JPS5969190A - Mhd decomposition of water - Google Patents

Mhd decomposition of water

Info

Publication number
JPS5969190A
JPS5969190A JP17826682A JP17826682A JPS5969190A JP S5969190 A JPS5969190 A JP S5969190A JP 17826682 A JP17826682 A JP 17826682A JP 17826682 A JP17826682 A JP 17826682A JP S5969190 A JPS5969190 A JP S5969190A
Authority
JP
Japan
Prior art keywords
duct
electrolyte
pair
generator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17826682A
Other languages
Japanese (ja)
Inventor
Kenzo Kagei
蔭井 賢三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17826682A priority Critical patent/JPS5969190A/en
Publication of JPS5969190A publication Critical patent/JPS5969190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To produce H2 and O2, by heating an electrolyte with the application of the principle of MHD power generation, converting the heat energy thereof to kinetic energy of a specified fluid, passing the same through the inside of a powerful magnetic field and distributing H<+> ions and OH<-> ions equally to both electrodes. CONSTITUTION:An electromagnetic pump 1 is placed between magnetic poles S and N and an MHD power generator 2 between magnetic poles N and S in a duct 3 which is an electrical insulator and forms a fluid passage, and magnetic flux is applied. A pair of porous electrodes 43, 44 and fixed at both ends in the duct 3. Foam passages H5, O5 of a divergent shape are provided on the respective rear sides and an electrolyte is filled in the closed cycle connected with a branch duct 08, a static type centrifugal separator 09 and a heat exchanger 27. The electrolyte heated with the heat exchanger 27 is accelerated with the pump 1 and is forced into the generator 2 to induce DC electromotive force in the electrode 44 and to generate H2 and O2 at the same time. H2 and O2 are quickly expelled through a pair of the passages H5 and O5 and are separated and captured.

Description

【発明の詳細な説明】 応y11シて、電解液を・加熱し、この熱エイ・ルギ−
を’BL l・メi体の運動工不ルギーシで変換して強
力磁??ー中を通過させ、H”  イオンと0 1(−
 イオンを両極に振1)分けて電気工不ルギーを牛する
と共K、TI 2(水素)02(酸素)をも製造する水
のM I−i J)分解法を提共するものである。
[Detailed Description of the Invention] In response, the electrolyte is heated, and this heat
Is it converted into a strong magnetic field by converting 'BL l/mei body's motor engineering force? ? -H” ions and 0 1(-
The present invention proposes a method for decomposing water that 1) separates ions into two poles to eliminate electrician inefficiency and also produces TI 2 (hydrogen) and 0 2 (oxygen).

大量の排気ガス、廃熱公害によって急速に深刻の度を深
めつつある環境汚染にZ=J処するため(で、安価な水
素工不ルギーの製法か渇望されCいる。
In order to deal with the environmental pollution that is rapidly becoming more serious due to large amounts of exhaust gas and waste heat pollution, there is a desire for an inexpensive method of producing hydrogen.

Lかしこれを実現するには一次工不ルギ (熱エイ、ル
ギ−)を太陽熱及び工業プロセスの廃熱など、多惜(・
こシかも無駄に捨てられ、無月に近いす1(エネルギー
を回収活用して大量生産する方法が最良と言われている
However, in order to achieve this, we will have to use solar heat and waste heat from industrial processes, etc., to replace the primary engineering energy (thermal energy, energy).
The waste is wasted, and it is almost empty (1) It is said that the best method is to recover and utilize energy to produce in large quantities.

M [−1D発電器は直接発電方式で周知に属するがそ
の原理を第1図について説明する。電磁ポンプ1の構造
は電気絶縁物で流体通路を形成するタリト3を磁極S、
N間に置き磁束Bを印加する、このダクト3内両端に1
対の電極41.42を固着し、IJ−ドd+2で直流電
源13に接続する。この磁束Bと電極41.7I2の対
向方向とは直角の配置構成となり、構造簡単で振動、騒
音、液洩れが絶無である。
The M[-1D generator is a well-known direct power generation system, and its principle will be explained with reference to FIG. The structure of the electromagnetic pump 1 is such that a tallite 3 that forms a fluid passage with an electrical insulator is connected to a magnetic pole S,
1 at both ends of this duct 3, which is placed between N and applies magnetic flux B.
The pair of electrodes 41 and 42 are fixed and connected to the DC power supply 13 through IJ-do d+2. This magnetic flux B and the opposing direction of the electrodes 41.7I2 are arranged at right angles, and the structure is simple and there is no vibration, noise, or liquid leakage.

MF(D発電器2は電磁ポンプlと同一構造であり、ダ
クト3を磁極N、S間に置き、タークト3内両端知1対
の電極43.44を固着し、リード線12で負荷14に
接続する。この両者のダクト3内に高温の液体金属(ナ
トリウムの流体)を充満し−C,電磁ポ/ポツの電極4
1Vc直流電源13より給電すると、液体金属は直線加
速されて矢印方向に高速流となって、M I−I D発
電器2内へ圧送され、2内では電磁偏向(高速流電子が
磁極中に飛び込んで来ると磁束Bを受けて陽イオンと陰
イオンは逆の方向に振り分けられる)により電極/I3
.44に起電力が生じ、負荷14を通って電流が疏。
The MF (D generator 2 has the same structure as the electromagnetic pump 1, the duct 3 is placed between the magnetic poles N and S, a pair of electrodes 43 and 44 are fixed at both ends inside the tact 3, and the lead wire 12 is connected to the load 14. The ducts 3 of both are filled with high-temperature liquid metal (sodium fluid) -C, and the electrodes 4 of the electromagnetic ports/pots are connected.
When power is supplied from the 1Vc DC power supply 13, the liquid metal is linearly accelerated and becomes a high-speed flow in the direction of the arrow, and is pumped into the MID generator 2. When the cations and anions jump in, they receive magnetic flux B and are distributed in opposite directions), which causes the electrode/I3
.. An electromotive force is generated at 44, and a current flows through the load 14.

れる。It will be done.

本発明・は液体金属の代りに電解液を用いるイ、ので、
その1例を示すと、 水酸[ヒナトリウムNaOH10−20%水酸化カリウ
ム  KOH10〜30%純水Vt: K OI−1k
:溶かすと水と静電的引力て結合にて電離しH”、OH
−イオンが電子を樽き極めて活性となる。
The present invention uses an electrolyte instead of a liquid metal, so:
One example is: Hydroxic acid [Hysonicium NaOH 10-20% Potassium hydroxide KOH 10-30% Pure water Vt: K OI-1k
: When dissolved, it is ionized by electrostatic attraction with water and H”, OH
-Ions absorb electrons and become active.

M記のM I−T D発電器2Vc加熱した′電解液を
代替して説明する(■。電磁ポツプ1に給電すると、直
線加速された高速流電解液はM HD発電器2内に圧送
され、電磁偏向により電極713.44に直流起電力を
生じるか、電解液を使用のため、電磁ポツプ1内ては同
時Qて′4電気解を行いH2,02’fr発生する、更
にM HD発電器2内でも起電力を牛じる時Hイオ/と
OH−イオンは電極43、・14で電子の授受によりH
2、o2を発生ずる。
An explanation will be given by substituting the electrolyte heated by the M I-T D generator 2Vc (■). , DC electromotive force is generated in the electrodes 713.44 by electromagnetic deflection, or because an electrolytic solution is used, simultaneous Q'4 electrolysis is performed in the electromagnetic pop-up 1 to generate H2,02'fr, and further MHD power generation. When the electromotive force is generated in the container 2, H ions and OH- ions are converted to H by the exchange of electrons at the electrodes 43 and 14.
2. Generate o2.

この高速流電解液中に発生したH2.02の気泡が懸濁
していると電気抵抗の増加及びH“、OH−イオンの進
行の障害となり効率が極度に低下する現象を起こす。更
に水I CCが分解されてH2,02ガスを発生する時
、0℃1気圧で1200倍の体積に増大し、H2、02
の対積比は2:1となる。
If the H2.02 bubbles generated in this high-speed electrolyte are suspended, the electrical resistance will increase and the progress of H" and OH- ions will be hindered, resulting in a phenomenon where the efficiency is extremely reduced. Furthermore, water I CC When is decomposed to generate H2,02 gas, the volume increases 1200 times at 0°C and 1 atm, and H2,02
The to-volume ratio is 2:1.

この多緻の発生気泡を急速に排除する事が本発明の機能
、効率を左右する。
The function and efficiency of the present invention depend on the rapid elimination of these densely generated bubbles.

次に実施例について詳しく説明する。Next, examples will be described in detail.

第1実施例 電気分解にも使用される隔膜15はテフロン布等で、液
は通すが気泡は通さず、H2,02カスが島台してガス
純度の低下するのを防止する。
The diaphragm 15, which is also used in the electrolysis of the first embodiment, is made of Teflon cloth or the like, which allows liquid to pass through but not air bubbles, thereby preventing H2,02 scum from forming islands and reducing gas purity.

電極は非磁性金属のステンレス等の多孔質、又は金網を
積層した多孔性の電極を用い、第2図に示すダクト3の
内側に隔膜15外側に電極43、又は44となるよう一
体構造とした1対の各裏面に気泡通路H5,05を設け
てダクト3の両端に固着する。
The electrode is a porous electrode made of non-magnetic metal such as stainless steel, or a porous electrode laminated with a wire mesh, and has an integrated structure so that the electrode 43 or 44 is on the inside of the duct 3 and on the outside of the diaphragm 15 as shown in FIG. Bubble passages H5, 05 are provided on each back side of the pair and fixed to both ends of the duct 3.

気液分離には遠心分離器を用いる、M I−I D発電
器より流出する電解液の流速は2 m / Sもあり、
この余力を利用する、更に電解液とカスの比重差は60
0倍もあり高効率で分離出来る。
A centrifugal separator is used for gas-liquid separation, and the flow rate of the electrolyte flowing out from the MI-ID generator is as high as 2 m/s.
Utilizing this surplus power, the difference in specific gravity between the electrolyte and the scum is 60.
0 times, allowing for highly efficient separation.

第3.4図に示す静止型遠心分離器9の構造はステンレ
ス製の円筒20の底21を台22に固着し、内面に旋回
板23T部に流入口18を設け、中央に固着した吐出管
10に傘板24とガス排出口25を複数個備え、円筒上
部を開放とし、気液の漏出を防ILする密閉容器のケー
ス26下部に液出t−119を設け、吐出管1oを突出
してIO,+8.+9の接合面(は空隙のないように溶
着する。
The structure of the stationary centrifuge 9 shown in Fig. 3.4 is that the bottom 21 of a stainless steel cylinder 20 is fixed to a stand 22, an inlet 18 is provided on the inner surface at a rotating plate 23T, and a discharge pipe is fixed in the center. 10 is equipped with a plurality of umbrella plates 24 and gas discharge ports 25, the upper part of the cylinder is open, and a liquid outlet T-119 is provided at the lower part of the case 26 of a sealed container that prevents leakage of gas and liquid, and a discharge pipe 1o is protruded. IO, +8. +9 joint surface (welded so that there are no gaps.

第5.6図に電磁ポツプ1とM HD発電器2を示し、
電気絶縁物で流体通路を形成するダクト3を矩形断面に
作製し、電磁ポツプ1は未細形のダクト3とし、U型磁
極S、N間に置き、M HD発電器2は末広型のダクト
3としU型磁極N、8間に置いて強力な磁束Bを印加し
1.2共線束Bと電極41.42(又は43.4・1)
の対向方向と一1直角の配置構成となる。
Figure 5.6 shows the electromagnetic pop-up 1 and the MHD generator 2,
A duct 3 that forms a fluid passage with an electrical insulator is made to have a rectangular cross section, the electromagnetic pop 1 is made into a thin duct 3, and placed between U-shaped magnetic poles S and N, and the MHD generator 2 is made into a wide-end duct. 3 and U-shaped magnetic pole N, apply strong magnetic flux B between 8 and 1.2 collinear flux B and electrode 41.42 (or 43.4.1)
The arrangement is perpendicular to the opposing direction.

上記のダクト3の両端に第3図で示しだ一体構造の隔膜
15、電極41(又は44)と15と電極12(父は4
3)を配設し、夫々の裏面に気泡発生量に比例した気泡
通路H5,05を設け、電磁ボ/ゾ1人口でダクト3と
41.42の先端を密着させ徐々に広げてM HD発電
器2の出口中の22係に固着し、仕切板16を設け1対
の気泡通路H5,05を末広形に構成する。この1内の
電極41.42はリード線12で直流電源13に接続し
、2の電極43.44はリード線12で負荷1/Iに接
続する。
At both ends of the duct 3, as shown in FIG.
3), and provide bubble passages H5 and 05 in proportion to the amount of bubbles generated on the back side of each, and the tips of ducts 3 and 41.42 are brought into close contact with each other with one electromagnetic port and gradually expanded to generate MHD power generation. It is fixed to the 22nd section in the outlet of the container 2, and a partition plate 16 is provided to form a pair of bubble passages H5, 05 in a wide-end shape. The electrodes 41 and 42 in the first electrode are connected to the DC power source 13 through the lead wire 12, and the electrodes 43 and 44 in the second electrode are connected to the load 1/I through the lead wire 12.

第7図に示す熱交換器27は加熱管28を備え、電磁ポ
ツプ1と連結夕゛り1・11で接続し、MH,D発電器
2内口中央で分流し整流板17を設けてう1岐グクトI
]8.08となり1対の静止型遠心分離器H9,09に
接続し、液出口19で合流して熱交換器27に至るクロ
ーズドサイクルを構成し、内部に電解液をl]だした密
閉構造であり、不足した純水は水位検出器29電磁弁3
0の作動により水槽3Iより自動給水される。
The heat exchanger 27 shown in FIG. 7 is equipped with a heating tube 28, connected to the electromagnetic pop-up 1 through connection ports 1 and 11, and is provided with a shunt and rectifier plate 17 at the center of the inside of the MH and D generators 2. 1st branch gukut I
] 8.08 and is connected to a pair of stationary centrifuges H9 and 09, forming a closed cycle that merges at the liquid outlet 19 and reaches the heat exchanger 27, and has a sealed structure in which the electrolytic solution is discharged inside. The depleted pure water is collected by the water level detector 29 and the solenoid valve 3.
Water is automatically supplied from the water tank 3I by the operation of 0.

尚使用する様相は耐圧、耐強アルカリ性−耐水素脆性の
ものを用いる。
The material to be used is pressure resistant, strong alkali resistant and hydrogen embrittlement resistant.

上記構成の熱交換器27の加熱管28より廃熱工不ルキ
ーを供給して熱交換し、電解液を80 ”にに加熱して
電磁ポンプ1の電極〆11に直流電源13より給電する
と、磁束I3と電流の相q、作用によりフレーミ/り左
手の法則に従って、電解液は直線加速されて矢印方向に
5m/Sの高速流電解液となってM ’tl D発電器
2内へ厘送される、この給電時に電気分解を行い多孔性
の一極42てII 2を、−11,ii 11で02を
発生し高速流によって1月の気i旬通路Hう、05へl
I!lX人する。
When a waste heat exchanger is supplied from the heating tube 28 of the heat exchanger 27 having the above configuration to exchange heat, the electrolytic solution is heated to 80", and power is supplied to the electrode terminal 11 of the electromagnetic pump 1 from the DC power supply 13. Due to the action of the magnetic flux I3 and the current phase q, the electrolyte is linearly accelerated according to the left-hand rule of Framy, becoming a high-speed electrolyte flowing at 5 m/s in the direction of the arrow, and is sent into the M'tlD generator 2. During this power supply, electrolysis is performed to generate II 2 at the porous one pole 42, -11, ii 11 and 02, and the high speed flow leads to January's seasonal passage H, 05.
I! 1X people.

1“極反応  ZI 01(−−+2)I 20+4 
、e−十〇 2↑−極反応  ・1ト1”十4e−→ 
2 H2↑次にM HD発′心器2内で高速流′電解液
と磁束Bの相互作用によりフレーミ/グ右手の法則に従
って、電磁偏向により第5図のようにOH−イオンは一
極44に曲進して触れ、H+ イオ/は十4訳43に曲
進して触れて、成子の授受を行い、直流起電力を生じ電
極43より負荷I4を通って電流か流れる。
1" polar reaction ZI 01(--+2)I 20+4
, e-10 2↑-polar reaction ・1t1”14e-→
2 H2↑Next, in the MHD generator 2, due to the interaction between the high-speed electrolyte and the magnetic flux B, the OH- ions are deflected into one pole 44 by electromagnetic deflection according to the Frami/G right-hand rule, as shown in Figure 5. H+ Io/ moves forward and touches the 14th translation 43, giving and receiving the child, generating a DC electromotive force, and a current flows from the electrode 43 through the load I4.

電解液も勿論電子の授受により多孔性の電極43でH2
を、−極4/lで02を発生し、高速〃Lによって1対
の気泡通路H5,05へ流入する。
Of course, the electrolyte also becomes H2 at the porous electrode 43 by giving and receiving electrons.
02 is generated at the negative pole 4/l, and flows into a pair of bubble passages H5 and 05 at high speed L.

−極反応 40H−−4e−→2H20+02↑電極反
応  /II−T 十4e −1−2H2↑多孔性の電
極43、−極44に発生気泡が付着しても、高速流によ
り瞬時に剥離されて1対の気泡通路H5,05へ急速排
除し常に清浄されて実用妾触面積を確保出来る利点があ
る。
-Polar reaction 40H--4e-→2H20+02↑Electrode reaction /II-T 14e -1-2H2↑Even if generated bubbles adhere to the porous electrode 43 and -electrode 44, they are instantly peeled off by the high-speed flow. There is an advantage that bubbles can be quickly removed to the pair of air passages H5 and 05 and constantly cleaned, ensuring a practical contact area.

又MH’D発電器2内の起電力とH2,02の発生は吸
熱反応を伴い、高速流電解液中の熱エネルギーは流下と
共に吸熱され、圧力もダクト3と1対の気泡通路H5、
05が末広形のだV)流下と共に低下し、2出口では温
度50°C1圧力2 m / 3に降下する。
In addition, the electromotive force in the MH'D generator 2 and the generation of H2,02 are accompanied by an endothermic reaction, and the thermal energy in the high-speed electrolyte is absorbed as it flows down, and the pressure is also increased in the duct 3 and the pair of bubble passages H5,
05 has a wide-end shape V) It decreases as it flows down, and at the 2nd outlet the temperature drops to 50°C and the pressure to 2 m/3.

分解されたH2の気泡・は気泡通路H5を流下して電解
液と合流し分岐ダクトH8より静止型遠心分離器H9に
流入し、第3図の円筒20内でうす巻き旋回して遠心力
を力えられ重い液は外周に集1り上部より放流され液出
口19より排出し、軽い気泡は中央に集合して吐出管H
IOより採集し電解液と■]2(水素)に完全に分離さ
れる。02気泡も同様経路の05.08.09を経て0
2)(酸素)を分離採集し、′電解液は液出口19で合
流して熱交換器27へ帰るクローズドサイクルを連続的
に繰返し強制循還する。
The decomposed H2 bubbles flow down the bubble passage H5, merge with the electrolyte, flow into the stationary centrifuge H9 through the branch duct H8, and swirl thinly within the cylinder 20 in Fig. 3 to generate centrifugal force. The strained and heavy liquid collects on the outer periphery, is discharged from the upper part, and is discharged from the liquid outlet 19, while the light bubbles collect in the center and are discharged from the discharge pipe H.
It is collected from IO and completely separated into electrolyte and 2 (hydrogen). 02 bubble goes through the same route 05.08.09
2) (Oxygen) is separated and collected, and the electrolytic solution is forced to circulate in a closed cycle where it joins at the liquid outlet 19 and returns to the heat exchanger 27, which is repeated continuously.

第2実施例 第1実施例のMHD発電器2は末広形のため人口中が狭
くなる、又永久磁石のエアーギャップを10τ以」二に
広げることが困難でダクト3内での気泡】]す路て(・
−制限を受ける、この欠点を除く方法として平行形のダ
クト3を使用する。
Second Embodiment Since the MHD generator 2 of the first embodiment has a wide end, the population is narrow, and it is difficult to widen the air gap of the permanent magnet to more than 10τ, which causes air bubbles in the duct 3. Road (・
- the use of parallel ducts 3 as a way to overcome this drawback;

第8.9.10図についてその相違点を説明するど、電
磁ポンプ1.Mf(D発電器2共にり゛り1・3は平行
形を用い、3内の両端に1対の多孔性の電極41.42
(父は/I2.43)を配設し、各裏面に気泡通路Hヌ
05を設け、電磁ボンダ1人口てダクト3と電極41.
/12の先端を密着させ末広形に固着し、M HD発電
器2は平行形とし2て電極43.44を固着し仕切板I
6を設ける。
To explain the differences with respect to Figures 8.9 and 10, electromagnetic pump 1. Mf (D generator 2) 1 and 3 are parallel type, and a pair of porous electrodes 41 and 42 are placed at both ends of 3.
(Father is /I2.43), a bubble passage H 05 is provided on each back side, and an electromagnetic bonder 1 is connected to a duct 3 and an electrode 41.
The ends of the MHD generator 2 are made into a parallel shape, and the electrodes 43 and 44 are fixed to the partition plate I.
6 will be provided.

この1対の気泡通路H5,05の側面のダクト3を11
通して複数個の枝管H,6,06を取り出し2、■対の
木管+(,7,07匡接続する、磁極N、Sの外部に設
けた木管1−17.07は気泡発生量に比例した末広形
とし、水素2:酸素1の体積比になるように構成する。
The duct 3 on the side of this pair of bubble passages H5, 05 is 11
Take out multiple branch pipes H, 6,06 through the It has a proportional wide-end shape and is configured to have a volume ratio of 2 parts hydrogen to 1 part oxygen.

硬質の隔膜【5はタクト3の中央全面に固着し発生気泡
の混合を防止する。
A hard diaphragm [5] is fixed to the entire center of the tactile chamber 3 to prevent the generated air bubbles from mixing.

その他のtf4成は第1実施例と同一である。The other tf4 configurations are the same as in the first embodiment.

電磁ボ/グ1の一極42.MHD発電器2の電極・13
で発生しだH2は気?包通路H5より枝管H6に流入し
木管■7に集合して電IQイ敲と合流し分岐ダクトH8
を経て静止型遠心分離器H9へ流入し、電解液とl]2
(水素)に完全に分離され吐出管H10より採集される
One pole of electromagnetic bo/g 1 42. MHD generator 2 electrode 13
Is the H2 that occurred? It flows into the branch pipe H6 from the packaging passage H5, gathers at the wood pipe ■7, merges with the electric pipe IQ, and flows into the branch duct H8.
It flows into the static centrifuge H9 through the electrolyte and l]2
(hydrogen) is completely separated and collected from the discharge pipe H10.

02も同様に気泡通路05、枝管06.木管07分岐ダ
クト08を経て静止型遠心分離器09内て電解液と02
(酸素)に分離採集される。
Similarly, bubble passage 05, branch pipe 06. The electrolyte and 02 pass through the wood pipe 07 and branch duct 08 into the static centrifuge 09.
(oxygen) is separated and collected.

本発明はダクト3の外部に枝管IX、 6.06、本管
H,7,07の放出経路を設けることにより十分の内容
偵を確保出来る構成とし、発生気泡の急速排除が容易に
行える。
The present invention has a configuration in which a sufficient amount of content can be ensured by providing discharge paths for the branch pipes IX, 6.06, and main pipes H, 7, 07 outside the duct 3, and the generated air bubbles can be quickly removed.

上記の実施例は永久磁石1.000カウス金川・ハた小
型装置てあって、超電導電磁石20. OOOカラスの
磁束を使用したノ〈型装置の製作も容易であり、電離し
た電解液を使用するためIVI H+)発電器の効率も
良く高床流体の作動により高速度分解が可能て、1[気
分解同様に隔膜使用により高純度水素が得られる。又低
温の100 ’C前後の排ガス。
The above embodiment is a small device with a permanent magnet of 1.000 kausu and a superconducting electromagnet of 20.00 kausu. It is easy to manufacture a type device using OOO crow's magnetic flux, and because it uses an ionized electrolyte, the IVI H+) generator is efficient, and high-speed decomposition is possible due to the operation of the raised fluid. As with decomposition, high purity hydrogen can be obtained by using a diaphragm. Also, the exhaust gas is at a low temperature of around 100'C.

廃〃ト企−回収利用して高効率、大容計の水素エネルギ
ーの製造が行える新規な製造力法である。
This is a new manufacturing method that can produce high-efficiency, large-capacity hydrogen energy by recovering and utilizing waste materials.

・1図1f110簡ぜl’lな説明 第1171 &i M I−I D発電器の原理図、第
2[シl (ri、 y’ クトに)対の電極を設けて
気泡通路全明示したJ川石図、第3図(は静止型遠心分
離器の縦断面図てイーイ線の横断面図を第4図に示し、
笥5図は末広形のM HD発電器の平面図てローロ紗の
横断面図を第6図に示す。第7図fd本装置のクローズ
トヅーイクルの概略図、第8図はイ行形のM II D
発rIΣ器の平面図、第9図は第8図(第5図も同様)
の縦断面図、第1O図は第8図中のハーバ線の横断面図
を示している。
・1 Figure 1f110 Simple explanation No. 1171 &i M I-ID generator principle diagram, No. 2 (ri, y') Pair of electrodes are provided and the bubble passages are all clearly shown. Figure 3 is a vertical cross-sectional view of a stationary centrifuge, and Figure 4 is a cross-sectional view taken along the E-line.
Figure 5 is a plan view of the wide-end MHD generator, and Figure 6 is a cross-sectional view of the roller gauze. Fig. 7 fd is a schematic diagram of the closed cycle of this device, Fig. 8 is an A-shaped M II D
A plan view of the rIΣ generator, Figure 9 is the same as Figure 8 (Figure 5 is the same)
FIG. 1O shows a cross-sectional view of the harbor wire in FIG.

Claims (1)

【特許請求の範囲】 1 本文に示し/こように、電気絶縁物で流体通路を形
成するり゛り1・に、電磁ポンプは磁!S、N間に、M
 HD発電器は磁極N、S間に置いて磁束を印加し、前
記ダクト内両端に1対の多孔性の電極を配設し、夫々の
裏面に末広形の気泡通路を設け、分岐ダクト、静止型遠
心分離器、熱交換器を接続したクローズドサイクル内に
電解液を満たした構成とし、熱交換器で加熱した電解液
を電磁ポンプで加速し1.高速流電解液となってM H
0発電器内へ圧送して、電′極に直流起電力を生しる表
具1fC水素、酸素を発生させ、1対の気泡通路より急
速排除し分離採集する事を特徴とする水のM)(D分解
法。 2、特許請求の範囲第1項においてダクト内の気泡通路
で一制限を受ける。これを除くため平行形のダクトを用
い、ダクi・内両端に1対の多孔性電極と裏面に気泡通
路を配設し、側面ダクトを貫通して複数個の枝管を取出
し1月の末広形本管に接続した構成とし、電極で発生し
た水素、酸素を夫々の気泡通路、枝管、本管を経て急速
排除して分M採集し、グクト外部に放出経路全十分に確
保した事を特徴とする水のMHD分解法。
[Claims] 1. As shown in the main text, an electromagnetic pump uses magnetic! Between S and N, M
The HD generator is placed between magnetic poles N and S to apply magnetic flux, and a pair of porous electrodes are arranged at both ends of the duct, with a wide-open bubble passage on the back of each, and a branch duct, a stationary A closed cycle connected to a type centrifugal separator and a heat exchanger is filled with electrolyte, and the electrolyte heated by the heat exchanger is accelerated by an electromagnetic pump.1. It becomes a high-speed flowing electrolyte and M H
(M) Water that is pressure-fed into a generator and generates 1fC hydrogen and oxygen, which generates a DC electromotive force at the electrode, and rapidly removes and separates and collects it through a pair of bubble passages. (D decomposition method. 2. In claim 1, there is one limitation due to the bubble passage in the duct. In order to eliminate this, a parallel duct is used, and a pair of porous electrodes are installed at both ends of the duct i. A bubble passage is arranged on the back side, and multiple branch pipes are taken out through the side duct and connected to the wide-shaped main pipe at the end of January.Hydrogen and oxygen generated at the electrode are transferred to the respective bubble passages and branch pipes. The MHD decomposition method of water is characterized in that the MHD is rapidly removed through the main pipe, collected, and a sufficient release route is secured outside the water pipe.
JP17826682A 1982-10-13 1982-10-13 Mhd decomposition of water Pending JPS5969190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17826682A JPS5969190A (en) 1982-10-13 1982-10-13 Mhd decomposition of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17826682A JPS5969190A (en) 1982-10-13 1982-10-13 Mhd decomposition of water

Publications (1)

Publication Number Publication Date
JPS5969190A true JPS5969190A (en) 1984-04-19

Family

ID=16045476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17826682A Pending JPS5969190A (en) 1982-10-13 1982-10-13 Mhd decomposition of water

Country Status (1)

Country Link
JP (1) JPS5969190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033478B2 (en) * 2002-09-10 2006-04-25 Christina Harde Ion separation and removal unit with gas extraction
CN105256331A (en) * 2015-11-06 2016-01-20 清华大学 Electrolysis device capable of controlling movement of oxygen bubbles by adopting magnetoelectric coupling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033478B2 (en) * 2002-09-10 2006-04-25 Christina Harde Ion separation and removal unit with gas extraction
CN105256331A (en) * 2015-11-06 2016-01-20 清华大学 Electrolysis device capable of controlling movement of oxygen bubbles by adopting magnetoelectric coupling

Similar Documents

Publication Publication Date Title
US3719583A (en) Apparatus for the separation of ions from solution
JP2005332590A (en) Secondary battery and power generation method
KR101749664B1 (en) Energy unit with safe and stable hydrogen storage
CN110112439B (en) Dynamic circulating and filtering device for electrolyte of metal-air battery
US5718819A (en) Process and electrolyzer for the electrolysis of a fluid electrolyte
CN114162916B (en) Method and device for preparing activating solution by using submerged membrane capsule large-volume plasma
JPS5969190A (en) Mhd decomposition of water
CN103117640A (en) Magnetic fluid double-current generator
WO2015173561A1 (en) An energy conversion system
EP0045583B1 (en) Electrolysis apparatus
CN107732275A (en) A kind of hydrogen fuel cell bag of empty iron driving
JP2013173995A (en) Electrolysis chamber structure, electrolysis cell unit, electrolysis cell stack, and hydrogen generator
KR101336941B1 (en) Amtec cell with partially opened internal electrode and method for manufacturing the amtec cell
JP2023541259A (en) A system in which power generation efficiency is increased by liquids with different densities
CN203150656U (en) Plasma alkaline fuel cell
CN103094592A (en) Plasma alkaline fuel battery
CN109361004A (en) A kind of shell structure for liquid stream single battery system
JP2009072775A (en) Filter, hydrogen generator having the filter, and fuel cell power generation system
CN108314145A (en) Filter, free radical electrode assembly and water purifier
JP2004071330A (en) Power generating device and hydrogen power generation cell
JP3274356B2 (en) Power generation method and apparatus using hydrogen storage alloy
JP2024501455A (en) Generator
CN211636037U (en) Bipolar membrane electrodialysis device
CN115164415B (en) Alternating current and direct current heating double system and shower screen thereof
CN212799870U (en) Sewage treatment is with circulation sand removal device