JPS597184B2 - Gas depolarized electrochemical cell and its manufacturing method - Google Patents

Gas depolarized electrochemical cell and its manufacturing method

Info

Publication number
JPS597184B2
JPS597184B2 JP751088A JP108875A JPS597184B2 JP S597184 B2 JPS597184 B2 JP S597184B2 JP 751088 A JP751088 A JP 751088A JP 108875 A JP108875 A JP 108875A JP S597184 B2 JPS597184 B2 JP S597184B2
Authority
JP
Japan
Prior art keywords
cup
electrode
electrode cup
positive electrode
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP751088A
Other languages
Japanese (ja)
Other versions
JPS50108529A (en
Inventor
エム ジヤガ−ド ア−サ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gould Inc
Original Assignee
Gould Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gould Inc filed Critical Gould Inc
Publication of JPS50108529A publication Critical patent/JPS50108529A/ja
Publication of JPS597184B2 publication Critical patent/JPS597184B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Description

【発明の詳細な説明】 ネ発明は一般的に電気化学的電池に係り、更に詳細にい
えば、ボタン状の外観により一般にボタン電池と呼称さ
れている補聴器等に利用されるガス減極電気化学的電池
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates generally to electrochemical cells, and more particularly to gas depolarized electrochemical cells used in hearing aids and the like, which are commonly referred to as button cells due to their button-like appearance. This is related to the target battery.

本発明のガス減極電池は改良された電解液密封作用を有
すると共に物理的寸法に比較して従来のものより容量が
大きい。本発明a刊の面は最少限の部品を有する密封さ
れた電池を製造するため寸法決め工程も含む種々の工程
により電池を組立てる方法に孫るものである。
The gas depolarized cell of the present invention has improved electrolyte sealing and has a larger capacity relative to its physical dimensions than conventional ones. Aspects of the present invention derive from a method of assembling a battery through various steps, including a sizing step, to produce a sealed battery with a minimum number of parts.

ガス減極電池の概念は幾多の特許明細書に記載されてい
るように当業界では新しいものではない。
The concept of gas depolarized batteries is not new in the art as it has been described in a number of patent specifications.

本発明に最も関係のある特許ぱ空気電極の外側に疎水膜
を有する金属・空気電池である。この種の金属・空気電
池の新たな応用例は小型電池の分野である。当業界には
従来技術の小型電池が多く知られているが、今日までボ
タン電池の分野に金属空気電池を応用した例が少ない。
亜鉛・空気電池の1つの例が米国特許第3746580
号明細書に記載されている。この特許明細書には空気正
極と亜鉛負極とを使用するガス減極ボタン電也力記載さ
れている。本発明はこの種の亜鉛・空気電池を改良しこ
の従来技術の電池に卦ける密封に関する問題を実質的に
解決するものである。
The patent most relevant to the present invention is a metal-air battery having a hydrophobic film on the outside of an air electrode. A new application for this type of metal-air battery is in the field of small batteries. Although many prior art small batteries are known in the art, to date there have been few examples of metal-air batteries being applied to the field of button batteries.
One example of a zinc-air battery is U.S. Patent No. 3,746,580.
It is stated in the specification of the No. This patent describes a gas depolarizing button power using an air positive electrode and a zinc negative electrode. The present invention improves this type of zinc-air cell and substantially solves the sealing problems associated with this prior art cell.

すなわち、前記米国特許明細書に記載した如き金属・空
気ボタン電池では密封に問題がある。たとえば、前記米
国特許の電池は密封するには組合わせ電極の外縁部にプ
ラスチツクのストリツプを射出成形する必要がある。こ
のことは笥池の利用できる容積を減少するばかりでなく
また製造費と電池の組立ての困難とを増すという欠点を
有している。本発明は電池請封すると共に電池の正端子
を負端子から絶縁する作用もする単一の絶縁体を利用す
ることによりこの問題を解決するものである。本発明の
別の面は、2重の機能を果す部品を使用することと電池
の部品を濱封すると同時にこれら部品を一体的に組合わ
せた作動可能な電池に形成する寸法決め処哩とにより電
池の組立が非常に単純化されたことである。
That is, metal-air button batteries such as those described in the above-mentioned US patents have problems with sealing. For example, the cell of the above-mentioned patent requires injection molding of a strip of plastic around the outer edges of the combined electrodes for hermetic sealing. This has the disadvantage of not only reducing the available volume of the tank, but also increasing manufacturing costs and difficulty in assembling the battery. The present invention solves this problem by utilizing a single insulator that both protects the battery and insulates the positive terminal of the battery from the negative terminal. Another aspect of the invention is the use of dual-function components and the sizing process that simultaneously seals the components of the battery and forms the components into an integrally assembled operable battery. This greatly simplifies battery assembly.

本発明の更に他の1つの面は部品が事実上重複してない
ので電池が同じ物哩的寸法の従来技術の亜鉛ボタン電池
より大なるエネルギー容量を有しているということであ
る。
Yet another aspect of the invention is that because the components are virtually non-overlapping, the cell has a greater energy capacity than a prior art zinc button cell of the same physical dimensions.

従つて本発明の目的は本発明は最少限の部品数でかつそ
れらが2重の機能を果すために電池の有効容積を噌大す
るポタン型の改良されたガス減極電気化学電池を提供す
るものである。
It is therefore an object of the present invention to provide an improved gas depolarized electrochemical cell of the button type which uses a minimum number of parts and which increases the effective volume of the cell due to their dual function. It is something.

この電池は絶縁体として、かつシール材としても作用す
る部材を陰み、この部材は電池の外部接点としても作用
する一対のハウシング(カツプ)の間でハウジングと協
働して漏洩防止電池を形成し、又両接点間を絶縁するも
のである。本発明の目的は更に電池を組立ると同時に電
池を一体のユニツトに密封する寸法決めダイスを利用す
ることにより密封された一体の電池を製造するための電
池組立て方法を提供することである。
The cell encloses a member that acts both as an insulator and as a seal, which cooperates with the housing to form a leak-proof cell between a pair of housings (cups) that also act as external contacts for the cell. It also provides insulation between both contacts. It is a further object of the present invention to provide a battery assembly method for manufacturing a sealed unitary battery by utilizing sizing dies that simultaneously assemble the battery and seal the battery into an integral unit.

添付図面に於て、符号10は本発明の金属・空気電池の
全般をさし、これは正極ハウジング即ちカツプ11と、
負極・・ウジング即ちカツプ12と、負極材料13と、
正極カツプ11と負極カツプ12との間に位置決めされ
た絶酸体14と、正極組立本15とを有する。好ましい
実施態様においては、負極用の活性材料13はアマルガ
ム化岨鉛であるが本発明は必ずしもこの材料に限定され
る jものではない。第1図の実施態様にはまた本発明
には絶対的に必要なものではないが安全特性として好ま
しい実施態様に加えてある1つQ追加の特徴も示してあ
る。こQ追加の特徴は疎水性電極組立体のガス出入側に
設けられ電池が極端な壌境条件下で漏洩する様な場合に
電解液の吸収部材として作用する吸取シート16の如き
多孔性物質から成る。正極ハウジング即ちカツプ11は
断面がほぼ円形で、中高のクラウン部分即ち凹凸部分2
3に一本的に接続するように垂直の側部26から半径方
向に内方に傾斜している環状の平たい部分24を有して
いる。
In the accompanying drawings, the reference numeral 10 generally refers to the metal-air battery of the present invention, which includes a positive electrode housing or cup 11,
Negative electrode...Using or cup 12, negative electrode material 13,
It has an acid insulator 14 positioned between a positive electrode cup 11 and a negative electrode cup 12, and a positive electrode assembly book 15. In a preferred embodiment, the active material 13 for the negative electrode is amalgamated lead, although the invention is not necessarily limited to this material. The embodiment of FIG. 1 also shows one Q-additional feature over the preferred embodiment as a safety feature, although not absolutely necessary to the invention. This additional feature includes a porous material such as a blotting sheet 16 on the gas inlet and outlet sides of the hydrophobic electrode assembly that acts as an electrolyte absorber in the event that the cell leaks under extreme soil conditions. Become. The positive electrode housing or cup 11 has a substantially circular cross section, and has a crown portion or uneven portion 2 with a medium height.
3 has an annular flattened portion 24 slanting radially inwardly from a vertical side 26 so as to be integrally connected to 3 .

クラウン部分23はガスが正極組立体15に拡散できる
ようにする開口20,21を有している。2つの開口が
示してあるが、それ以下又はそれ以上の数の開口とした
り開口の寸法を変えることも電池がその作用に十分なガ
スを得られる限り広い範囲で変化させ得る。
Crown portion 23 has openings 20, 21 that allow gas to diffuse into cathode assembly 15. Although two apertures are shown, fewer or more apertures and varying aperture dimensions may be varied over a wide range as long as the cell obtains sufficient gas for its operation.

クラウン部分23を設けた目的は電池10のクリップと
寸法決めとをできるようにするためである。
The purpose of the crown portion 23 is to enable clipping and sizing of the battery 10.

すなわち、密封卦よび寸法決め作業中に、正極カツプ1
1は正極カツブを含む電池を正極カツプの外径より小さ
い直径を有しているダイス開口により圧縮することによ
り直径を縮少される。正極カツプ11の外径を圧縮すな
わち減少すると正極カツブの中高部即ちクラウン部分は
更に外方に膨脹せしめられる。もし正極カツプ11の頂
部がクラウン、即ち凹凸状でなく平たいと、寸法決め工
程によりカツブの頂部は内方に皿形に変形する。もし頂
部が内方に向けて皿形となれば正極カツプの外側を外部
電気接点として使用することは困難となる。従つて、本
発明の好ましい実施態様では、正極カツプ11の中心部
には寸法決め工程中凹凸形状を保持することが好ましい
凹凸クラウン部分を有している。
That is, during the sealing and sizing operations, the positive electrode cup 1
1 is reduced in diameter by compressing the battery containing the cathode cup through a die opening having a diameter smaller than the outer diameter of the cathode cup. Compressing or reducing the outer diameter of the positive cup 11 causes the center or crown portion of the positive cup to expand further outward. If the top of the positive electrode cup 11 were crowned, that is, flat rather than concave and convex, the sizing process would cause the top of the cup to deform inwardly into a dish shape. If the top were to be dished inward, it would be difficult to use the outside of the positive cup as an external electrical contact. Accordingly, in a preferred embodiment of the present invention, the center of the positive electrode cup 11 has a concavo-convex crown portion that preferably maintains the concavo-convex shape during the sizing process.

しかしながら、正極カツプの頂部がすべての電池に卦い
て同一方向に連続的に皿形になる様に変形するのであれ
ば凹凸状以外の他の形状にすることもできる。密封9よ
び寸法決め工程が正極カップが正極カツブを恒久的に変
形するようにすなわちカツプの材料の座屈強度を越すこ
とにより直径が十分に縮少されるようにすることが重要
である。典型的な例では、寸法決め以前の正極カツプの
外径は約11.69w!(0.460インチ)で寸法決
めした後は直径は約11.51mC0.453インチ)
である。しかしながら、この寸法は単なる例示にすぎな
い。第1図に卦いて、正極カツプ11の底部27は絶縁
体14と負極カツプ12とに形状的に相互に組付けられ
るように半径方向に内方に変形されている。
However, other shapes other than the convex-concave shape may be used as long as the top of the positive electrode cup deforms continuously in the same direction for all cells to form a dish shape. It is important that the sealing 9 and sizing steps are such that the diameter of the positive cup is reduced sufficiently to permanently deform the positive cup, ie by exceeding the buckling strength of the material of the cup. In a typical example, the outer diameter of the positive cup before sizing is approximately 11.69W! (0.460 inch), the diameter is approximately 11.51 mC0.453 inch)
It is. However, this dimension is merely exemplary. As shown in FIG. 1, the bottom 27 of the positive cup 11 is radially inwardly deformed so that it can be geometrically assembled with the insulator 14 and the negative cup 12.

正極ハウジング11が半径方向に変形しているので、絶
縁体14は絶縁密封部材であり、正極カツプ11と負極
カツプ12との間に圧力係合状態に保持される。絶縁体
即ち絶縁密封部材14は正極カツプ11と負極カツプ1
2との間の電気的接触を防止するばかりでなく電解液用
のシールの作用をなすほぼ逆L型断面の環状の部材から
出来ている。絶縁密封部材14は正極組立体15に角度
的に係合する傾斜した環状頂部50と負極カツプ12の
縁部を越えて半径方向に内方に延びている環状下部51
とを有する環状部分と壌状部分外周辺から懸下するスカ
ート部52とを有している。絶縁密封部材14は任意適
当な不導体材料で作ることもできるが、高密度ポリエチ
レン、ポリプロピレンまたはナイaンの々口き積層可能
な重合体のプラスチツク材料が望ましい。
Because the positive housing 11 is radially deformed, the insulator 14 is an insulating seal and is held in pressure engagement between the positive cup 11 and the negative cup 12. The insulator or insulating sealing member 14 has a positive electrode cup 11 and a negative electrode cup 1.
It is made of an annular member with a generally inverted L-shaped cross section which not only prevents electrical contact between the two but also acts as a seal for the electrolyte. The insulating sealing member 14 includes an angled annular top 50 that angularly engages the positive electrode assembly 15 and an annular lower portion 51 that extends radially inwardly beyond the edge of the negative electrode cup 12.
and a skirt portion 52 that hangs down from the outer periphery of the loam-like portion. Although the insulating seal member 14 may be made of any suitable non-conducting material, it is preferably a laminable polymeric plastic material such as high density polyethylene, polypropylene or nylon.

絶縁密封部材14に使用する材料は低温流動の傾向が殆
んどないもの力望ましい。本発明では正極カツプと負極
カツプとの間で絶縁体を圧縮することによりシールが形
成されるので、もし絶縁密封部材が圧力の下に流れると
シールの効果が害われることは明かである。電池11が
第1図に示した如く組立てられ、密封され、寸法決めさ
れると、正極カツプ11の下方部分27は半径方向に内
方に変形されすなわち締付けられ絶縁密封部材14を正
極カツプ11の下方部分27と負極カツプ12との間で
圧縮して絶縁密封部材14とそれに圧力接触しているカ
ツブのそれぞれの表面との間をきつく圧力嵌合すなわち
シールを形成する。
The material used for the insulating seal member 14 is preferably one that has little tendency to cold flow. Since the seal is formed by compressing the insulator between the positive and negative cups in the present invention, it is clear that if the insulating seal member were to flow under pressure, the effectiveness of the seal would be impaired. Once the battery 11 is assembled, sealed and sized as shown in FIG. Compression occurs between the lower portion 27 and the anode cup 12 to form a tight pressure fit or seal between the insulating seal member 14 and the respective surfaces of the cup in pressure contact therewith.

従つて、本発明の1つO時徴は漏洩防市電池を形成する
ため絶縁部材を間で圧縮する様に接触協働するハウジン
グ部材すなわちカツプを使用することである。
Accordingly, one feature of the present invention is the use of housing members or cups that contact and cooperate to compress an insulating member therebetween to form a leak proof battery.

更にまた、負極カツプ12の環状縁部62は絶縁密封部
材14の下側に衝合していてすなわち軸線方向に圧接し
ていて周囲に電解液力凋洩するのを防止する付加的な密
封面を形成する。
Furthermore, the annular edge 62 of the anode cup 12 abuts or axially presses against the underside of the insulating seal member 14 to provide an additional sealing surface to prevent leakage of electrolyte force into the environment. form.

図面を見れば判るように、縁部62は実際には絶縁密封
部材14中に幾分埋込まれている。縁部62の最小幅が
密封卦よび寸法決め工程中に絶縁密封部材14を剪断す
る程度に小さくならないように、または絶縁密封部材と
良好な接触を行うのを妨げる程度に大きくならないよう
に注意する必要がある。また、負極カツブ12の外面と
この外面と正極カツブ11により圧力接触状態に保持さ
れている絶縁密封部材14の内面との間にもシールが形
成される。同様に、絶縁密封部材14と正極カツプ11
との界面にもこれら2つの部材間が圧力接触状態に保持
されることにより電解液用シールが形成される。絶縁密
封部材14の頂部50は正極組立体15の下側に圧接し
て保持され正極カツプ11の環状の平たい部分24とほ
ぼ同じ角度を有するようになされている。
As can be seen from the drawings, edge 62 is actually somewhat embedded within insulating seal 14. Care is taken to ensure that the minimum width of the edge 62 is not so small as to shear the insulating seal member 14 during the sealing and sizing process, or so large as to prevent good contact with the insulating seal member. There is a need. A seal is also formed between the outer surface of the negative electrode knob 12 and the inner surface of the insulating sealing member 14, which is held in pressure contact by the outer surface and the positive electrode knob 11. Similarly, the insulating sealing member 14 and the positive electrode cup 11
An electrolyte seal is also formed at the interface between these two members by maintaining pressure contact between them. The top portion 50 of the insulating sealing member 14 is held in pressure contact with the underside of the positive electrode assembly 15 and is formed to have approximately the same angle as the annular flat portion 24 of the positive electrode cup 11.

これら環伏面とそのまわりの絶縁体と正極カツプとにほ
ぼ同じ角度をもたせることにより組立て工程中に正極組
立体を絶縁密封部材14と正極カツプ11との間に圧搾
しないようにすることである。従つて、正極カツプ11
の環状の平たい部分24と絶縁密封部材14の頂部の平
たい部分50とは正極組立本の接触面として作用する。
本発明の笥池に卦いては、正極カップと負極カツプとの
間に4つのそれぞれ独立した主密封面が形成されそのう
ちの少くとも2つは?u的な主密封面である。
By making these annular surfaces, the surrounding insulators, and the positive electrode cup have approximately the same angle, the positive electrode assembly is prevented from being squeezed between the insulating sealing member 14 and the positive electrode cup 11 during the assembly process. . Therefore, the positive electrode cup 11
The annular flat portion 24 and the top flat portion 50 of the insulating sealing member 14 act as a contact surface for the positive electrode assembly.
In the case of the present invention, four independent main sealing surfaces are formed between the positive electrode cup and the negative electrode cup, at least two of which are formed between the positive electrode cup and the negative electrode cup. This is the main sealing surface.

たとえば、縁部62と絶縁本の唇状GJ,5lとの間の
電解液シールは絶縁本14の内面と負極カツブ12の外
面との間の電解液ツールと―連の系列となつている。同
様に、正極カツプ11の内面と絶縁体14の外面との間
の電解液シールは唇状部27を絶縁体14に部分的に埋
込むことにより形成された環伏部分60のまわりに形成
された電解液シールに続いている。正極組立体15は集
電部材すなわちスクリーン31と、正極材料32と、疎
水部.材30とセパレータ33とからなる。
For example, the electrolyte seal between the edge 62 and the lip GJ, 5l of the insulator is in series with the electrolyte tool between the inner surface of the insulator 14 and the outer surface of the anode tab 12. Similarly, the electrolyte seal between the inner surface of cathode cup 11 and the outer surface of insulator 14 is formed around an annulus 60 formed by partially embedding lip 27 in insulator 14. followed by an electrolyte seal. The positive electrode assembly 15 includes a current collecting member or screen 31, a positive electrode material 32, and a hydrophobic portion. It consists of a material 30 and a separator 33.

正極材料32は典型的にはカーボン・ブラツクと、触5
媒と正極内にわたり拡散される疎水性のバインダーとか
ら成る。正極組立体15の外面には典型的に多孔性のポ
リテトラフロロエチレンの如き重合本とすることが出来
る疎水性部材30が設けてある。
The cathode material 32 is typically carbon black and
It consists of a medium and a hydrophobic binder that is diffused throughout the cathode. The outer surface of the positive electrode assembly 15 is provided with a hydrophobic member 30, which can typically be a porous polymeric material such as polytetrafluoroethylene.

しかしながら、他の疎水性材料もまたこの種の金属・空
気電池に使用するのに適している。正極組立体15は正
極カツプ11に低い電気抵抗で接触する導電性のコレク
タ・スクリーンすなわち集電部材31を包含している。
However, other hydrophobic materials are also suitable for use in metal-air cells of this type. The cathode assembly 15 includes a conductive collector screen 31 in low electrical resistance contact with the cathode cup 11.

典型的には、正極組立体は当初はその直径が寸法決め以
前の正極カツプ11の内径とほぼ同じで寸法決め後の阻
付けられた正極カツプ11の内径より大となるような寸
法にしてある。これがため正極組立体を正極カツプ11
に入れやすくししかも寸法決め工程中正極カゾプ11の
直径を減少することによりスクリーン31と正極カツプ
11との間を低い低抗で電気的に接触させる。すなわち
、寸法決め工程は電池11を占封するばかりでなくをた
集電スクリーン31の円周方向縁部に正極カツプ11が
半径方向の圧力をかけるので不クリニン3丁と正極カツ
プ11との間に抵抗の低い電気的圧力接触が行われるよ
うにする。負極カツプ12内には負極,材料13がスパ
レータ33により正極組立体15と接触しないように位
置決めされている。
Typically, the positive assembly is initially sized such that its diameter is approximately the same as the inside diameter of the positive cup 11 before sizing and larger than the inside diameter of the blocked positive cup 11 after sizing. . Because of this, the positive electrode assembly is connected to the positive electrode cup 11.
By reducing the diameter of the positive electrode cup 11 during the sizing process, electrical contact can be made between the screen 31 and the positive electrode cup 11 with low resistance. That is, in the sizing process, the positive electrode cup 11 not only occupies the battery 11 but also applies pressure in the radial direction to the circumferential edge of the current collecting screen 31. so that a low resistance electrical pressure contact is made. Inside the negative electrode cup 12, a negative electrode, a material 13, is positioned by a spalter 33 so as not to come into contact with the positive electrode assembly 15.

この負極材料13は亜鉛かアマルガム化岨鉛粉末から作
るのが好ましい。しかしながら、本発明はこの例示材料
を使用することにの朔恨定されるものではない。第1図
と、第2図と第3図とには電池の形状と外観とまたその
内部にガスが通過するようにする開口20,21とが示
されている。
Preferably, the anode material 13 is made from zinc or amalgamated lead powder. However, the invention is not limited to the use of this exemplary material. 1, 2 and 3 show the shape and appearance of the cell, as well as the openings 20, 21 which allow gas to pass into its interior.

好ましい実施態様では、吸取りシート16は正極カップ
11のクラウン部分23のすぐ内側に設けてある。吸取
りノート即ち吸取紙16は極端な環境条件の下に卦いて
生ずることのある電池内での電解液a輸洩分を吸収する
ため安全用として付加されている。しかしながら、密封
卦よび寸法決め工程中に正極組立体が絶縁密封部材14
の環状の平たい頂部50と正極カツプ11の下面63と
の間で軸線方向に圧縮されることにより付加的な有効電
解液シールが形成される。正極組立体のこのような軸線
方向の圧縮は密封され寸法決めされた電池がダイスから
取出された後も維持されて、正常な作用条件の下では、
電解液の電池からの漏洩を防止する。従来技術の電池の
あるものでは、正極組立体15の縁部にはシールを形成
し電解液が正極を越えて漏洩しないようにするためのプ
ラスチツクがリング状に射出成形されている。しかしな
がら、本発明ではこのようなシールの必要をなくし従つ
て電池の内部容積を一層有効に使用できるようにする。
第4図ないし第9図には本発明の電池組立ての際の種々
の工程が示してある。簡単に説明すると、電池組立ての
際の基本的工程は負極材料を負極カツプに入れることと
、絶縁密封部材を負極カツプ上に置くことと、正極組立
体を正極カツプ内に入れることと、正極組立本を入れた
正極カツプを負極カツプと絶縁密封部材との上に置くこ
とと、上記0未完成電池を寸法決めダイスに入れて圧縮
することとを包陰している。本発明の組立てJ程を使用
して密封された電池を形成する際に、密封工程の効果を
挙げるためある特徴が加えられている。
In a preferred embodiment, the blotting sheet 16 is provided just inside the crown portion 23 of the positive cup 11. A blotting notebook or paper 16 is included as a safety feature to absorb electrolyte a spills within the battery that may occur under extreme environmental conditions. However, during the sealing and sizing process, the positive electrode assembly
An additional effective electrolyte seal is formed by axial compression between the annular flat top 50 of the positive cup 11 and the lower surface 63 of the positive cup 11. Such axial compression of the positive electrode assembly is maintained after the sealed and sized cell is removed from the die and under normal operating conditions,
Prevent leakage of electrolyte from the battery. In some prior art batteries, a ring of plastic is injection molded around the edge of the cathode assembly 15 to form a seal and prevent electrolyte from leaking beyond the cathode. However, the present invention eliminates the need for such seals, thus allowing more efficient use of the battery's internal volume.
4 through 9 illustrate various steps in assembling the battery of the present invention. Briefly, the basic steps in battery assembly are: placing the negative electrode material into the negative cup, placing the insulating sealing member on the negative cup, placing the positive electrode assembly into the positive cup, and completing the positive electrode assembly. This includes placing the positive cup containing the book on top of the negative cup and the insulating sealing member, and placing the unfinished battery into a sizing die and compressing it. In forming a sealed cell using the assembly process of the present invention, certain features are added to enhance the effectiveness of the sealing process.

本発明の特徴の1つは正極カツプ11に中高のクラウン
部分23を形成することである。クラウン部分23は電
池の正極用の外部接触子を形成すると共にまた電池の組
立て中制御された膨脹部分を形成するので2重の機能を
果す。すなわち、第1図に示した如き電池の密封卦よび
寸法決め中、正極カツブ11の外径は寸法決めダイス内
で組立てた電池を圧縮することにより減少せしめられる
が、正極カツプ11の頂部は容易に減少せしめられない
ので、従つて、正極カツプの頂部は必然的に変形される
様になる。正極カツプ11にクラウン部分を設けること
により、クラウン部分は変形しすなわち上方に付加的な
量だけ変形することにより第1図に示した弧状の形にな
る。負極カップ12内に負極材料を入れた後に、絶縁体
14を負極カツプ上に置き負極カツプ半組立体を形成す
る(第5図)。
One of the features of the present invention is that the positive electrode cup 11 is provided with a crown portion 23 having a medium height. The crown portion 23 serves a dual function as it forms an external contact for the positive electrode of the cell and also forms a controlled expansion section during assembly of the cell. That is, during the sealing and sizing of a battery as shown in FIG. Therefore, the top of the positive electrode cup inevitably becomes deformed. By providing the positive cup 11 with a crown portion, the crown portion deforms, ie deforms upwardly an additional amount, into the arcuate shape shown in FIG. After placing the anode material in the anode cup 12, an insulator 14 is placed over the anode cup to form the anode cup subassembly (FIG. 5).

同様に、正極組立体15と吸取シート即ち吸取紙16と
を正極カツプ11に合わせて配置する(第6図)。次の
工程で、正極組立体15と吸取シート16とを正極カッ
プ11内に入れ正極カツプの半組立体を形成する(第7
図)。前にも述べたように、正極組立体15の図示寸法
は寸法決め前には正極カツプの内径とほぼ同じに示して
あつて正極組立体が正極カツプに僅かに圧入されるよう
になつている。
Similarly, a positive electrode assembly 15 and a blotting sheet 16 are placed over the positive electrode cup 11 (FIG. 6). In the next step, the positive electrode assembly 15 and the blotting sheet 16 are placed inside the positive electrode cup 11 to form a positive electrode cup subassembly (7th step).
figure). As previously mentioned, the illustrated dimensions of the cathode assembly 15 are shown to be approximately the same as the inside diameter of the cathode cup prior to sizing, so that the cathode assembly is slightly press fit into the cathode cup. .

しかしながら、正極組立体の外径は寸法決め工程以前の
正極カツプの内径より僅かに小さくても良い。正極組立
体15の特定の寸法は正甑カツプ11の直径を縦小中正
極カツプが正極組立体15Q集電スクリーン31と電気
的に接触するような程度にしてある。正極カツプ半組立
体と負極カツプ半組立体とが形成された後、正極の半組
立体を負極半組立本の頂部に置く(第8図)。電池が組
立てた状態になると電池は最終的な密封卦よび寸法決め
工程にかけられる。密封卦よび寸法決め1程中、電池を
円錐状にテーパを付した側部81を有する寸法決めダイ
ス80(第9図、第9a図)に入れる。
However, the outer diameter of the positive assembly may be slightly smaller than the inner diameter of the positive cup prior to the sizing process. The specific dimensions of the positive electrode assembly 15 are such that the diameter of the positive electrode cup 11 is such that the positive electrode cup is in electrical contact with the current collecting screen 31 of the positive electrode assembly 15Q. After the positive and negative cup subassemblies are formed, the positive subassembly is placed on top of the negative subassembly (FIG. 8). Once the battery is in its assembled state, it is subjected to a final sealing and sizing process. During the sealing and sizing step 1, the battery is placed in a sizing die 80 (FIGS. 9 and 9a) having a conically tapered side 81.

寸法決めダイス80の上方には動力で作動する環状のパ
ンチ82が位置決めされている。
A power operated annular punch 82 is positioned above the sizing die 80.

同様に、ダイス80の下方にはこのダイス中に突出する
動力作動のパンチ90が位置決めされ、このパンチ90
はダイス80の底部に衝合するカラー91を有している
。パンチ90はそれに一定の上向きの力F2をかける適
当な動力機構(図示なし)により第9a図に示した位置
に保持される。バンチ90の頂部には上に組立てた電池
を置く平な表面92が設けてある。寸法決め工程におい
て、組立てたがまだ寸法決めされてない電池10を表面
92上に置く。
Similarly, a power-operated punch 90 is positioned below the die 80 and projects into the die.
has a collar 91 that abuts the bottom of the die 80. Punch 90 is held in the position shown in FIG. 9a by a suitable power mechanism (not shown) which applies a constant upward force F2 thereto. The top of the bunch 90 is provided with a flat surface 92 on which the assembled battery rests. In the sizing process, the assembled but not yet sized battery 10 is placed on the surface 92.

次に、環状パンチ82を電池10の上に接触させこの環
状バンチ80に下向きの力F1をかける。下向きの力F
1は下方のパンチ90にかかる上向きの力F2に打勝つ
に十分な程度である。環状パンチ82にかける力F1は
電池10をダイス80内を下降させる。パンチ90の直
径が寸法決めダイス80の直径より小さいので、パンチ
90はダイス80内を自由に通過する。しかしながら、
電池10の外径は円錐形状にテ一/くを付した側部81
の内径より大さい。従つて、電池10の外面は電池が寸
法決めダイス80内を降下せしめられる時半径方向に内
方に変形せtめられる。電池10がダイス80の底部に
達すると、電池10のフランjジすなわちスカート部2
7は圧縮すなわち内方に変形せしめられ負極カツプを正
極肋ツプにかみ合わせる。第9図には寸法決め工程を終
つた際の電池10が示してある。フランジ即ちスカート
部27が変形すなわち締付けられた後、環状パンチ82
にかけた力F1を取除き下方のポンチ90にかけた力F
2が電池10と壌状ポンチ82とを寸法決めダイス80
から押出せるようにする。第10図には密封卦よび寸法
決め工程以前の組立てた電池が断面で示してある。負極
カツプ12の外径はD1で示してあり正極カツブ11の
外径はD,で示してありまた正極カツブ11q内径はD
2で示してある。絶縁密封部材14の厚味はT2で示し
てありまた負極カツプ12q享味はT,で示してある。
組立ててあるが寸法決めされてない電池の典型的な以下
の例を参照すると種々の部品の相互関係が判る。実施例 約11.69wm(0.460インチ)の外径D3を有
する正極カツプを鋼で作り、正極カツプの内外面をニツ
ケル鍍金して耐蝕性にした。
Next, the annular punch 82 is brought into contact with the top of the battery 10 and a downward force F1 is applied to the annular punch 80. downward force F
1 is sufficient to overcome the upward force F2 applied to the lower punch 90. The force F1 applied to the annular punch 82 causes the battery 10 to descend within the die 80. Since the diameter of punch 90 is smaller than the diameter of sizing die 80, punch 90 passes freely through die 80. however,
The outer diameter of the battery 10 is a conical tapered side portion 81.
larger than the inner diameter of Thus, the outer surface of cell 10 is deformed radially inwardly as the cell is lowered through sizing die 80. When the battery 10 reaches the bottom of the die 80, the flange or skirt portion 2 of the battery 10
7 is compressed or deformed inwardly to engage the negative cup with the positive rib. FIG. 9 shows the battery 10 after completing the sizing process. After the flange or skirt portion 27 is deformed or tightened, the annular punch 82
The applied force F1 is removed and the applied force F is applied to the punch 90 below.
2 is a sizing die 80 for the battery 10 and the loam punch 82.
so that it can be extruded from FIG. 10 shows a cross-section of the assembled battery prior to the sealing and sizing steps. The outer diameter of the negative electrode cup 12 is indicated by D1, the outer diameter of the positive electrode cup 11 is indicated by D, and the inner diameter of the positive electrode cup 11q is indicated by D.
It is shown as 2. The thickness of the insulating sealing member 14 is indicated by T2, and the thickness of the negative electrode cup 12q is indicated by T.
Reference is made to the following typical example of an assembled but unsized battery to illustrate the interrelationship of the various parts. EXAMPLE A positive cup having an outside diameter D3 of approximately 11.69 wm (0.460 inch) was made of steel and the inside and outside surfaces of the positive cup were nickel plated to make it corrosion resistant.

正極カツプの内径D2は約11.18wn(0.440
インチ)であつた。絶縁密封部材は約2.54m(0.
010インチ)の厚味T2を有していム負極カツプは鋼
で作り約10.41twn(0.410インチ)の外径
D,を有していて耐蝕性を与えるため内面を錫で被覆し
た。負極カツプの厚味T1は約2.54fm(0.01
0インチ)であつた。組立てたが寸法決めされていない
電池を第9図と第9a図とに示した寸法決めダイスに入
れ約4.054ないし11.341cf(10ないし2
5ポンド)(好ましいのは約8.04蛇すなわち15ポ
ンド)の軸線方向の力F1を環状のパンチ82にかけた
The inner diameter D2 of the positive electrode cup is approximately 11.18wn (0.440
inch). The insulation sealing member is approximately 2.54m (0.
The negative electrode cup was made of steel and had an outside diameter D of about 10.41 twn (0.410 inches) and was coated with tin on the inner surface to provide corrosion resistance. The thickness T1 of the negative electrode cup is approximately 2.54 fm (0.01
0 inch). The assembled but unsized battery is placed in the sizing die shown in Figures 9 and 9a to yield approximately 4.054 to 11.341 cf.
An axial force F1 of 5 lbs.) (preferably about 8.04 lbs. or 15 lbs.) was applied to the annular punch 82.

寸法決めダイス80内で変形した後、電池をダイスから
取出した。電池の外径D2は約11.691I(0.4
60インチ)から約11.51聰(0.453インチ)
に減少せしめられたすなわち直径が約0.18wrIn
(05007インチ)減少せしめられた。直径がこのよ
うに減少することにより正極カップを正極組立体15の
集電スクリーンに良好に電気的に接触した状態に保持し
また正極カツプ11を絶縁体14と負極カツプ12とに
びつたりかみ合わせ電解液(ハ)瀦洩剤坊止するシール
を形成するのに役立つ5。
After being deformed within the sizing die 80, the battery was removed from the die. The outer diameter D2 of the battery is approximately 11.691I (0.4
60 inches) to approximately 11.51 meters (0.453 inches)
i.e. the diameter is approximately 0.18wrIn
(05007 inches). This reduction in diameter maintains the positive cup in good electrical contact with the current collecting screen of the positive assembly 15 and also prevents the positive cup 11 from interlocking with the insulator 14 and negative cup 12 during electrolysis. 5. Helps form a seal that prevents liquid (c) from leaking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属・空気電池の断面図、第2図
は第1図の笥池の上面図、第3図は第1図の電池の底面
図、第4図は負極カツプと負極材料とから部分的に組立
てた電池の断面図、第5図は第4図に示した部分的に組
立てた電池部品上に絶縁体を置いて示した部分的に組立
てた電池の断面図、第6図は正極組立体と正極カツプと
Q外解断面図、第7図は第6図の電池部品の組立て図、
第8図は密封卦よび寸法決め工程以前に卦ける組立てた
電池の断面M、第9図は密封卦よび寸法決め工程中にお
ける寸法決めダイスと組立てた電池とを示す図、第9a
図は密封卦よび寸法決め程以前の寸法決めダイスと組立
てた電池とを示す図、第10図は寸法決め工程以前に卦
ける組立てた電池を示す図である。 10・・・・・・電池、11・・・・・・第1の一・ウ
ジング即ち正極、12・・・・・・第2の・・ウジング
即ち負極カツプ、13・・・・・・負極材料、14・・
・・・艶縁密封部材、15・・・・・・正極組立体、2
0,21・・・・・・開口、27,40・・・・・・締
付けまたは係合装置、30・・・・・・疎水層、31・
・・・・・集電部材即ちスクリーン、33・・・・・・
セパレータ、50・・・・・・環状頂部、51・・・・
・・環伏下部、52・・・・・・スカート部。
FIG. 1 is a cross-sectional view of the metal-air battery according to the present invention, FIG. 2 is a top view of the battery shown in FIG. 1, FIG. 3 is a bottom view of the battery shown in FIG. 1, and FIG. 4 is a negative electrode cup and FIG. 5 is a cross-sectional view of a partially assembled battery with an insulator placed over the partially assembled battery components shown in FIG. 4; Figure 6 is an exploded sectional view of the positive electrode assembly, positive electrode cup, and Q exterior, Figure 7 is an assembled view of the battery parts in Figure 6,
Figure 8 is a cross section M of the assembled battery drawn before the sealing circle and sizing process, Figure 9 is a diagram showing the sizing die and the assembled battery during the sealing circle and sizing process, Figure 9a
The figure shows the sizing die and the assembled battery before the sealing and sizing process, and FIG. 10 shows the assembled battery before the sizing process. DESCRIPTION OF SYMBOLS 10... Battery, 11... First housing or positive electrode, 12... Second housing or negative electrode cup, 13... Negative electrode. Materials, 14...
...Glossy edge sealing member, 15...Positive electrode assembly, 2
0, 21... Opening, 27, 40... Tightening or engaging device, 30... Hydrophobic layer, 31.
...Current collecting member, ie, screen, 33...
Separator, 50... Annular top, 51...
・・Lower portion of the bulge, 52・・・・Skirt portion.

Claims (1)

【特許請求の範囲】 1 ガス電極電気化学電池の組立方法で;閉鎖上方端部
と垂直側方部分とを有し、上方端部にガス通路手段を備
えた第1の電極カップを形成することと;閉鎖底端部と
、頂部縁に終端する垂直側壁部分とを有する第2の電極
カップで前記第1の電極カップ内に両者の閉鎖端部を互
いに向きあつて一番離れた位置としてはじめ込むことが
可能な第2の電極カップを形成することと;前記第1の
電極カップに集電部材を含む正極組立体を挿入すること
と;前記第2の電極カップに負極材料も配置することと
;絶縁密封部材をその一部分が前記第2の電極カップ上
で前記第2の電極カップの前記頂部縁に係合する様に位
置決めすることと;前記第2の電極カップと前記絶縁密
封部材を共に、又前記負極材料を前記第1の電極カップ
内にはめ込むことと;前記第1と第2の電極カップとを
前記絶縁密封部材をその間にして固定せしめることと;
を含むものである組立方法に於て、 前記絶縁密封部材の前記頂部縁に係合する前記部分が環
状部分であり、又前記絶縁密封部材が前記環状部分の外
周辺から実質的に垂直に懸下するスカート部分を有する
様に前記絶縁密封部材が形成され、前記環状部分の上側
面が前記正極組立体を前記第1の電極カップに対して保
持する様になされ、前記スカート部分は前記第1の電極
カップの前記側方部分と前記第2の電極カップの前記垂
直側壁部分との間に配置され、前記第1の電極カップは
その閉鎖端部の面が外方に突き出す様に中央で中高とな
る様に形成され、前記正極組立体も前記第1の電極カッ
プの中高部分と同じ方向に突起して中央で中高となされ
、前記第1と第2の電極カップの固定は、前記第1の電
極カップと前記絶縁密封部材とに寸法決め及び変形作業
を加えて、その作業が前記第1の電極カップの側方部分
と前記第2の電極カップの側壁部分が前記密封部材を其
の間にして形状的に係合しこれにより、前記集電部材が
前記第1の電極カップの内側面に係合する様になる迄前
記の寸法決め及び変形作業を行うことを特徴とする組立
方法。 2 ガス減極電気化学電池で、 閉鎖端部と開口端部とを有し、閉鎖端部にはガスの通過
を許容する通路を有する第1の電極カップと;閉鎖端部
と開口端部とを有する第2の電極カップで、前記第1の
電極カップ内に両カップの開口端部を互いに向い合わせ
て挿入され、両カップが互いに固定されている第2の電
極カップと;前記第1と第2の電極カップの間に配置さ
れている環状の絶縁密封部材と;集電部材を含み、前記
第1の電極カップ内に配置された正極組立体と;前記第
2の電極カップ内に配置された負極材料と;前記正極組
立体と前記負極材料との間に配置されたセパレータと;
を含む電池に於て、 前記第1の電極カップの閉鎖端部は軸方向外方に突出し
て中央が中高となされ、前記正極組立体は前記第1の電
極カップの中高と同じ方向に突出して中央で中高となさ
れ、前記絶縁密封部材は環状部分とこの環状部分の外周
辺から懸下するスカート部分とを有し、環状部分の上側
面は前記正極組立体を前記第1の電極カップに対して担
持する様になされて居り、下側面は第2の電極カップの
開口部の縁に係合して居り前記スカート部分は前記第1
と第2の電極カップの夫々の側部分の間に配置され、前
記第1と第2の電極カップはその間に前記絶縁密封部材
を位置せしめたままカップに加えた寸法決め及び変形作
業により互いにしつかりと組付けられて前記集電部材が
前記第1の電極カップの内側壁にしつかりと接触されて
いることを特徴とする電池。
Claims: 1. A method for assembling a gas electrode electrochemical cell; forming a first electrode cup having a closed upper end and a vertical side portion, the upper end having gas passage means; and; a second electrode cup having a closed bottom end and a vertical sidewall portion terminating in a top edge within said first electrode cup, starting with the closed ends facing each other in the furthest position; forming a second electrode cup that is removable; inserting a positive electrode assembly including a current collecting member into the first electrode cup; and also disposing a negative electrode material in the second electrode cup. positioning an insulating sealing member such that a portion thereof engages the top edge of the second electrode cup on the second electrode cup; and also fitting the negative electrode material into the first electrode cup; fixing the first and second electrode cups with the insulating sealing member therebetween;
an assembly method comprising: the portion engaging the top edge of the insulating sealing member being an annular portion; and the insulating sealing member depending substantially perpendicularly from an outer periphery of the annular portion. The insulating seal member is formed to have a skirt portion, the upper surface of the annular portion is configured to hold the positive electrode assembly relative to the first electrode cup, and the skirt portion is configured to hold the positive electrode assembly relative to the first electrode cup. disposed between the side portion of the cup and the vertical side wall portion of the second electrode cup, the first electrode cup being centrally raised such that its closed end surface projects outwardly; The positive electrode assembly also protrudes in the same direction as the centrally raised portion of the first electrode cup to have a centrally raised portion, and the first and second electrode cups are fixed to each other by the first electrode cup. A sizing and deforming operation is performed on the cup and the insulating sealing member, the operation being such that the side portion of the first electrode cup and the side wall portion of the second electrode cup are separated with the sealing member between them. A method of assembly characterized in that the sizing and deforming operations described above are carried out until the current collecting member is engaged in shape with the inner surface of the first electrode cup. 2. A gas depolarized electrochemical cell, comprising: a first electrode cup having a closed end and an open end, the closed end having a passageway for allowing passage of gas; a second electrode cup having a second electrode cup inserted into the first electrode cup with the open ends of both cups facing each other, and both cups being fixed to each other; an annular insulating sealing member disposed between second electrode cups; a positive electrode assembly including a current collecting member disposed within the first electrode cup; and a positive electrode assembly disposed within the second electrode cup. a separator disposed between the positive electrode assembly and the negative electrode material;
In the battery, the closed end of the first electrode cup protrudes outward in the axial direction and has a central height, and the positive electrode assembly protrudes in the same direction as the central height of the first electrode cup. The insulating sealing member has an annular portion and a skirt portion depending from the outer periphery of the annular portion, and the upper surface of the annular portion holds the positive electrode assembly relative to the first electrode cup. the lower surface engages the edge of the opening of the second electrode cup, and the skirt portion engages the edge of the opening of the second electrode cup.
and a second electrode cup, and the first and second electrode cups are attached to each other by sizing and deformation operations applied to the cups while the insulating sealing member is positioned therebetween. A battery characterized in that the current collecting member is assembled with a support and is brought into contact with the inner wall of the first electrode cup.
JP751088A 1974-01-30 1974-12-24 Gas depolarized electrochemical cell and its manufacturing method Expired JPS597184B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43792474A 1974-01-30 1974-01-30
US437924 1974-01-30

Publications (2)

Publication Number Publication Date
JPS50108529A JPS50108529A (en) 1975-08-27
JPS597184B2 true JPS597184B2 (en) 1984-02-16

Family

ID=23738488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP751088A Expired JPS597184B2 (en) 1974-01-30 1974-12-24 Gas depolarized electrochemical cell and its manufacturing method

Country Status (6)

Country Link
US (1) US3897265A (en)
JP (1) JPS597184B2 (en)
CA (1) CA1024586A (en)
DE (1) DE2454890C2 (en)
FR (1) FR2259444B1 (en)
GB (1) GB1467708A (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066822A (en) * 1976-09-28 1978-01-03 P. R. Mallory & Co. Inc. Self sealing microporous membrane for electrochemical cells and method of forming same
CH614563A5 (en) * 1977-08-08 1979-11-30 Accumulateurs Fixes
US4118544A (en) * 1977-09-28 1978-10-03 P.R. Mallory & Co. Inc. Metal-air depolarized cell having restricted gas passageway
US4397083A (en) * 1978-04-17 1983-08-09 Catanzarite Vincent Owen Cathode structure and method
US4189526A (en) * 1978-05-05 1980-02-19 Gould Inc. Metal/oxygen cells and method for optimizing the active life properties thereof
US4302517A (en) * 1980-06-26 1981-11-24 Union Carbide Corporation Unitary seal and cover support gasket for miniature button cells
US4333993A (en) * 1980-09-22 1982-06-08 Gould Inc. Air cathode for air depolarized cells
US4343869A (en) * 1981-02-09 1982-08-10 Ray-O-Vac Corporation Seal for metal-air batteries
US4369568A (en) * 1981-02-09 1983-01-25 Ray-O-Vac Corporation Method for manufacturing cells utilizing centrifuging techniques
US4404266A (en) * 1982-03-15 1983-09-13 Union Carbide Corporation Miniature air cells with seal
US4439500A (en) * 1982-07-27 1984-03-27 Gould Inc. Gas switch
US4533609A (en) * 1982-10-21 1985-08-06 Duracell Inc. Seal for electrochemical cell
DE3314624A1 (en) * 1983-04-22 1984-10-25 Varta Batterie Ag, 3000 Hannover AIR OXYGEN CELL
JPH0636374B2 (en) * 1983-06-20 1994-05-11 東芝電池株式会社 Button-type air battery manufacturing method
DE3331699C2 (en) * 1983-09-02 1985-10-31 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co KG, 5790 Brilon Oxygen electrode for alkaline galvanic elements and process for their manufacture
DE3425172A1 (en) * 1984-07-09 1986-01-16 Varta Batterie Ag, 3000 Hannover Airborne oxygen cell
DE3425171A1 (en) * 1984-07-09 1986-01-16 Varta Batterie Ag, 3000 Hannover Airborne oxygen cell
US4564427A (en) * 1984-12-24 1986-01-14 United Technologies Corporation Circulating electrolyte electrochemical cell having gas depolarized cathode with hydrophobic barrier layer
US4791034A (en) * 1987-02-10 1988-12-13 Rayovac Corporation Sealing sleeve
US5560999A (en) * 1993-04-30 1996-10-01 Aer Energy Resources, Inc. Air manager system for recirculating reactant air in a metal-air battery
US5356729A (en) * 1993-06-15 1994-10-18 Aer Energy Resources, Inc. Diffusion controlled air manager for metal-air battery
US5362577A (en) * 1993-06-04 1994-11-08 Aer Energy Resources, Inc. Diffusion vent for a rechargeable metal-air cell
US5733676A (en) * 1995-05-05 1998-03-31 Rayovac Corporation Metal-air cathode can and electrochemical cell made therewith
US5591541A (en) * 1995-05-05 1997-01-07 Rayovac Corporation High steel content thin walled anode can
US6248463B1 (en) 1997-05-05 2001-06-19 Rayovac Corporation Metal-air cathode can and electrochemical cell made therewith
US5958088A (en) * 1998-03-04 1999-09-28 Duracell, Inc. Prismatic cell construction
US6368738B1 (en) 1998-03-06 2002-04-09 Rayovac Corporation Air depolarized electrochemical cell
US6210826B1 (en) * 1998-03-06 2001-04-03 Rayovac Corporation Seals, and electrochemical cells made therewith
US6261709B1 (en) 1998-03-06 2001-07-17 Rayovac Corporation Air depolarized electrochemical cell having mass-control chamber in anode
US6205831B1 (en) 1998-10-08 2001-03-27 Rayovac Corporation Method for making a cathode can from metal strip
US6164490A (en) * 1999-05-03 2000-12-26 Northeast Iowa Rehabilitation Agency Storage and dispensing package for batteries and other objects
US6447947B1 (en) 1999-12-13 2002-09-10 The Gillette Company Zinc/air cell
US6300011B1 (en) 2000-01-25 2001-10-09 The Gillete Company Zinc/air cell
US6461765B1 (en) 2000-02-14 2002-10-08 Aer Energy Resources Inc. Metal-air cell housing with improved peripheral seal design
US6581799B1 (en) 2000-09-08 2003-06-24 Eveready Battery Company, Inc. Product dispenser
US6631825B2 (en) 2000-09-08 2003-10-14 Eveready Battery Company, Inc. Product dispenser
US6830847B2 (en) 2001-04-10 2004-12-14 The Gillette Company Zinc/air cell
US6977124B2 (en) * 2001-07-19 2005-12-20 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrochemical cell
EP1277494B1 (en) * 2001-07-19 2010-03-10 Greatbatch Ltd. Contoured housing for an implantable medical device
US6769567B2 (en) * 2003-01-03 2004-08-03 Eveready Battery Company, Inc. Product dispenser
US7001689B2 (en) * 2003-04-02 2006-02-21 The Gillette Company Zinc/air cell
US7001439B2 (en) * 2003-04-02 2006-02-21 The Gillette Company Zinc/air cell assembly
US20040197645A1 (en) * 2003-04-02 2004-10-07 Keith Buckle Zinc/air cell
TW200520292A (en) 2003-08-08 2005-06-16 Rovcal Inc High capacity alkaline cell
AR047875A1 (en) 2004-06-04 2006-03-01 Rovcal Inc ALKAL CELLS THAT PRESENT HIGH CAPACITY
US7582125B2 (en) * 2004-11-26 2009-09-01 The Gillette Company Method of forming a nickel layer on the cathode casing for a zinc-air cell
ATE486379T1 (en) * 2005-04-29 2010-11-15 Eveready Battery Inc ANODE HOUSING FOR AN ALKALINE CELL
US20070054168A1 (en) * 2005-09-06 2007-03-08 Hao Chang Zinc/air cell
US7625672B2 (en) 2005-10-28 2009-12-01 The Gillette Company Zinc/air cell
US7258940B2 (en) * 2005-12-05 2007-08-21 The Gillette Company Zinc/air cell
US20070224500A1 (en) * 2006-03-22 2007-09-27 White Leo J Zinc/air cell
US20080226976A1 (en) 2006-11-01 2008-09-18 Eveready Battery Company, Inc. Alkaline Electrochemical Cell with Reduced Gassing
WO2008057401A2 (en) * 2006-11-01 2008-05-15 Eveready Battery Company, Inc. Alkaline electrochemical cell with reduced gassing and reduced discolouration
US10872705B2 (en) 2018-02-01 2020-12-22 Battelle Energy Alliance, Llc Electrochemical cells for direct oxide reduction, and related methods
CN112002903B (en) * 2020-08-24 2022-01-14 湖北亿纬动力有限公司 Oily binder and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423242A (en) * 1964-10-28 1969-01-21 Livingston Electronic Corp Electric current-producing cell with anhydrous organic liquid electrolyte
US3573105A (en) * 1966-10-27 1971-03-30 Gen Electric Rechargeable non-aqueous alkalimetal-halogen electrochemical cells
CH468087A (en) * 1967-08-30 1969-01-31 Berliner Akku & Elementefab Galvanic atmospheric oxygen element
US3489616A (en) * 1967-11-14 1970-01-13 Berliner Akku & Elementefab Galvanic atmospheric-oxygen cell
US3578500A (en) * 1968-07-08 1971-05-11 American Cyanamid Co Nonaqueous electro-chemical current producing cell having soluble cathode depolarizer
US3567515A (en) * 1970-03-25 1971-03-02 American Cyanamid Co Electrochemical cell containing sulfur dioxide as the cathode depolarizer
US3639174A (en) * 1970-04-22 1972-02-01 Du Pont Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system
US3746580A (en) * 1971-08-19 1973-07-17 Esb Inc Gas depolarizable galvanic cell

Also Published As

Publication number Publication date
JPS50108529A (en) 1975-08-27
FR2259444A1 (en) 1975-08-22
DE2454890A1 (en) 1975-07-31
CA1024586A (en) 1978-01-17
GB1467708A (en) 1977-03-23
DE2454890C2 (en) 1987-11-12
FR2259444B1 (en) 1979-09-28
US3897265A (en) 1975-07-29

Similar Documents

Publication Publication Date Title
JPS597184B2 (en) Gas depolarized electrochemical cell and its manufacturing method
USRE31413E (en) Gas depolarized electrochemical cells and method of assembly
CA1068779A (en) Production of zinc-air button cell
US4725515A (en) Button cell construction with internally compressed gasket
US4343869A (en) Seal for metal-air batteries
JP3790546B2 (en) Upwardly deflecting support disc for electrochemical battery seals
JP3790545B2 (en) Upwardly deflecting support disc for electrochemical battery seals
WO1999028980A1 (en) Gasket for miniature galvanic cells
US20100047666A1 (en) Electrochemical Cell with Shaped Catalytic Electrode Casing
JP2009517818A (en) Galvanic element with new housing
GB2109622A (en) Air-depolarized button cells
US6368745B1 (en) Battery construction having cover assembly
US5712058A (en) Miniature galvanic cell having optimum internal volume for the active components
EP1611623B1 (en) Zinc/air cell
US5821010A (en) Galvanic cell having a reliable sealable vent closure
US5846672A (en) Indented electrode cup for a miniature galvanic cell
EP0129881A1 (en) Air-cathode button cell
EP1629550B1 (en) Zinc/air cell assembly
EP1016148A1 (en) Snap-through gasket for galvanic cells
CA1074859A (en) Self sealing microporous membrane for electrochemical cells and method of forming same
US8236444B2 (en) Electrochemical cell having low volume collector assembly
US4442184A (en) Dry path gas venting seal
US6183902B1 (en) Beaded electrode cup for a miniature galvanic cell
JP3760427B2 (en) Battery case manufacturing method and battery
JP2600925Y2 (en) Spiral battery