JPS5968977A - Manufacture of solar battery array - Google Patents

Manufacture of solar battery array

Info

Publication number
JPS5968977A
JPS5968977A JP57179449A JP17944982A JPS5968977A JP S5968977 A JPS5968977 A JP S5968977A JP 57179449 A JP57179449 A JP 57179449A JP 17944982 A JP17944982 A JP 17944982A JP S5968977 A JPS5968977 A JP S5968977A
Authority
JP
Japan
Prior art keywords
solar cell
adhesive
substrate
elements
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57179449A
Other languages
Japanese (ja)
Other versions
JPS6240873B2 (en
Inventor
Takao Fujita
藤田 孝夫
Yoshinori Matsui
美憲 松井
Koji Sakurai
宏治 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57179449A priority Critical patent/JPS5968977A/en
Publication of JPS5968977A publication Critical patent/JPS5968977A/en
Publication of JPS6240873B2 publication Critical patent/JPS6240873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make accurate the positional relation between each by a method wherein solar battery elements arranged as desired are pressed all together at the same time and fixed on a supporting substrate via an adhesive layer. CONSTITUTION:A thin insulation sheet is laminated on the upper surface of the substrate 1 of a honeycomb structure, and then the solar battery elements 2 are provisionally fixed by applying an adhesive 3 at a constant pitch. The substrate 1 is contained into a vessel 4 having an aperture 5 and covered with a transparent flexible resin film 6. Vacuum exhaust via a pipe 7 causes the film 6 to press the elements 2 and the adhesive 3 to stretch into the clearances between the elements and thus harden in a pressed state, accordingly the elements 2 are firmly fixed on the substrate 1. When the vacuum degree is controlled, the thickness and stretch of the adhesive 3 can be controlled. Instead of vacuum absorption, the elastic force of a spring can be used. This constitution enables to adhere and fix with a high accuracy even by using an adhesive of long hardening time and thus to simplify the manufacture of a solar battery array.

Description

【発明の詳細な説明】 本発明は太陽電池アレーの製造方法に関するものであり
、特に複数個の太陽電池素子を基板に固定する接着処理
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solar cell array, and particularly to an adhesive process for fixing a plurality of solar cell elements to a substrate.

太陽電池素子は通常半導体材料としてシリコンが使われ
ているが、半導体材料の特性等の点から出力に限度かあ
り、従って電力用として利用する場合所望の大出力を得
るだめには、複数個の太陽電池素子を用いて、それ等の
間を互いに直・並列に電気的接続して各種機器の電源に
供される。複数個の太陽電池素子は一般に平坦な基板上
に支持されるが、両者の固定は第1図に示すように接着
剤3が塗布された基板1上に太陽電池素子2,2・・・
全一定のピッチで配置し、各太陽電池素子上に錘りw 
、 w 、・・・を置いて接着剤3を加圧状態で硬化さ
せることにより固定していた。
Silicon is usually used as the semiconductor material for solar cell elements, but there is a limit to the output due to the characteristics of the semiconductor material. Therefore, when using it for electric power, it is necessary to use multiple solar cells in order to obtain the desired high output. Solar cell elements are used to electrically connect them in series and parallel to each other to provide power to various devices. A plurality of solar cell elements are generally supported on a flat substrate, and as shown in FIG. 1, the solar cell elements 2, 2...
They are arranged at a constant pitch, and a weight is placed on each solar cell element.
, w, . . . were placed and the adhesive 3 was cured under pressure to fix it.

しかし上記従来の錘りWによる加圧硬化方法の場合には
、各太陽電池素子毎に錘シを載せる作業をしなければな
らず、作業性が非常に悪いだけではなく、基板1が正し
く水平に保持されていなければ、錘シwとの作用で太陽
電池素子の位置ずれか大きくなり、均一な平面をもった
太陽電池アレーが得られないという欠点があった。また
振動や衝撃にも弱いという欠点があった。
However, in the case of the above-mentioned conventional pressure curing method using weights W, it is necessary to place a weight on each solar cell element, which not only has very poor workability but also ensures that the substrate 1 is properly leveled. If the solar cell elements are not held in place, the positional deviation of the solar cell elements will be large due to the action of the weight w, and there is a drawback that a solar cell array with a uniform plane cannot be obtained. It also had the disadvantage of being weak against vibrations and shocks.

本発明は上記従来の製造方法による欠点を除去し、効率
よくしかも均一に複数個の太陽電池素子を固定し得る太
陽電池アレーの製造方法を提供するものである。次に実
施例を挙げて本発明の詳細な説明する。
The present invention eliminates the drawbacks of the conventional manufacturing methods described above and provides a method for manufacturing a solar cell array that can efficiently and uniformly fix a plurality of solar cell elements. Next, the present invention will be explained in detail with reference to Examples.

第2図において、基板1は予め複数個の太陽電池素子2
,2・・・をアレー状に搭載し得るに充分な広面積をも
たせて裁断された絶縁材料或いは金属材料からなる板体
で、例えば人工衛星等の宇宙用機器の電源装置を構成す
る場合の放熱性及び機械的強度等を考慮して、ハニカム
構造に作製されている。該基板1の表面にはノ・ニカム
の孔をならして隼滑にするため薄い絶縁シートIaが積
層される。
In FIG. 2, a substrate 1 is provided with a plurality of solar cell elements 2 in advance.
. It has a honeycomb structure in consideration of heat dissipation and mechanical strength. A thin insulating sheet Ia is laminated on the surface of the substrate 1 to smooth out the holes.

該絶縁シートIaの表面は必要に応じて接着剤のだめの
前処理が施こされた後、一定ピンチで接着剤3が塗布さ
れる。該接着剤3は和尚時間例えば24時間程度加圧す
ることによって硬化し、より強固な接着力を示す例えば
2液性シリコンRTVが用いられる。
The surface of the insulating sheet Ia is pretreated with an adhesive pot if necessary, and then the adhesive 3 is applied with a constant pinch. The adhesive 3 is cured by applying pressure for a period of time, for example, about 24 hours, and is made of two-component silicone RTV, which exhibits stronger adhesive strength.

接着剤3が塗布された基板1上に太陽電池素子2.2・
・・がライン状、マトリックス状等に配置され仮止めさ
れる。太陽電池素子2,2・・・が仮止めされた基板1
は、基板1の太陽電池素子搭載面が対向する壁面が開口
5された容器4内に納められる。
A solar cell element 2.2 is placed on a substrate 1 coated with an adhesive 3.
... are arranged in a line shape, matrix shape, etc. and temporarily fixed. Substrate 1 to which solar cell elements 2, 2... are temporarily fixed
is housed in a container 4 having an opening 5 in the wall surface facing the solar cell element mounting surface of the substrate 1 .

該容器4の開口5は、容器4内に基板lが設置された後
透明な可撓性シート6で被われる。該可撓性シート6は
容器4内を気密に封止し得る樹脂膜等が用いられる。容
器40室内は管7を介して真空ポンプに連結され、上記
可撓性シート6で被った後、真空ポンプを作動させて容
器40室内の空気が吸引される。シート6上には常に大
気圧が作用しているため、真空ポンプの吸引によりシー
トLQ可撓性によって各太陽電池素子2の表面に押圧力
か付勢される。その結果接着剤3は基板1と太陽電池素
子2間の間隙に拡がり、加圧された状態で硬化して太陽
電池素子2を基板1に強固に固定する。該接着剤硬化工
程において、容器4内の真空度を制御することによって
接着剤3の厚さと広が9を制御することができる。
The opening 5 of the container 4 is covered with a transparent flexible sheet 6 after the substrate 1 is placed inside the container 4. As the flexible sheet 6, a resin film or the like that can airtightly seal the inside of the container 4 is used. The interior of the container 40 is connected to a vacuum pump via a pipe 7, and after being covered with the flexible sheet 6, the vacuum pump is operated to suck the air inside the container 40. Since atmospheric pressure is always acting on the sheet 6, a pressing force is applied to the surface of each solar cell element 2 by the flexibility of the sheet LQ due to the suction of the vacuum pump. As a result, the adhesive 3 spreads into the gap between the substrate 1 and the solar cell element 2, hardens under pressure, and firmly fixes the solar cell element 2 to the substrate 1. In the adhesive curing step, the thickness and spread 9 of the adhesive 3 can be controlled by controlling the degree of vacuum within the container 4.

各太陽電池素子2.2・・・間の相互の電気的接続はコ
ネクタ8を用いて行われるが、該コネクタ8の接続は接
着剤3の硬化後或いは接着剤硬化前のいずれの工程でも
行うことができる。
Mutual electrical connection between the solar cell elements 2.2... is performed using a connector 8, and the connection of the connector 8 is performed either after or before the adhesive 3 hardens. be able to.

上記真空加圧方法によれば、大気圧を利用しているため
複数個の太陽電池素子の全てに均一に且つ一斉に加圧す
ることができる。また容器40室内に納まる基板形状で
あれば太陽電池モジュールは種々の形状のものに対応す
ることができる0第3図は本発明による他の実施例を示
す図で、基板1は前記第2図の実施例と同様に作製され
ている。一方太陽電池素子2,2・・・は、接着面を上
に向けて保持台9上に位置合せして置かれている。
According to the vacuum pressurization method described above, since atmospheric pressure is used, all of the plurality of solar cell elements can be pressurized uniformly and simultaneously. Further, as long as the substrate shape fits inside the container 40, the solar cell module can be used in various shapes. FIG. It was made in the same way as the example. On the other hand, the solar cell elements 2, 2, . . . are aligned and placed on the holding table 9 with their adhesive surfaces facing upward.

各太陽電池素子2,2・・・の上に向けられた接着面に
は接着剤3,3・・・が塗布される。接着剤3が塗布さ
れた太陽電池素子群上に上記基板lが対向させて配置さ
れ、基板1の背面から太陽電池素子2面に向けて押圧力
が加えられ、接着剤3を加圧状態で硬化させる。上記基
板背面からの押圧力は簡単には基板背面の複数個所に設
けられたビスIOを締めることによって行われる。
Adhesives 3, 3, . . . are applied to the adhesive surface facing onto each solar cell element 2, 2, . The substrate 1 is placed facing the solar cell element group coated with the adhesive 3, and a pressing force is applied from the back side of the substrate 1 toward the solar cell element 2 surface to apply the adhesive 3 under pressure. Let it harden. The pressing force from the back side of the board is simply applied by tightening screws IO provided at multiple locations on the back side of the board.

本実施例によれば、複数個の太陽電池素子群に一斉に押
圧力を作用させ得るだけではなく、各太陽電池素子を予
め保持台上に位置決めすることができ、相互の位置関係
が精確になる。
According to this embodiment, not only can a pressing force be applied to a plurality of groups of solar cell elements at once, but also each solar cell element can be positioned in advance on the holding table, and the mutual positional relationship can be precisely determined. Become.

第4図は更に本発明による他の実施例で、第2図に示し
た実施例と同様に基板1上に接着剤3が塗布された波谷
接着剤領域に太陽電池素子2が配置され、仮止めされる
。次に太陽電池素子2面から接着剤3に加圧するため、
本実施例では各太陽電池素子位置に対応させてバネII
、I+・・・が取付けられた抑圧板12を用いて、該押
圧板12を対向させることによってバネ11の弾性力で
太陽電池、米、す2を加圧し、接着剤3を硬化させる。
FIG. 4 shows another embodiment according to the present invention, in which a solar cell element 2 is placed in a wave valley adhesive area where an adhesive 3 is applied on a substrate 1, similar to the embodiment shown in FIG. It will be stopped. Next, in order to apply pressure to the adhesive 3 from the 2 sides of the solar cell element,
In this embodiment, the spring II is
, I+ . . . are attached, and by placing the pressing plates 12 facing each other, the solar cell, the rice, and the rice 2 are pressurized by the elastic force of the spring 11, and the adhesive 3 is cured.

以上本発明によれば、太陽電池素子形状に対応して凹凸
を生じている太陽電池アレー表面に、能率よく均一に押
圧力を作用させることかでき、硬  第11i<1化の
ために比較的長い時間を要する接着剤を用いて基板に素
子を固定する場合にも、精度よく接着固定させることか
でき、太陽電池アレー〇製造を簡単にし、また装置製造
工程に要する労力を省くことができる。       
          第2図
As described above, according to the present invention, it is possible to efficiently and uniformly apply a pressing force to the surface of the solar cell array, which has irregularities corresponding to the shape of the solar cell elements, and to make the hardness 11i<1, relatively Even when fixing elements to a substrate using an adhesive that takes a long time, it is possible to do so with high precision, simplifying the production of solar cell arrays, and reducing the labor required in the device production process.
Figure 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法を説明するだめの断面図、第2図は本
発明による実施例を説明するための断面図、第3図及び
第4図は本発明による他の実施例4:容器   6:可
撓性シート 7:管9;保持台  10:ビス    
 1】:バネ代理人 弁理士 福 士 愛 彦(他2名
)第4図
FIG. 1 is a sectional view for explaining the conventional method, FIG. 2 is a sectional view for explaining the embodiment according to the present invention, and FIGS. 3 and 4 are other embodiment 4 according to the present invention: Container 6 : Flexible sheet 7: Tube 9; Holding stand 10: Screw
1]: Spring agent Patent attorney Aihiko Fukushi (and 2 others) Figure 4

Claims (1)

【特許請求の範囲】 1)基板上に複数個の太陽電池素子を固定配置してなる
太陽電池アレーの製造方法において、所望の位置関係で
配列された複数個の太陽電池素子に対して、該太陽電池
素子を支持する基板面との間の少なくともいずれか一方
の面に接着剤を塗布し、複数個の太陽電池素子が形成す
る平面と基板との対向面に一斉に同時に押圧力を作用さ
せ、上記接着剤を加圧硬化させてなることを特徴とする
太陽電池アレーの製造方法。 2)前記対向面間の押圧力は、真空吸引によって付勢さ
れることを特徴とする請求の範囲第1項記載の太陽電池
アレーの製造方法。 3)前記対向面間の押圧力は、基板背面から付勢してな
ることを特徴とする請求の範囲第1項記載の太陽電池ア
レーの製造方法。 4)前記対向面間の押圧力は、太陽電池素子面のバネか
らの弾性力によって付勢されることを特徴とする請求の
範囲第1項記載の太陽電池アレーの製造方法。
[Scope of Claims] 1) In a method for manufacturing a solar cell array in which a plurality of solar cell elements are fixedly arranged on a substrate, a method for manufacturing a solar cell array in which a plurality of solar cell elements are arranged in a desired positional relationship, An adhesive is applied to at least one surface between the substrate surface that supports the solar cell elements, and a pressing force is simultaneously applied to the plane formed by the plurality of solar cell elements and the opposing surface of the substrate. , A method for manufacturing a solar cell array, comprising curing the above adhesive under pressure. 2) The method of manufacturing a solar cell array according to claim 1, wherein the pressing force between the opposing surfaces is applied by vacuum suction. 3) The method of manufacturing a solar cell array according to claim 1, wherein the pressing force between the opposing surfaces is applied from the back side of the substrate. 4) The method of manufacturing a solar cell array according to claim 1, wherein the pressing force between the opposing surfaces is biased by elastic force from a spring on the solar cell element surface.
JP57179449A 1982-10-13 1982-10-13 Manufacture of solar battery array Granted JPS5968977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179449A JPS5968977A (en) 1982-10-13 1982-10-13 Manufacture of solar battery array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179449A JPS5968977A (en) 1982-10-13 1982-10-13 Manufacture of solar battery array

Publications (2)

Publication Number Publication Date
JPS5968977A true JPS5968977A (en) 1984-04-19
JPS6240873B2 JPS6240873B2 (en) 1987-08-31

Family

ID=16066047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179449A Granted JPS5968977A (en) 1982-10-13 1982-10-13 Manufacture of solar battery array

Country Status (1)

Country Link
JP (1) JPS5968977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296863U (en) * 1985-12-10 1987-06-20
FR2613130A1 (en) * 1986-06-19 1988-09-30 Teijin Ltd MODULE OF PHOTOELECTRIC SOLAR CELLS
US4946154A (en) * 1987-08-20 1990-08-07 Fuji Xerox Co., Ltd. After-processing apparatus for a copying machine
JP2002299676A (en) * 2001-04-03 2002-10-11 Honda Motor Co Ltd Solar cell module manufacturing method and jig for manufacturing solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296863U (en) * 1985-12-10 1987-06-20
FR2613130A1 (en) * 1986-06-19 1988-09-30 Teijin Ltd MODULE OF PHOTOELECTRIC SOLAR CELLS
US4946154A (en) * 1987-08-20 1990-08-07 Fuji Xerox Co., Ltd. After-processing apparatus for a copying machine
JP2002299676A (en) * 2001-04-03 2002-10-11 Honda Motor Co Ltd Solar cell module manufacturing method and jig for manufacturing solar cell module

Also Published As

Publication number Publication date
JPS6240873B2 (en) 1987-08-31

Similar Documents

Publication Publication Date Title
JP2004534404A (en) Solar cell module and method of manufacturing the same
US20070044830A1 (en) Thin film solar module and method for manufacturing the same
JP3121389B2 (en) Manufacturing method of diaphragm type pressure transducer
JPS5968977A (en) Manufacture of solar battery array
JPH05315630A (en) Manufacture of flexible thin film solar cell
JP2002118276A (en) Solar battery module and its manufacturing method
JPH07125071A (en) Vacuum bonding apparatus
JP2017092791A (en) Method for manufacturing composite board
GB2048509A (en) Bonding optical element to support
CN115151105A (en) Attaching jig
JP3167907B2 (en) Method and apparatus for bonding solar cell and cover glass
JPH01195421A (en) Manufacture of liquid crystal display device
JPS6112694Y2 (en)
CN220534971U (en) Insulating thermal film coating device for side elevation and special-shaped surface
JPS59123276A (en) Manufacture of pressure converter
JPH09127527A (en) Production of liquid crystal display device
CN115064077B (en) Display device and attaching method thereof
JPH01199440A (en) Manufacture of semiconductor device
CN214960117U (en) Packaging part of MEMS structure
JP3260859B2 (en) Solar cell module and method of manufacturing the same
JPH0766441A (en) Solar battery module
CN115706234A (en) Method for assembling membrane electrode assembly
JPH034542A (en) Manufacture of semiconductor device
JPH1131704A (en) Manufacture of semiconductor device
JPH11174458A (en) Press-bonding device and manufacture of liquid crystal display device using it