JPS5970810A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS5970810A
JPS5970810A JP18000582A JP18000582A JPS5970810A JP S5970810 A JPS5970810 A JP S5970810A JP 18000582 A JP18000582 A JP 18000582A JP 18000582 A JP18000582 A JP 18000582A JP S5970810 A JPS5970810 A JP S5970810A
Authority
JP
Japan
Prior art keywords
steam
stress corrosion
cracks
source
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18000582A
Other languages
Japanese (ja)
Other versions
JPH0133642B2 (en
Inventor
Takashi Ikeda
隆 池田
Kyo Aizawa
相沢 協
Hirotsugu Kodama
児玉 寛嗣
Yukio Shinozaki
篠崎 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18000582A priority Critical patent/JPS5970810A/en
Publication of JPS5970810A publication Critical patent/JPS5970810A/en
Publication of JPH0133642B2 publication Critical patent/JPH0133642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To enhance reliability of a turbine rotor and prolong its life by forming a steam supply, which shall supply a pure steam into a key seat through a micro-gap between any two adjoining pair of discs, and thereby giving the key seat a fine circumstance, in which there is no fear of generation of stress corrosion cracks. CONSTITUTION:A pure steam produced in a source 10 sent to a through hole 13 after passing a pipeline 11 is injected to the basis of adjoining disc 1, 1 from near a labyrinth packing 9 through a through hole 14 fromed in a nozzle diaphragm 8 to cause spattering of the back water stagnating there as well as intrudes in key seats 4, 5 from a gap 7 to put the under a pure circumstance, so as to eliminate such environment as generates stress corrosion cracks. Thus generation of cracks is prevented. Propagation of cracks can be suppressed by putting aside the ambient temp. of the disc 1 out of the range with fast propagation speed of stress corrosion cracks by means of adjustment of the steam temp. in the source 10. Further, good prevention is obtained by suppling the steam from the source 10 only during operation in the range with low pressure in starting only at the stages from first to fifth stage.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービンに係り、特に、焼はめ型ロータを
備えた蒸気タービンの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to steam turbines, and more particularly to improvements in steam turbines equipped with shrink-fit rotors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、蒸気タービンのロータには、一体に鍛造された
合金鋼等の素材から機械加工によって製造するもの、円
板状の素材を溶接により一体化し、その後機械加工によ
って製造するもの、機械加工が完了し羽根を植込んだ円
板をロータシャフトに焼ばめによって結合するもの等の
44 ’JRがあるが、このうち、焼ばめ型ロータは、
素材がロータシャフトと各円板とに分割されているため
、比較的小規模の鍛造素材から大型のロータを製造する
ことが可能であり、この利点の故に永年にわたって使用
されてきた。
In general, steam turbine rotors are manufactured by machining from a material such as alloy steel that has been forged in one piece, or by welding disc-shaped materials together and then machining them, or after machining is completed. There are 44' JR types that connect a disk with implanted blades to the rotor shaft by shrink fit, but among these, the shrink fit type rotor is
Because the stock is divided into the rotor shaft and each disc, it is possible to manufacture large rotors from relatively small forgings, and this advantage has led to their use for many years.

第1図はこのような従来の焼ばめ型ロータの一例を示す
もので1)、円板lの内径d1はロータシャフト2の外
径d2に対し、常温の状態において、焼はめ代として知
られる寸法だけ小さく製造されている。この円板1をシ
ャフト2に結合する際はシャフト2の温度を上げず、円
板1のみ加熱して熱的に膨張させ、円板1の内径寸法d
1をシャフト2の外径寸法d2より大きな状態にしてシ
ャフト2を挿入し、所定の位置に設置した後、円板lを
冷却して熱的な収縮により円板1とシャフト2を互いに
固定させる。
Figure 1 shows an example of such a conventional shrink-fit rotor.1) The inner diameter d1 of the disk l is relative to the outer diameter d2 of the rotor shaft 2 at room temperature, which is known as the shrink-fit allowance. Manufactured as small as possible. When joining this disc 1 to the shaft 2, the temperature of the shaft 2 is not raised, and only the disc 1 is heated to thermally expand, and the inner diameter d of the disc 1 is
1 is made larger than the outer diameter d2 of shaft 2, and shaft 2 is inserted, and after setting it at a predetermined position, the disc 1 is cooled and the disc 1 and shaft 2 are fixed to each other by thermal contraction. .

一方、円板の外周部には複数の羽根3が結合される。円
板1とシャフト2の間には、第2図に示すようにキー溝
4,5内に臨むキー6が設けられる。このキー6は異常
な運転状態下において、焼ばめがゆるんだ場合にも、円
板1がシャフト2に対し相対的に回転することを防止す
るものである。
On the other hand, a plurality of blades 3 are coupled to the outer periphery of the disk. A key 6 is provided between the disc 1 and the shaft 2 and faces into the key grooves 4 and 5, as shown in FIG. This key 6 prevents the disk 1 from rotating relative to the shaft 2 even if the shrink fit loosens under abnormal operating conditions.

しかしながら、この焼ばめ型ロータにおいては、応力腐
蝕割れ(5tress 0orrOsion Crac
king)という、ロータの信頼性を低下し、寿命を縮
める現象の発生するおそれがある。この応力腐蝕割れの
発生メカニズムの1つとしては、酸素を含んだ水または
水蒸気の環境の下に金属の表面酸化被膜が局部的に破壊
され、かつ材料に引張応力が作用することによってその
部分が選択的に溶解され、割れが生じるタイプのものが
挙げられる。この場合、応力腐蝕割れは材料が割れに対
する感受性を有すること、限界値以上の高い応力が作用
するとと、および材料が、局部的な酸化被膜の生成と破
壊を受ける環境下におかれていることの3つの要因が重
なったときに発生する。
However, in this shrink-fit type rotor, stress corrosion cracking (5tress 0orrOsion Crac
There is a possibility that a phenomenon known as "King" may occur, which reduces the reliability of the rotor and shortens its life. One of the mechanisms by which stress corrosion cracking occurs is that the surface oxide film of the metal is locally destroyed in an environment of oxygen-containing water or steam, and tensile stress is applied to the material. Examples include types that are selectively dissolved and cracks occur. In this case, stress corrosion cracking is caused by the material's susceptibility to cracking, the action of high stress exceeding a critical value, and the fact that the material is placed in an environment where it is subject to the formation and destruction of a local oxide film. This occurs when three factors combine.

このうち材料の応力腐蝕割れに対する感受性は、材料強
度と密接な関係を持ち、一般に引張強度の高い材料はど
割れ感受性も高くなる。焼はめ型ロータの円板1は、そ
の作用応力が高い点から引張強度の高い低合金鋼を使用
せぎるを得す、今後、割れ感受性の全くない材料を選択
または開発することは殆んど不可能である。
Among these, the susceptibility of a material to stress corrosion cracking is closely related to the material strength, and in general, materials with high tensile strength have a high susceptibility to groove cracking. For the disc 1 of the shrink-fit rotor, it is recommended to use low-alloy steel with high tensile strength because of its high acting stress.In the future, it is unlikely that materials with no cracking susceptibility will be selected or developed. It's impossible.

つぎに、焼ばめ型ロータの円板1の応力についてみると
、円板1には初期の焼はめに起因する焼ばめ応力と、回
転にともない円板1自身および羽根3に遠心力が作用す
ることに起因する遠心応力とが発生し、その値は、円板
1の内径側はど高くなる。特に、第2図に詳示するキー
6の周囲のキー溝4においては、形状に起因する応力集
中が発生し、作用応力はしばしば応力腐蝕割れの発生限
界値をこえる場合がある。
Next, looking at the stress in the disk 1 of the shrink-fit type rotor, there is a shrink-fit stress on the disk 1 due to the initial shrink-fit, and a centrifugal force on the disk 1 itself and the blades 3 as it rotates. Centrifugal stress is generated due to this action, and its value becomes higher on the inner diameter side of the disk 1. In particular, in the keyway 4 around the key 6 shown in detail in FIG. 2, stress concentration occurs due to the shape, and the applied stress often exceeds the limit value for stress corrosion cracking.

さらに、環境の点では、発電設備における蒸気の性状は
、蒸気発生設備(ボイラ、原子炉等)、復水設備、給水
設備等の全体的な仕様によって決定され、円板1の応力
腐蝕割れにのみ注目した微妙な水質管理を行うことは困
雌である。特に、沸騰水型原子カプラントにおいては、
原子炉内で発生する酸素が蒸気とともに蒸気タービンに
混入す 、ることを避けることはできない。
Furthermore, from an environmental point of view, the properties of steam in power generation equipment are determined by the overall specifications of steam generation equipment (boilers, nuclear reactors, etc.), condensation equipment, water supply equipment, etc. It is a shame to carry out subtle water quality management that only focuses on water quality. In particular, in boiling water type atomic couplants,
It is unavoidable that the oxygen generated in the reactor will mix with the steam into the steam turbine.

前述した従来の焼ばめ型ロータの円板1のキー溝4の近
傍においては、前述した材料、応力および環境の3つの
因子が重なるため応力腐蝕割れの発生するおそれがあっ
た。そして、円板1に応力腐蝕割れが発生し、この発生
した応力腐蝕割れが非破壊検査等によって未然に検知さ
れなかった場合は、円板1の破壊につながることもある
In the vicinity of the keyway 4 of the disc 1 of the conventional shrink-fit rotor described above, there was a risk of stress corrosion cracking occurring due to the combination of the three factors described above: material, stress, and environment. If stress corrosion cracking occurs in the disk 1 and is not detected by non-destructive testing or the like, it may lead to the disk 1 being destroyed.

〔発明の目的〕[Purpose of the invention]

本発明は、前述した従来のものにおける欠点を除去し、
応力腐蝕割れの要因を取除いてロータの信頼性を向上し
、寿命を従来のものより向上するようにした蒸気タービ
ンを提供することを目的とする。
The present invention eliminates the drawbacks of the conventional ones mentioned above,
It is an object of the present invention to provide a steam turbine which improves the reliability of a rotor by eliminating factors that cause stress corrosion cracking, and whose lifespan is extended compared to conventional ones.

〔発明の概要〕[Summary of the invention]

この目的は、本発明によれば、隣位の一対の円板間の微
小間隙を介してキー溝内に清浄な蒸気を供給する蒸気供
給路を形成し、清浄な蒸気によりキー溝内を応力腐蝕別
れの発生し得る・環境でなくすることによシ達成される
According to the present invention, the purpose of this is to form a steam supply path that supplies clean steam into the keyway through a minute gap between a pair of adjacent discs, and to apply stress to the inside of the keyway with the clean steam. This is achieved by eliminating environments where corrosion and separation can occur.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す実施例により説明する。なお
、前述した従来のものと同一の構成については、図面中
に同一の符号を付し、その説明は省略する。
The present invention will be explained below with reference to embodiments shown in the drawings. Note that the same components as those of the conventional device described above are denoted by the same reference numerals in the drawings, and the explanation thereof will be omitted.

第3図は本発明の第1実施例を示すものであり、隣位の
一対の円板1,1間には熱膨張の際の衝突を防ぐだめの
微小間隙7が従来のものと同様に形成されている。
FIG. 3 shows a first embodiment of the present invention, in which a minute gap 7 is provided between a pair of adjacent disks 1, 1 to prevent collisions during thermal expansion, as in the conventional one. It is formed.

そして、本発明は、原子炉等の本来の蒸気発生器からの
蒸気の大半は応力腐蝕割れのおそれのない羽根(動翼)
3を通過して仕事をし、残りのわずか1tf6前後の蒸
気がノズルダイヤフラム8の先端のラビリンスパツキン
9を漏洩し、この漏洩した蒸気が円板1の前記環境条件
を支配することに着目し、この漏洩蒸気量に相当する不
純物を含有しない清浄な蒸気を前記間隙7を介してキー
溝4゜5内に供給するようにしたものである。このため
、ボイラ、原子炉等のような本来の発電設備に固有な蒸
気発生設備(図示せず)のほかに清浄な蒸気を発生する
小型の蒸気源10が設けられている。この蒸気源10か
らは管路11が延在し、タービンケーシング12に穿設
された貫通孔13を介してノズルダイヤフラム8の基部
と接続されている。さらに、ノズルダイヤフラム8には
、ケーシング12の半径方向の貫通孔14が穿設されて
いる。
In addition, the present invention provides that most of the steam from the original steam generator such as a nuclear reactor is transferred to blades (moving blades) that are free from stress corrosion cracking.
3, the remaining steam of around 1 tf6 leaks through the labyrinth packing 9 at the tip of the nozzle diaphragm 8, and this leaked steam controls the environmental conditions of the disk 1, Clean steam containing no impurities corresponding to the amount of leaked steam is supplied into the keyway 4.degree. 5 through the gap 7. For this reason, a small steam source 10 that generates clean steam is provided in addition to steam generating equipment (not shown) specific to the original power generation equipment, such as a boiler or a nuclear reactor. A conduit 11 extends from the steam source 10 and is connected to the base of the nozzle diaphragm 8 via a through hole 13 bored in the turbine casing 12 . Furthermore, a through hole 14 in the radial direction of the casing 12 is bored in the nozzle diaphragm 8 .

また、蒸気源10からの蒸気をタービンケーシング12
の貫通孔13に直接案内する代シに、第4図に示すよう
に、蒸気管J7の途中に浄イビ装置九を介装し、蒸気源
10から蒸気管17を通って送られる蒸気をクリーニン
グし、清浄な蒸気をタービンケーシング12の貫通孔1
3に案内するようにしてもよい。
Further, the steam from the steam source 10 is transferred to the turbine casing 12.
As shown in FIG. 4, a cleaning device 9 is installed in the middle of the steam pipe J7 to clean the steam sent from the steam source 10 through the steam pipe 17. The clean steam is then passed through the through hole 1 of the turbine casing 12.
3 may be provided.

前述した構成によれば、蒸気源10で発生した清浄な蒸
気あるいは浄化装置加で浄化された蒸気は、管路11あ
るいは蒸気管17を経て、タービンケーシング120貫
通孔13に案内され、続いてノズルダイ−’t’ 7 
ラム80貫! 孔14を介してノズルダイヤフラム8の
先端のラビリンスパツキン9の近傍から隣接する円板1
,1の基部に噴射される。したがって、この清浄な蒸気
は円板1,10基部上に滞溜している復水を飛散せしめ
るほか、間隙7がらキー溝4,5内に浸入することにな
る。この結果、キー溝4.5内は常に不純物のない清浄
な環境下におかれ、応力腐蝕割れを発生させる材料、応
力および環境の3つの因子のうち環境に関する因子を除
去することになシ、応力腐蝕割れの発生を防止すること
ができる。
According to the above-described configuration, clean steam generated in the steam source 10 or steam purified by the purification device is guided to the through hole 13 of the turbine casing 120 via the pipe line 11 or the steam pipe 17, and then to the nozzle die. -'t' 7
80 pieces of lamb! Adjacent disk 1 from the vicinity of labyrinth packing 9 at the tip of nozzle diaphragm 8 through hole 14
, 1 is injected at the base of the base. Therefore, this clean steam not only scatters the condensate accumulated on the bases of the discs 1 and 10, but also enters into the keyways 4 and 5 through the gap 7. As a result, the inside of the keyway 4.5 is always kept in a clean environment free of impurities, and among the three factors that cause stress corrosion cracking: material, stress, and environment, the environmental factors are removed. The occurrence of stress corrosion cracking can be prevented.

ところで、前記応力腐蝕割れは前述した3つの因子のほ
か環境温度とも密接な関係がある。すなわち、応力腐蝕
割れの進展速度は環境温度に大きく作用される。これは
、応力腐蝕割れに化学的要因があるため、蒸気成分中の
物質の成分とロータ材料の化学的性質の関係にょシある
特定の温度域で応力腐蝕割れが促進されるためであると
考えられる。
Incidentally, the stress corrosion cracking is closely related to the environmental temperature as well as the three factors mentioned above. That is, the growth rate of stress corrosion cracking is greatly influenced by the environmental temperature. This is thought to be due to the fact that stress corrosion cracking has chemical factors, and stress corrosion cracking is accelerated in a certain temperature range due to the relationship between the components of the substance in the steam component and the chemical properties of the rotor material. It will be done.

第4図は円板1と同種材の応力腐蝕割れの進展   □
速度と温度との関係を示す実験データである。すなわち
、環境温度150℃付近において応力腐蝕割   □れ
進展速度が最大となっている。
Figure 4 shows the development of stress corrosion cracking in disc 1 and the same type of material □
This is experimental data showing the relationship between speed and temperature. In other words, the rate of stress corrosion cracking is at its maximum when the environmental temperature is around 150°C.

焼ばめ型ロータの円板は一般に30〜180℃程度の蒸
気温度範囲で使われているため、当然環境温度150℃
付近において使用される円板1もある。
Shrink-fit type rotor discs are generally used in the steam temperature range of 30 to 180°C, so naturally the environmental temperature is 150°C.
There is also a disc 1 used nearby.

そこで、前述した蒸気源10における蒸気温度を調節し
て円板1を加熱もしくは冷却し、環境温度を150℃近
傍の応力腐蝕割れ進展速度の早い領域から外すことによ
バ応力腐蝕割れの進展をさらに低減できる。例えば、第
5図において70℃の環境温度にあった円板1が蒸気源
10からの清浄な蒸気により冷却されてTloCになっ
た場合、応力腐蝕割れ進展速度は約IZ、5となる。
Therefore, by adjusting the steam temperature in the steam source 10 described above to heat or cool the disk 1, and by removing the environmental temperature from the region around 150° C. where the stress corrosion crack growth rate is fast, the growth of stress corrosion cracks can be prevented. It can be further reduced. For example, in FIG. 5, when the disk 1 at an environmental temperature of 70° C. is cooled to TloC by clean steam from the steam source 10, the stress corrosion crack growth rate will be approximately IZ,5.

さらにまた、前述した蒸気源10からの清浄蒸気の噴射
は、必らずしもすべてのタービン段落に対して行なう必
要もない。
Furthermore, the injection of clean steam from the steam source 10 described above does not necessarily need to be performed in all turbine stages.

すなわち、原子力発電プラントの低圧タービンO入口蒸
気条件の多くは湿り域にある。湿り蒸気の特徴として圧
力と温度が一義的関係にあり、圧力が低いほど温度も低
い。起動時には無負荷や極低負荷状態を通過するが、こ
の場合には低圧初段の方も圧力が下が9、したがって温
度が下がる。
That is, most of the steam conditions at the low pressure turbine O inlet of a nuclear power plant are in a humid region. A characteristic of wet steam is that there is a primary relationship between pressure and temperature; the lower the pressure, the lower the temperature. At startup, the engine passes through a no-load or extremely low-load state, and in this case, the pressure in the low-pressure first stage also drops by 9,000 yen, and therefore the temperature drops.

このことかられかるように、原子力発電プラントの低圧
タービンの初段から5段程度の段落では特に応力腐蝕割
れの可能性が高いので、これら段落に微細割れが存在す
る可能性を考えその安全性を配慮する必要がある。これ
らの段落の安全性を確保するためには、起動時に負荷の
低い状態においてもキー溝4,5部分の温度が下がらな
いようにすることが必要である。このため、前述した蒸
気源10の蒸気を初段から5段程度の段落のみに起動時
の圧力が低い領域の運転時だけ供給するようにすれば、
応力腐蝕割れはかなり良好に防止される。
As can be seen from this, the possibility of stress corrosion cracking is particularly high in the stages from the first stage to the fifth stage of the low-pressure turbine of a nuclear power plant, so consider the possibility that microcracks exist in these stages and consider their safety. It is necessary to take this into account. In order to ensure the safety of these stages, it is necessary to prevent the temperature of the keyways 4 and 5 from dropping even under a low load state at startup. For this reason, if the steam from the steam source 10 described above is supplied only to about the fifth stage from the first stage only during operation in a region where the pressure at startup is low,
Stress corrosion cracking is fairly well prevented.

このようなウオーミング効果を考慮した場合、エンタル
ピの高い高圧タービンの入口蒸気を用いるのが効果的で
ある。
When such warming effects are taken into account, it is effective to use high-pressure turbine inlet steam with high enthalpy.

このだめのウオーミングシステムが第6図に示されてい
る。ウオーミング用蒸気は高圧タービン150入口蒸気
ライン16から供給され、ウオーミング蒸気管17によ
って低圧タービン18に導かれる。
The warming system for this tank is shown in FIG. Warming steam is supplied from the high pressure turbine 150 inlet steam line 16 and guided to the low pressure turbine 18 by a warming steam pipe 17.

ウオーミング蒸気管17の途中にはウオーミング止め弁
[9および浄化装置20(第6図)が介装されている。
A warming stop valve [9 and a purifying device 20 (FIG. 6) are installed in the middle of the warming steam pipe 17.

そして、タービン起動から低負荷までの運転域ではウオ
ーミング止め弁19は開いておシ、高圧蒸気がウオーミ
ング蒸気管17を通して低圧タービン60所定段落の円
板10基部に流れ込み必要部分を暖める。なお、この蒸
気は浄化装置20により清浄化されているので応力腐蝕
割れの防止にさらに役立つ。
In the operating range from turbine startup to low load, the warming stop valve 19 is opened, and high-pressure steam flows through the warming steam pipe 17 to the base of the disk 10 in a predetermined stage of the low-pressure turbine 60 to warm the necessary portion. Note that since this steam has been purified by the purifier 20, it is further useful for preventing stress corrosion cracking.

高負荷域ではウオーミングの必要性は低いのでウオーミ
ング止め弁19を閉じる。
Since there is little need for warming in a high load range, the warming stop valve 19 is closed.

第7図は低圧タービン用のウオーミングシステムを示す
ものである。
FIG. 7 shows a warming system for a low pressure turbine.

このウオーミングシステムは、ウオーミング蒸気管21
から分岐された分岐管21aを低圧タービンのタービン
ケーシング12aの貫通孔13aに接続し、さらにこの
貫通孔13aはノズルダイヤフラム8aに形成される貫
通孔14aを経て環状室22に供給され、この環状室2
24ノズル孔乙から吹き出されるようになっている。そ
の際、ウオーミング蒸気が全周にわたって吹き出される
ように、ノズル孔乙は全周方向にわたって形成されてい
る。しかして、このウオーミング蒸気は、低圧タービン
の低圧初段から例えば第5段までの各段落に供給される
ようになっている。
This warming system includes a warming steam pipe 21
A branch pipe 21a branched from is connected to a through hole 13a of a turbine casing 12a of a low pressure turbine, and this through hole 13a is further supplied to an annular chamber 22 via a through hole 14a formed in a nozzle diaphragm 8a. 2
It is designed to be blown out from 24 nozzle holes. At that time, the nozzle holes B are formed over the entire circumference so that the warming steam is blown out over the entire circumference. This warming steam is supplied to each stage of the low-pressure turbine from the low-pressure first stage to, for example, the fifth stage.

また、ウオーミング効果は前述したエンタルピの高い高
圧タービン15の入口蒸気を用いれば得られ、高エンタ
ルピの蒸気を絞ることにより湿り域から過熱域に入るた
め、低圧段落の声和温度よりかなシ高い温度になること
は蒸気状態に対する簡単な考察がちわかる。
In addition, the warming effect can be obtained by using the inlet steam of the high-pressure turbine 15 with high enthalpy as described above, and by squeezing the high-enthalpy steam, it enters the superheated region from the humid region, so the temperature is slightly higher than the vocal chord temperature of the low-pressure stage. A simple consideration of the vapor state makes it easy to understand that.

第8図に蒸気状態図が示されている。図中Aは湿シ域、
Bは過熱域を示す。高圧入口蒸気は図中X印の状態にお
り、等エンタルピのまま絞って低圧タービンに導かれて
図中Yの状態となることがわかる。
A steam phase diagram is shown in FIG. In the figure, A is the wet area.
B indicates the overheating region. It can be seen that the high-pressure inlet steam is in the state indicated by X in the figure, and is throttled while maintaining isenthalpy and led to the low-pressure turbine, resulting in the state indicated by Y in the figure.

第9図は本発明の他の実施例を示すものであり、高圧タ
ービン(図示せず)からの蒸気をパイプ乙によりタービ
ンケーシング12内の広い範囲に放出するようにしたも
のでおる。また、本実施例においては、各日板1にバラ
ンスホール冴が形Jfc サれている。
FIG. 9 shows another embodiment of the present invention, in which steam from a high-pressure turbine (not shown) is discharged into a wide range within the turbine casing 12 through a pipe B. Further, in this embodiment, a balance hole in the shape of Jfc is provided on each day board 1.

このような構成によれば、腐蝕性成分を含んだ蒸気の主
流は、図中実線で示すようにノズル6および羽根3の翼
列を通過する。一方、浄化装置側を介してタービンに入
る少量の清浄な蒸気はタービン段落の上流側に送入され
る。そして、この蒸気が順次各段落のバランスホール冴
およびラビリンスパツキン9を流れ、腐蝕性蒸気が円板
1の内側に入るのを防ぎ応力腐蝕割れの発生を防止する
According to such a configuration, the main stream of steam containing corrosive components passes through the nozzle 6 and the row of blades 3, as shown by the solid line in the figure. On the other hand, a small amount of clean steam entering the turbine via the purifier side is fed to the upstream side of the turbine stage. This steam sequentially flows through the balance holes and labyrinth packings 9 of each stage, preventing corrosive steam from entering the inside of the disk 1 and preventing stress corrosion cracking.

また、第1.0図に示すように、外部から蒸気管11に
よりタービンケーシング12内に導びかれた蒸気をノズ
ルダイヤフラム8に形成された貫通孔14の先端をラビ
リンスパンキン9を迂回するように側方に折曲させ、加
熱あるいは冷却蒸気を両日板1゜1間の基部に吹き出し
、この部分を蒸気によって加熱あるいは冷却してもよい
。この蒸気による加熱あるいは冷却によシ、応力腐蝕割
れの進展を防止できる。例えば第5図において10度の
温度条件にあった円板1が蒸気による冷却で温度T1に
降下した場合、応力腐蝕割れ進展速度は約’/2.5と
なシ、供給蒸気に不純物を含まないように浄化装置など
を取付けることによシ、応力腐蝕割れの発生をさらに防
止できる。
Further, as shown in FIG. 1.0, the steam led from the outside into the turbine casing 12 by the steam pipe 11 is routed through the tip of the through hole 14 formed in the nozzle diaphragm 8 so as to bypass the labyrinth spankin 9. By bending it to the side, heating or cooling steam may be blown out to the base between the two plates 1.1, and this portion may be heated or cooled by the steam. Heating or cooling with this steam can prevent the development of stress corrosion cracks. For example, in Fig. 5, when the disk 1, which was at a temperature of 10 degrees, is cooled by steam and is lowered to a temperature T1, the stress corrosion crack growth rate is approximately '/2.5, and the supplied steam contains impurities. The occurrence of stress corrosion cracking can be further prevented by installing a purifying device or the like to prevent stress corrosion from occurring.

さらに1、第11図に示すように、ノズルダイアフラム
8にとりつけられた蒸気リーク防止用のラビリンスパツ
キン9と円板1との間隙を狭くしておいて、この部分を
上流側の蒸気が通らないように構成し、(円板1)の温
度が上がらないようにする冷却方式も考えられる。
Furthermore, as shown in Fig. 11, the gap between the labyrinth packing 9 attached to the nozzle diaphragm 8 to prevent steam leakage and the disc 1 is narrowed so that steam from the upstream side does not pass through this area. It is also possible to consider a cooling system configured as such to prevent the temperature of (disk 1) from rising.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る蒸気タービンは、一
対の微小間隙を介してキー溝内に清浄な蒸気を供給する
蒸気供給路を形成したので、簡単な構成にもかかわらず
焼ばめ型ロータの円板の応力腐蝕割れを防止することが
可能となシ、焼ばめ型ロータの信頼性および寿命を向上
することができるという優れた効果を奏する。
As explained above, the steam turbine according to the present invention has a steam supply path that supplies clean steam into the keyway through a pair of minute gaps, so despite its simple configuration, it is a shrink-fit type. This has excellent effects in that it is possible to prevent stress corrosion cracking of the disc of the rotor, and it is possible to improve the reliability and life of the shrink-fit rotor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な蒸気タービンのロータを示す縦断面図
、第2図は第1図はキー溝の詳細を示す説明図、第3図
は本発明に係る蒸気タービンの実施例を示す縦断面図、
第4図は本発明の他の実施例を示す縦断面図、第5図は
環境温度と応力腐蝕割れ進展速度との関係を示すグラフ
、第6図は高圧タービンから蒸気を導入する本発明の他
の実施例を示す説明図、第7図、第9図乃至第11図は
それぞれ不発明のさらに他の実施例を示す縦断面図、第
8図はエンタルピとエントロピの関係を示すグラフであ
る。 1−・・円板、2・・・車軸、3・・・羽根、4,5・
・・キー溝、6・・・キー、7・・・円板間の間隙、8
,8a・・・ノズルダイヤフラム、9・・・ラビリンス
パツキン、10・−・蒸気源、12 、12 a・・・
タービンケーシング、15・・・高圧タービン、18・
・・低圧タービン、加・・・浄化装置、22・・・バラ
ンスホール 出願人代理人  波 多桁   久 連速温良(1) 第θ 図 エソYロピ 第 7 図 2t
FIG. 1 is a vertical cross-sectional view showing a rotor of a general steam turbine, FIG. 2 is an explanatory view showing details of a keyway, and FIG. 3 is a vertical cross-sectional view showing an embodiment of a steam turbine according to the present invention. side view,
FIG. 4 is a longitudinal sectional view showing another embodiment of the present invention, FIG. 5 is a graph showing the relationship between environmental temperature and stress corrosion crack growth rate, and FIG. FIG. 7, FIG. 9 to FIG. 11 are longitudinal sectional views showing still other embodiments of the invention, and FIG. 8 is a graph showing the relationship between enthalpy and entropy. . 1-...disk, 2...axle, 3...blade, 4,5...
...Keyway, 6...Key, 7...Gap between disks, 8
, 8a... Nozzle diaphragm, 9... Labyrinth packing, 10... Steam source, 12, 12 a...
Turbine casing, 15... High pressure turbine, 18...
...Low pressure turbine, purification device, 22...Balance Hall Applicant's agent Wave Multi-digit Kurensoku Onryo (1) Fig. θ Eso Y Ropi No. 7 Fig. 2t

Claims (1)

【特許請求の範囲】[Claims] 複数の羽根全用役したなる複数の円板を相互に微小間隙
を隔てるようにロータシャフトに焼ばめしたロータを有
し、これらの各円板およびロータシャフト間にはキー溝
内に臨むキーが介装されてお9、このキー溝は隣位の一
対の円板間の微小間隙と連通している蒸気タービンにお
いて、前記微小間隙を介してキー溝内に清浄な蒸気を供
給する蒸気供給路を形成したことを特徴とする蒸気ター
ビン。
The rotor has a rotor in which a plurality of disks each serving as a plurality of blades are shrink-fitted to a rotor shaft with a small gap between them, and a key facing into a keyway is provided between each of these disks and the rotor shaft. In a steam turbine, this keyway is in communication with a minute gap between a pair of adjacent discs, and this keyway is used to supply clean steam into the keyway through the minute gap. A steam turbine characterized by having a channel formed therein.
JP18000582A 1982-10-15 1982-10-15 Steam turbine Granted JPS5970810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18000582A JPS5970810A (en) 1982-10-15 1982-10-15 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18000582A JPS5970810A (en) 1982-10-15 1982-10-15 Steam turbine

Publications (2)

Publication Number Publication Date
JPS5970810A true JPS5970810A (en) 1984-04-21
JPH0133642B2 JPH0133642B2 (en) 1989-07-14

Family

ID=16075785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18000582A Granted JPS5970810A (en) 1982-10-15 1982-10-15 Steam turbine

Country Status (1)

Country Link
JP (1) JPS5970810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242306A (en) * 2011-05-23 2012-12-10 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic test equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215003A (en) * 1975-07-25 1977-02-04 Hideo Nakada Compound different pressures tire
JPS5920504A (en) * 1982-02-01 1984-02-02 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Steam turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215003A (en) * 1975-07-25 1977-02-04 Hideo Nakada Compound different pressures tire
JPS5920504A (en) * 1982-02-01 1984-02-02 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242306A (en) * 2011-05-23 2012-12-10 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic test equipment

Also Published As

Publication number Publication date
JPH0133642B2 (en) 1989-07-14

Similar Documents

Publication Publication Date Title
RU2351766C2 (en) Steam turbine and method of its operation
JP3943136B2 (en) Turbine shaft for twin-flow turbine and cooling method for turbine shaft for twin-flow turbine
CA2625464C (en) Method for warming-up a steam turbine
JP2008151013A (en) Turbine rotor and steam turbine
JP2007291966A (en) Steam turbine and turbine rotor
Hesketh et al. Effects of wetness in steam turbines
RU2445469C2 (en) Gas turbine expansion compensator (versions) and method of providing fluid flowing from exhaust channel
JPS58140408A (en) Cooler for steam turbine
JPS59134302A (en) Corrosion preventive device for steam turbine
EP0902163B1 (en) Seal device between fastening bolt and bolthole in gas turbine disc
US20110232285A1 (en) Method for operating a steam turbine with an impulse rotor and a steam turbine
JPS5974310A (en) Steam turbine plant
JPS5970810A (en) Steam turbine
JP2006097544A (en) Steam turbine plant and cooling method of steam turbine plant
Becker et al. Operating experience with compressors of large heavy-duty gas turbines
US5676521A (en) Steam turbine with superheat retaining extraction
JPS62267504A (en) Steam flow control valve
JPS614804A (en) Steam turbine
JPS60195304A (en) Thermal stress controller for steam turbine casing
JPS5934402A (en) Rotor device of steam turbine
Osgerby Steam turbines: operating conditions, components and material requirements
US20170298738A1 (en) Controlled cooling of turbine shafts
Elston et al. First commercial supercritical-pressure steam turbine—built for the Philo plant
JPS59206602A (en) Steam turbine
JPS5999002A (en) Steam turbin plant