。
In order to eliminate this effect, a bleeder resistor 10 is inserted after the high-voltage diode as shown in Figure 5, and a constant current is constantly passed and the double peaks are cut off. Otherwise, a sufficient effect cannot be obtained. do not have. This pattern is shown in FIG. A is the regulation characteristic when there is no bleeder resistance, and B is the regulation characteristic when there is bleeder resistance. In this way, if you insert a bleeder resistor, a current other than the cathode ray tube current will flow, so
If the resistance value of the bleeder resistor 10 is R and the high voltage is EHT, a power loss of EHT2/R will occur. Furthermore, since the resistor is connected to the ground from the high voltage section, a high voltage resistor with sufficient withstand voltage must be used, and sufficient consideration must be given to insulation, which naturally increases cost and reduces reliability. will also be missing. The object of the present invention is to eliminate the above-mentioned drawbacks of conventional techniques and to effectively improve high pressure regulation.

5,9,13次等の(4K+1)次同調では出力波形の
中心で基本波と高調波の位相が反対とな9出力波形は双
峰波形とな9中心でへこみを生じるが、このへこみの程
度は高調波成分の大きさにより変化する。
In (4K+1) order tuning such as 5th, 9th, and 13th orders, the phase of the fundamental wave and harmonics are opposite at the center of the output waveform, and the 9 output waveform is a bimodal waveform with a dent at the 9 center. The degree changes depending on the magnitude of the harmonic components.

この関係を5次同調の場合を例にとv示したのが第7図
である。ここで、Pは基本波成分に対する高調波成分の
比である。前述の(1)式と表1のβ/αよりわかるよ
うにPはほぼ0.22であV1深いへこみを生じている
が高調波成分をなんらかの方法で小A〈寸A車が出乎れ
げへiム量を減少せしめる事が出米る。又、3,7,1
1次等の(4K−1)次同調では逆にとがv波形となる
が、同様に高調波成分を小さくすればとがりの程度は小
さくなる。本発明の特徴はフライバツクトランスの一次
巻線と直列に周波数特性を持つた減衰回路を挿入し、高
調波成分を効果的に減衰せしめ出力波形のへこみもしく
はとがり特性をやわらげ高圧レギユレーシヨンを改善し
ようとすることにある。
FIG. 7 shows this relationship using the case of fifth-order tuning as an example. Here, P is the ratio of harmonic components to fundamental components. As can be seen from the above equation (1) and β/α in Table 1, P is approximately 0.22, causing a deep dent in V1. It is possible to reduce the amount of heat generated. Also, 3, 7, 1
Conversely, in (4K-1) order tuning such as first order, the peak becomes a v waveform, but similarly, if the harmonic components are made smaller, the degree of the peak becomes smaller. The feature of the present invention is to insert an attenuation circuit with frequency characteristics in series with the primary winding of the flyback transformer, to effectively attenuate harmonic components, soften the concave or peaked characteristics of the output waveform, and improve high voltage regulation. It's about doing.

以下図において本発明を説明する。The invention will be explained with reference to the following figures.

第8図は本発明の一実施例の水平偏向高圧発生回路を示
すもので、第1図と同一物は同一番号を付し説明を省略
する。本発明の実施例と第1図に示す従来例との違いは
フライバツクトランス6の一次巻線7の低圧側とB電圧
との間にコイル11、抵抗12よりなるLR並列回路を
接続した点にある。
FIG. 8 shows a horizontal deflection high voltage generating circuit according to an embodiment of the present invention. Components that are the same as those in FIG. The difference between the embodiment of the present invention and the conventional example shown in FIG. 1 is that an LR parallel circuit consisting of a coil 11 and a resistor 12 is connected between the low voltage side of the primary winding 7 of the flyback transformer 6 and the B voltage. It is in.

上記LRのインピーダンス周波数特性を示したのが第9
図でa曲線はL,b曲線ぱRのインピーダンス曲線を示
しているLRのインピーダンス関係よりわかるように、
基本波成分(d成分)の大部分ぱインピーダンスの低い
Lを流れRを流れる割合は少ない為抵抗損失は小さくダ
ンピングはほとんど受けないが、高調波成分(β成分)
ぱ大部分インピーダンスの低いRを流れる為大きな抵抗
損失を生じる。
The 9th one shows the impedance frequency characteristics of the above LR.
In the figure, the a curve shows the impedance curve of L, b curve and R. As can be seen from the LR impedance relationship,
Most of the fundamental wave component (d component) flows through L, which has low impedance, and a small proportion flows through R, so the resistance loss is small and there is almost no damping, but the harmonic component (β component)
Since most of the current flows through R, which has low impedance, a large resistance loss occurs.

この抵抗損失の為、フライバツクトランスの帰線出力波
形の高調波成分はダンピングを受け、基本波成分に比べ
て大きく減衰する。この為、出力波形のへこみ量((4
K+1)次同調の場合)もしくばとがv量((4K−1
)次同調の場合Xは小さくなジ波形は平担に近づき小電
流領域での電圧変動を押さえる事が出米る。な}、高調
波成分の減衰量はLRの各定数を適当に選ぶ事により調
整出来るが、LRダンピング効果のききを良くし抵抗損
失を出米るだけ押さえるには、αL<RくβLの関係に
LR定数を選ぶ事が望ましい。第8図の実施例ではLR
並列回路をフライバツクトランスの一次巻線の低圧側に
挿入したが、第13図に示す如く一次巻線の中間に接続
しても同一効果が得られる事ぱいうまでも無い。
Due to this resistance loss, the harmonic components of the retrace output waveform of the flyback transformer are damped and are greatly attenuated compared to the fundamental wave components. For this reason, the amount of dent in the output waveform ((4
In the case of K+1) order tuning) or the value of v ((4K-1
) In the case of second-order tuning, the j waveform with a small X becomes almost flat, making it possible to suppress voltage fluctuations in the small current region. The amount of attenuation of harmonic components can be adjusted by appropriately selecting each constant of LR, but in order to improve the LR damping effect and suppress resistance loss to a certain extent, the relationship αL < R × βL is established. It is desirable to select the LR constant. In the embodiment of FIG.
Although the parallel circuit is inserted on the low voltage side of the primary winding of the flyback transformer, it goes without saying that the same effect can be obtained by connecting it to the middle of the primary winding as shown in FIG.

又、本発明では高圧側に接続しても同一効果ぱ得られる
。又、第10図は他の実施例を示したもので、フライバ
ツクトランスの二次巻線を81・・・81−1ノ8nと
高圧整流ダイオード9によりn分割した場合である.こ
の場合nケの二次巻線をそれぞれどういう高調波次数で
同調させるかは任意であV1このような複数同調の場合
にもLR定数を適当に選んでやればレギユレーシヨンの
改善が出米る事はいうまでもない。
Further, in the present invention, the same effect can be obtained even when connected to the high voltage side. FIG. 10 shows another embodiment in which the secondary winding of the flyback transformer is divided into n parts by 81...81-1 and 8n and a high-voltage rectifier diode 9. In this case, the harmonic order at which each of the n secondary windings is tuned is arbitrary.V1 Even in the case of multiple tuning like this, the regulation can be improved by appropriately selecting the LR constant. Needless to say.

又、必要なら複数個直列に接続しても良い。本発明は以
上のように、従米のように数多くの高価な部品を必要と
せず安価なコイル、抵抗のみですみ大きなコストダウン
が可能となる上信頼性も向上する。
Moreover, if necessary, a plurality of them may be connected in series. As described above, the present invention does not require a large number of expensive parts unlike the conventional method, and requires only an inexpensive coil and resistor, making it possible to significantly reduce costs and improve reliability.

又、消費電力についてもQの高い共振を減衰させる方法
なので少なくてすみ大巾な低減が可能である。更に、走
査期間に発生する有害な振動(リンギング)を抑圧出来
リンギングによる損失の増加、他回路への誘導妨害、水
平水カトランジスノ一のコレクノ一電流の増加等を防止
する事が出来る。この事を第11図,第12図について
説明する。第11図はフライバツクトランス6の二次側
出力電圧波形を水平1周期について示したもので、a図
ぱ本発明のLR回路の無い場合、b図は本発明のLR回
路を挿入した場合を表わす。LR回路の無い場合ぱ走査
期間に発生する有害なリンギング電圧イは走査期間の間
ほとんど減衰なく継続する。このリンギング電圧の角周
波数をrとすると、r′−βの関係がある為、LR回路
を挿入すればb図に示すように帰線期間の出力波形が平
らとなるだけでなく走査期間のリンギング電圧イも減衰
する。第12図は走査期間のリンギングの有害性と本発
明の効果を水平出力トランジスターのコレクター電流を
1例に取v図示したもので、a図はLR回路の無い場合
、b図はLR回路を挿入した場合のコレクノ一電流波形
を示す。走査期間にリンギング電流が重畳されると位相
によつてぱa図に示すように最大コレクタ電流IcPは
ICP2のように増加する。
Furthermore, since the method is used to attenuate high-Q resonance, power consumption can be reduced significantly. Further, harmful vibrations (ringing) occurring during the scanning period can be suppressed, and it is possible to prevent an increase in loss due to ringing, induction interference to other circuits, and an increase in current in the horizontal water transducer. This will be explained with reference to FIGS. 11 and 12. FIG. 11 shows the secondary output voltage waveform of the flyback transformer 6 for one horizontal period, and FIG. represent. Without the LR circuit, the harmful ringing voltage that would occur during the scanning period would continue with little attenuation during the scanning period. If the angular frequency of this ringing voltage is r, there is a relationship of r'-β, so inserting an LR circuit not only flattens the output waveform during the retrace period as shown in figure b, but also eliminates the ringing during the scanning period. Voltage A also attenuates. Figure 12 illustrates the harmful effects of ringing during the scanning period and the effects of the present invention, taking the collector current of a horizontal output transistor as an example. The correct current waveform is shown in this case. When a ringing current is superimposed on the scanning period, the maximum collector current IcP increases as ICP2 depending on the phase as shown in Fig. a.

リンギング位相は非常に不安定で高圧負荷の変動、回路
定数のバラツキにより変化する為リンギング電流は小さ
くする事が必要とされている。本発明によれば走査期間
の終りではリンギング電流ぱb図に示すようにほとんど
雰に減衰させる事が出来1epの増加を防ぐ事が出米る
The ringing phase is extremely unstable and changes due to fluctuations in the high voltage load and variations in circuit constants, so it is necessary to keep the ringing current small. According to the present invention, at the end of the scanning period, the ringing current can be attenuated to almost zero as shown in the graph, and an increase in 1ep can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な水平偏向高圧発生回路図、第2図ぱそ
の等価回路、第3図,第4図は同回路説明の為の波形図
、第5図ぱブリーダー抵抗を使用した水平偏向高圧発生
回路図、第6図は同回路説明の為の特性図、第7図は本
発明説明の為の波形図、第8図は本発明の一実施例を示
す水平偏向高圧発生回路図、第9図は本発明の動作原理
を説明する為のインピーダンス特性曲線、第10図及び
第13図は本発明の他の実施例を示す水平偏向高圧発生
回路図、第11図,第12図は本発面の他の効果を説明
する為の波形図である。 6・・・フライバツクトランス、7・・・一次巻線、8
・・・二次巻線、11・・・コイル、12・・・抵抗。
Figure 1 is a general horizontal deflection high voltage generation circuit diagram, Figure 2 is the equivalent circuit of PAS, Figures 3 and 4 are waveform diagrams to explain the circuit, and Figure 5 is horizontal deflection using a PA bleeder resistor. A high voltage generation circuit diagram; FIG. 6 is a characteristic diagram for explaining the circuit; FIG. 7 is a waveform diagram for explaining the present invention; FIG. 8 is a horizontal deflection high voltage generation circuit diagram showing an embodiment of the present invention; FIG. 9 is an impedance characteristic curve for explaining the operating principle of the present invention, FIGS. 10 and 13 are horizontal deflection high voltage generation circuit diagrams showing other embodiments of the present invention, and FIGS. 11 and 12 are FIG. 3 is a waveform diagram for explaining another effect of the present invention. 6... Flyback transformer, 7... Primary winding, 8
...Secondary winding, 11...Coil, 12...Resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともフライバックトランスと、このフライバ
ックトランスの1次巻線に接続された水平出力トランジ
スターと、この水平出力トランジスターに並列に接続さ
れた偏向ヨーク及び共振コンデンサーと、フライバック
トランスの2次巻線に接続された高圧整流ダイオードを
具え、フライバックトランスの2次巻線に発生する帰線
出力電圧の基本波成分とその高調波成分を整流ダイオー
ドによつて整流することにより高電圧を発生する高圧発
生装置において、高調波成分に対し高インピーダンスに
なるコイルと、抵抗とからなる並列回路が上記1次巻線
に対して直列に接続され、帰線出力電圧の先端が平坦化
されていることを特徴とする高圧発生装置。
1 At least a flyback transformer, a horizontal output transistor connected to the primary winding of this flyback transformer, a deflection yoke and a resonant capacitor connected in parallel to this horizontal output transistor, and a secondary winding of the flyback transformer. A high-voltage transformer is equipped with a high-voltage rectifier diode connected to the flyback transformer, and generates a high voltage by rectifying the fundamental wave component and its harmonic components of the retrace output voltage generated in the secondary winding of the flyback transformer. In the generator, a parallel circuit consisting of a coil that has high impedance against harmonic components and a resistor is connected in series with the primary winding, and the tip of the retrace output voltage is flattened. Characteristic high pressure generator.
JP14506075A 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi Expired JPS597259B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP14506075A JPS597259B2 (en) 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi
FI763461A FI61377C (en) 1975-12-08 1976-12-01 HOEGSPAENNINGSGENERATOR
US05/747,324 US4112337A (en) 1975-12-08 1976-12-03 High voltage generator
CA267,235A CA1081844A (en) 1975-12-08 1976-12-06 High voltage generator
GB51005/76A GB1573808A (en) 1975-12-08 1976-12-07 High voltage generator
IT69923/76A IT1072145B (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOR PARTICULARLY FOR TELEVISION
AU20307/76A AU499222B2 (en) 1975-12-08 1976-12-07 High voltage generator
MX767903U MX3504E (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOR
TR19271A TR19271A (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOERUE
FR7636843A FR2335112A1 (en) 1975-12-08 1976-12-07 VERY HIGH VOLTAGE GENERATOR
DE2655466A DE2655466B2 (en) 1975-12-08 1976-12-07 High voltage generator for cathode ray tubes, preferably for television receivers and EDP display devices
AR265751A AR216753A1 (en) 1975-12-08 1976-12-07 HIGH VOLTAGE GENERATOR
PH19213A PH12818A (en) 1975-12-08 1976-12-08 High voltage generator
HK591/81A HK59181A (en) 1975-12-08 1981-12-03 High voltage generator
MY184/82A MY8200184A (en) 1975-12-08 1982-12-30 High voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14506075A JPS597259B2 (en) 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi

Publications (2)

Publication Number Publication Date
JPS5269523A JPS5269523A (en) 1977-06-09
JPS597259B2 true JPS597259B2 (en) 1984-02-17

Family

ID=15376438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14506075A Expired JPS597259B2 (en) 1975-12-08 1975-12-08 Kouatsuhatsu Seisouchi

Country Status (1)

Country Link
JP (1) JPS597259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510176Y2 (en) * 1987-03-30 1993-03-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510176Y2 (en) * 1987-03-30 1993-03-12

Also Published As

Publication number Publication date
JPS5269523A (en) 1977-06-09

Similar Documents

Publication Publication Date Title
US3828239A (en) High dc voltage generating circuit
US4388568A (en) Line end stage including transformer for a television receiver
CA1044364A (en) High voltage generating circuit
US4112337A (en) High voltage generator
US3500116A (en) Deflection circuit for regulating the high voltage load
JPS597259B2 (en) Kouatsuhatsu Seisouchi
US3320469A (en) Vertical dynamic pincushion correction circuits for television receivers
US5844793A (en) High-voltage transformer for a televison receiver including separated partial windings tuned to different harmonics
US2655615A (en) Television circuit
JPS597258B2 (en) Kouatsuhatsu Seisouchi
US4181874A (en) Television S-correction circuit with improved linearity
US4162433A (en) Circuit arrangement including a line deflection circuit
US4808891A (en) High voltage generator
KR800000856B1 (en) High voltage generator
JPH0415664B2 (en)
JPS62154976A (en) High voltage generating device
Siezen et al. Home projection television: Part II. Pulse-type high-voltage supply
JPS6123896Y2 (en)
JPS5948592B2 (en) Flyback EHT and sawtooth current generator
JPH0634578B2 (en) High voltage generator
JPH02184262A (en) Switching regulator
JP2001218460A (en) Switching power supply circuit
US2712093A (en) teetor
JP2715991B2 (en) High pressure generator
JPH06105957B2 (en) High pressure generator