JPS596795B2 - Support material for vacuum insulated containers - Google Patents

Support material for vacuum insulated containers

Info

Publication number
JPS596795B2
JPS596795B2 JP52038630A JP3863077A JPS596795B2 JP S596795 B2 JPS596795 B2 JP S596795B2 JP 52038630 A JP52038630 A JP 52038630A JP 3863077 A JP3863077 A JP 3863077A JP S596795 B2 JPS596795 B2 JP S596795B2
Authority
JP
Japan
Prior art keywords
vacuum
container
calcium silicate
support material
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52038630A
Other languages
Japanese (ja)
Other versions
JPS53124365A (en
Inventor
稔 森田
博司 森下
延義 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP52038630A priority Critical patent/JPS596795B2/en
Publication of JPS53124365A publication Critical patent/JPS53124365A/en
Publication of JPS596795B2 publication Critical patent/JPS596795B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 本発明は低温液化ガスの貯蔵等に使用される真空断熱容
器の支持材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a support material for a vacuum insulation container used for storing low-temperature liquefied gas.

一般に、低温液化ガス等を収容、貯蔵する容器は、容器
を外槽、内槽の二重とし、その内外槽間を真空とした真
空断熱容器。
In general, containers for containing and storing low-temperature liquefied gases are vacuum insulated containers that have a double outer tank and an inner tank, with a vacuum created between the inner and outer tanks.

3使用されている。3 is used.

この真空断熱容器においては、その断熱効果を決定する
ものは断熱性能の良否にあることは勿論であるが、それ
以外に、容器の肉厚あるいは内槽の支持手段等にも依存
する。例えば、真空断熱すると容器内外槽が真空荷重に
十分耐えるよう厚肉にする必要があるが、容器を厚肉に
形成すると、例えば第1図に示す上端開口型容器では、
その容器本体aの上壁bの肉厚が厚くなるので、外槽c
上端部から内槽d上端部に伝わる伝熱量が多く、これに
より内外槽d、c間の断熱空間e内の断熱性能b3良好
でも容器本体内の内容物が外気温度の影響を受け易くな
る(内容物が外気温度より低温の場合。その逆も同様で
ある。)不都合b3生じ、このように容器の肉厚が厚い
ことは断熱効果を損うことになる。また、定地型或いは
自動車等に装着される真空断熱容器(タンク)は、パー
ライト等の粉末を充填した真空断熱法によるものが普通
であるb3、このような容器は内槽を支持する必要があ
るため、例えば第2図に示すように外槽fを気密に貫通
し、断熱空間gを横切つて支持柱れの一端を内槽iの下
壁に固着し、これにより内槽iを支持するか、又は第3
図に示すように内槽iを鋼線あるいは鎖j、jで宙づり
することにより支持するの。
In this vacuum heat-insulated container, what determines its heat-insulating effect is of course the quality of the heat-insulating performance, but it also depends on the wall thickness of the container, the means for supporting the inner tank, etc. For example, if the container is vacuum insulated, the inner and outer walls of the container must be made thick enough to withstand the vacuum load, but if the container is made thick, for example, the top-opening container shown in FIG.
Since the upper wall b of the container body a becomes thicker, the outer tank c
The amount of heat transferred from the upper end to the upper end of inner tank d is large, and as a result, even if the insulation performance b3 in the insulation space e between inner and outer tanks d and c is good, the contents inside the container body are easily affected by the outside temperature ( (When the contents are lower than the outside temperature, and vice versa.) Disadvantage b3 occurs, and such a thick container impairs the insulation effect. In addition, vacuum insulated containers (tanks) of the fixed type or installed in automobiles, etc. are usually filled with powder such as perlite b3, and such containers require support for the inner tank. For example, as shown in Fig. 2, one end of the support column is fixed to the lower wall of the inner tank i by penetrating the outer tank f in an airtight manner and crossing the insulation space g, thereby supporting the inner tank i. or third
As shown in the figure, the inner tank i is supported by suspending it in the air with steel wires or chains j and j.

3普通であるが、該支持具を介した伝熱により断熱効果
を損なうことはよく知られている。
3 It is well known that heat transfer through the support impairs the heat insulating effect.

本発明は上記事情を改善するためになされたもので、そ
の目的とするところは、耐圧縮性に優れ、容器の肉厚を
薄く形成しても真空荷重を確実に受けることができると
ともにそれ自体で内槽を支持することができ、軽量な角
型の真空断熱容器を得ることのでき、真空断熱するに当
り真空断熱効果を損なわず且つ真空排気処理b3極めて
容易であり、しかも断熱性能を有し軽量で安価な真空断
熱容器用支持材を提供することにある。
The present invention was made in order to improve the above-mentioned situation, and its purpose is to have excellent compression resistance, to be able to reliably receive vacuum load even if the container is formed with a thin wall thickness, and to be able to The inner tank can be supported by the inner tank, and a lightweight rectangular vacuum insulated container can be obtained, the vacuum insulation effect is not impaired during vacuum insulation, and the vacuum evacuation process b3 is extremely easy, and it has good insulation performance. An object of the present invention is to provide a support material for a vacuum insulated container that is lightweight and inexpensive.

即ち、本発明はゾノライト型結晶のケイ酸カルシウム等
の連続開気孔構造を有するアルカリ土類金属ケイ酸塩成
型体を加熱処理し真空断熱容器における支持材としたこ
とを特徴とするものである。
That is, the present invention is characterized in that a molded alkaline earth metal silicate having a continuous open pore structure, such as zonolite-type crystalline calcium silicate, is heat-treated and used as a support material in a vacuum insulation container.

以下、本発明につき詳しく説明する。本発明に係る真空
断熱用支持材は、連続開気孔構造を有するケイ酸マグネ
シウム、ケイ酸カルシウム、ケイ酸ストロンチウム、ケ
イ酸バリウム等のアルカリ土類金属ケイ酸塩の成型体で
あり、特にゾノライト型結晶構造を有するケイ酸カルシ
ウム成型体を使用することB3価格の点で実用上好まし
い。
The present invention will be explained in detail below. The support material for vacuum insulation according to the present invention is a molded body of an alkaline earth metal silicate such as magnesium silicate, calcium silicate, strontium silicate, barium silicate, etc., which has a continuous open pore structure, and is particularly a zonolite type. B3 It is practically preferable to use a calcium silicate molded body having a crystal structure from the viewpoint of cost.

以下、ゾノライト型結晶構造を有するケイ酸カルシウム
成型体を例示して説明する。このゾノライト型のケイ酸
カルシウム成型体は、ケイソウ土等の無定型ケイ酸と消
石炭等のカルシウム化合物と水とを加熱加圧し、ゾノラ
イト結晶を成長させて、所定の形状に成型することによ
つて得られたもので、この場合石綿、ガラス繊維、パル
プ繊維等を補強剤として、またケイ酸ナトリウム、ケイ
酸エチル等を硬化剤として加えて成型しても差支えない
Hereinafter, a calcium silicate molded body having a zonolite crystal structure will be explained as an example. This zonolite-type calcium silicate molded body is produced by heating and pressurizing amorphous silicic acid such as diatomaceous earth, a calcium compound such as slaked coal, and water to grow zonolite crystals and molding them into a predetermined shape. In this case, asbestos, glass fiber, pulp fiber, etc. may be used as a reinforcing agent, and sodium silicate, ethyl silicate, etc. may be added as a hardening agent and molded.

このケイ酸カルシウムの性状を第1表にパーライトの性
状と比較して示すt)3、第1表からも明らかにように
、ゾノライト型のケイ酸カルシウムは、嵩比重0.1f
!/Cd程度の軽量さと、1000℃の耐熱性と、6k
9/Cd以上の耐圧縮性とを有しており、また連続開気
孔構造である。しかも、ケイ酸カルシウムの製造工程は
、上述したように単純な水熱反応であり、バインダーを
添加しなくとも加圧成型B3可能のため.ケイ酸カルシ
ウム成型体の放出ガスはほとんどBj水であり6他の放
出ガスは殆んど考慮するに足らないものである。而して
、上述のごときゾノライト型結晶構造を有するケイ酸カ
ルシウム成型体を真空断熱容器の支持材として使用する
場合には、まずこの所定形状のケイ酸カルシウム成型体
を加熱炉にて予め加熱脱ガス処理を行う。
The properties of this calcium silicate are shown in Table 1 in comparison with the properties of pearlite.t)3 As is clear from Table 1, zonolite type calcium silicate has a bulk specific gravity of 0.1f.
! /Cd light weight, 1000℃ heat resistance, 6k
It has a compression resistance of 9/Cd or more and has a continuous open pore structure. Moreover, the manufacturing process of calcium silicate is a simple hydrothermal reaction as mentioned above, and pressure molding B3 is possible without adding a binder. Most of the released gas from the calcium silicate molded body is Bj water, and other released gases are hardly worth considering. When using a calcium silicate molded body having a zonolite crystal structure as described above as a support material for a vacuum insulated container, first, this calcium silicate molded body having a predetermined shape is heated and decomposed in a heating furnace. Perform gas treatment.

この処理条件は、通常ケイ酸カルシウム成型体を約20
0゜Cで2時間程度保持すればほぼ恒量となり、成型体
内の水分B3殆んど確実に除去される。更に高温を採用
すれば加熱時間は格段に短縮される。このように加熱、
乾燥されたケイ酸カルシウム成型体は吸湿性を有するt
)3、加熱処理後、断熱容器の断熱空間に充填するまで
の期間は、これに乾燥ガスを封入するか、或いは100
′C程度に多少予熱しておくだけで吸湿は抑えられる。
なお、第4図にケイ酸カルシウム成型品の水分吸放出曲
線を示すt)3、この図からもわかるように断熱空間に
充填するまでの保持温度は10゛0℃で十分である。(
なお図中Aは昇温曲線、Bは降温曲線を示す。)このよ
うに予備加熱処理されたケイ酸カルシウム支持材は、次
いで第5図に示すように、これを断熱容器(タンク)1
の外槽2と内槽3との間の断熱空間4内に充填し、排気
口5より加熱乾燥ガスを導入すると共に、真空ポンプ等
を使用して真空引きを行なう。
This processing condition is usually about 20% of the calcium silicate molded body
If kept at 0°C for about 2 hours, the weight will become almost constant, and the moisture B3 in the molded body will be almost certainly removed. Furthermore, if a high temperature is used, the heating time can be significantly shortened. Heating like this,
The dried calcium silicate molded body has hygroscopicity.
) 3. After the heat treatment, during the period until filling the heat insulating space of the heat insulating container, it is necessary to fill it with dry gas or
Moisture absorption can be suppressed by preheating to a temperature of around 100°F.
Incidentally, Fig. 4 shows the moisture absorption and release curve of the calcium silicate molded product (t)3. As can be seen from this figure, a holding temperature of 10°C is sufficient until the adiabatic space is filled. (
Note that in the figure, A indicates a temperature increase curve, and B indicates a temperature decrease curve. ) The calcium silicate support material preheated in this way is then placed in a heat insulating container (tank) 1 as shown in FIG.
The adiabatic space 4 between the outer tank 2 and the inner tank 3 is filled with heated dry gas, which is introduced through the exhaust port 5, and evacuated using a vacuum pump or the like.

この操作を数回繰り返せば、上記支持材6内の水分は殆
んど放出され、更に他の放出ガスも放出され、断熱空間
4(支持材6)内は高真空度に保持され、上記排気口5
を密封することにより、外槽2と内槽3との間の断熱空
間4内に支持材6t)j充填され、かつこの空間4(支
持材6)内t)3真空に保持された真空断熱容器t)3
製造される(図中7は外槽2を支持する支持柱である。
)。なお、この場合、保持真空度1×10−2T0rr
で十分均一な断熱性能B3得られる。このように、支持
材としてゾノライト型ケイ酸カルシウム成型体を使用す
ることにより、真空断熱容器の晦工/)j簡単になされ
る。
By repeating this operation several times, most of the moisture in the supporting material 6 will be released, and other released gas will also be released, and the inside of the heat insulating space 4 (supporting material 6) will be maintained at a high degree of vacuum, and the above-mentioned exhaust gas will be released. Mouth 5
By sealing, the support material 6t)j is filled in the heat insulation space 4 between the outer tank 2 and the inner tank 3, and the vacuum insulation space 4 (t)3 is kept in a vacuum inside this space 4 (support material 6). Container t)3
(7 in the figure is a support column that supports the outer tank 2.
). In this case, the holding vacuum level is 1×10-2T0rr.
A sufficiently uniform heat insulation performance B3 can be obtained. As described above, by using the zonolite type calcium silicate molded body as a support material, the construction of a vacuum insulated container can be easily performed.

即ち、この支持材は所定形状の成型体であるため、断熱
容器製造工程中に於て取扱い、加工性に優れていると共
に、予め加熱脱ガス処理を直接的に行つて含有水分等の
放出ガスを除去しておくことt)3でき、また上記ケイ
酸カルシウムは耐熱性B3高いので高温で迅速に予備加
熱脱ガス処理を行うことができると共に、連続開気孔構
造を有するため、上記予備加熱脱ガス処理並びに断熱空
間充填後の真空排気処理において、孔内の水分等の放出
ガスを完全にかつ容易1r僚ホナス戸Lkプλ l議、
よ召f山?マLlプ′斗通常水分だけを対象にすればよ
く、断熱空間充填後に単に数回の加熱乾燥ガスの導入並
びに真空引きを行うだけで真空排気工程を行うことがで
き、真空排気工程t)3簡略化されて、従来の真空排気
工程に比べ排気時間B3極端に短縮される。また、この
ようにケイ酸カルシウム成型体は連続開気孔構造を有し
、空隙B3連続しているので内部まで真空排気性が良好
であつて真空排気工程で放出ガスが完全に除去され、パ
ーライトを用いた真空断熱の場合に比べ、真空空間にお
ける熱伝導をより良好に防止でき、その後にガスの放出
もないので、真空度保持B3確実になされると共に、保
持真空度は1×10−2T0rr程度で十分であり、従
来よりも保持真空の程度B3低くともよく、所定の熱伝
導度を得るための真空度が比較的低真空度から安定にな
る。第6図に開口型断熱容器において、ゾノライト型ケ
イ酸カルシウム成型体を用いた真空断熱の場合Aとパー
ライト粉体Bを用いた場合の液体窒素蒸発速度と断熱空
間の真空度との関係を示す。
In other words, since this supporting material is a molded product with a predetermined shape, it is easy to handle and process during the manufacturing process of the insulated container, and it can be directly heated and degassed in advance to remove released gases such as contained moisture. In addition, since the above-mentioned calcium silicate has high heat resistance B3, preheating and degassing treatment can be performed quickly at high temperature, and since it has a continuous open pore structure, the above-mentioned preheating and degassing treatment can be performed quickly. In the gas treatment and the vacuum evacuation treatment after filling the adiabatic space, the released gas such as moisture in the hole can be completely and easily removed.
Yosho f-yama? Normally, only moisture needs to be targeted, and the vacuum evacuation process can be performed by simply introducing heated drying gas several times and vacuuming after filling the adiabatic space.Evacuation process t)3 It is simplified and the evacuation time B3 is extremely shortened compared to the conventional evacuation process. In addition, since the calcium silicate molded body has a continuous open pore structure and the void B3 is continuous, it has good evacuation properties to the inside, and the emitted gas is completely removed during the evacuation process, making it possible to remove pearlite. Compared to the case of using vacuum insulation, heat conduction in the vacuum space can be better prevented, and there is no subsequent release of gas, so the vacuum level can be maintained at B3 reliably, and the vacuum level can be maintained at about 1 x 10-2T0rr. is sufficient, and the degree of vacuum B3 may be lower than that of the conventional case, and the degree of vacuum for obtaining a predetermined thermal conductivity becomes stable from a relatively low degree of vacuum. Figure 6 shows the relationship between the liquid nitrogen evaporation rate and the vacuum degree of the insulation space in the case of vacuum insulation using a zonolite-type calcium silicate molded body A and the case of using pearlite powder B in an open-type insulation container. .

これより、ケイ酸カルシウム成型体を用いた場合、保持
真空度t)j低くても所用の断熱特性t)3得られるこ
とB3知見され、またパーライト真空断熱容器に比較し
て必要保持真空度の範囲B3広がり,真空度保持の制御
B3容易となることB3理解される。また、ケイ酸カル
シウム成型体は耐圧縮性が高く、しかもパーライトの如
き閉気孔構造の球体内にガスを包蔵しているものとは異
なり、連続開気孔構造を有し、成型体に集中荷重t)j
かかつてもガスの発生t)3なく、従つて荷重をかけて
も差支えないので、第5図に示したように、この成型体
(支持材)自体で真空荷重を受けることができるため、
外槽及び内槽の肉厚を薄く形成しても支障B3なく、開
口部側壁からの熱侵入をほとんどなくすことt)jでき
、従来製造B3困難であつた角型の真空断熱容器を製造
できる。また、この成型体で内槽を支持できるので、第
2図及び第3図に示したような内槽支持のための特別の
支持部材を必要とせず、内槽支持部材からの熱損失もな
くなり、しかも成型体自体も軽量であるため、断熱容器
は極めて軽量なものとなる。即ち、容器の肉厚は従来の
数分の1でよく、その結果、断熱容器としては、価格、
重量共に内外槽の肉厚の減少に比例して低減され、この
メリツトは容器容積t)3大型化する程大きくなる。第
7図は開口容器(第1図の容器においてe/D=2)の
容量と重量との関係を示したものであり、断熱空間の幅
(外槽と内槽との間隔)を5Cr1Lの一定とし、ケイ
酸カルシウム成型体を用いた場合Aとパーライト粉体を
用いた場合Bとを比較したものである。なお、内外槽は
それぞれステンレススチールで製作し、またケイ酸カル
シウム成型体を用いた容器においては内外槽をそれぞれ
肉厚1m71Lの一定とした。これより、ケイ酸カルシ
ウム成型体を使用した場合、容器重量を著しく低減でき
ることが理解される。更に、上記ゾノライト型結晶構造
を有するケイ酸カルシウムの吸湿性は、真空度保持のた
めには好都合であり、しかも低温液化ガス貯蔵用容器の
支持材に使用される場合には、支持材自体に吐温吸収作
用(クライオソープシヨン効果乃至はゲツタ一効果)t
)3あり、例えば液体窒素温度等の低温で吸着効果が表
われ、支持材中に残存している水分、リークインしてく
る空気成分、容器本体の構成材料(例えばステンレスス
チール)からの放出ガス等を効果的に吸着して確実に所
定の真空度を維持する特長をも有し、上述したように常
温時の必要保持真空度は1×10−2T0rrで十分で
ある。また、バーライトは充填後自重により充填密度に
経時変化t)3起り、均一な真空断熱性能B3得られな
いことt)3あるt)3、ケイ酸カルシウム成型体はこ
のような経時的な真空断熱性能の代下は表れず、最吠1
01T0rrの真空度を保持することによりほぼ均一な
断熱性能が得られる。なお、上記は主にゾノライト型結
晶構造を有するケイ酸カルシウム成型体を支持材として
使用する場合について説明したt)3、連続開気孔構造
を有するケイ酸マグネシウム、ケイ酸ストロンチウム、
ケイ酸バリウム等のアルカリ土類金属ケイ酸塩成型体も
しくはこれを母体として、補強材として石綿、ガラス繊
維、バルプ繊維等を、また硬化剤としてケイ酸ナトリウ
ム、ケイ酸エチル等を加えた複合材成型体も、先の第1
表に示したケイ酸カルシウムの物性と略同様の物性を有
し、同様の作用効果を奏する。
From this, it was found that when using a calcium silicate molded body, the required insulation properties t)3 can be obtained even if the holding vacuum degree t)j is low, and it is also found that the required holding vacuum degree t)3 can be obtained compared to the pearlite vacuum insulation container. It is understood that the range B3 is expanded and the control of maintaining the degree of vacuum becomes easier. In addition, the calcium silicate molded product has high compression resistance, and unlike pearlite, which has a closed pore structure that contains gas in a sphere, it has a continuous open pore structure, and the molded product is subjected to concentrated loads. )j
Since there was no gas generation t)3 in the past, there is no problem even if a load is applied, and as shown in Fig. 5, this molded body (supporting material) itself can receive a vacuum load.
There is no problem B3 even if the outer tank and inner tank are made thin, and it is possible to almost eliminate heat intrusion from the side wall of the opening, and it is possible to manufacture a rectangular vacuum insulated container, which was difficult to manufacture B3 in the past. . In addition, since this molded body can support the inner tank, there is no need for a special support member for supporting the inner tank as shown in Figures 2 and 3, and heat loss from the inner tank support member is eliminated. Moreover, since the molded body itself is lightweight, the heat insulating container is extremely lightweight. In other words, the wall thickness of the container can be reduced to a fraction of that of conventional containers, and as a result, as an insulated container, the price and
Both the weight is reduced in proportion to the decrease in the wall thickness of the inner and outer tanks, and this advantage increases as the container volume t)3 increases. Figure 7 shows the relationship between the capacity and weight of an open container (e/D = 2 in the container shown in Figure 1), and the width of the insulation space (the distance between the outer tank and the inner tank) is A case where a calcium silicate molded body is used and a case B where a pearlite powder is used are compared with each other. The inner and outer tanks were each made of stainless steel, and in the case of a container using a calcium silicate molded body, the inner and outer tanks each had a constant wall thickness of 1 m71 L. From this, it is understood that when a calcium silicate molded body is used, the weight of the container can be significantly reduced. Furthermore, the hygroscopicity of calcium silicate having the above-mentioned zonolite crystal structure is advantageous for maintaining the degree of vacuum, and when it is used as a support material for a container for storing low-temperature liquefied gas, the support material itself Breathing temperature absorption effect (cryosorption effect or getter effect)
) 3, the adsorption effect appears at low temperatures such as liquid nitrogen temperature, and moisture remaining in the support material, air components leaking in, gases released from the material of the container body (e.g. stainless steel), etc. It also has the feature of effectively adsorbing the air and reliably maintaining a predetermined degree of vacuum, and as mentioned above, the required degree of vacuum to be maintained at room temperature is sufficient to be 1×10 −2 T0rr. In addition, barlite changes its packing density over time due to its own weight after filling, making it impossible to obtain uniform vacuum insulation performance. There is no decrease in insulation performance, and the lowest level is 1.
By maintaining a degree of vacuum of 01T0rr, substantially uniform heat insulation performance can be obtained. Note that the above description mainly describes the case where a calcium silicate molded body having a zonolite type crystal structure is used as a support material. t)3. Magnesium silicate, strontium silicate, and
Alkaline earth metal silicate molded bodies such as barium silicate, or composite materials using this as a matrix and adding asbestos, glass fiber, bulp fiber, etc. as reinforcing materials, and sodium silicate, ethyl silicate, etc. as hardening agents. The molded body is also the same as the first one.
It has substantially the same physical properties as the calcium silicate shown in the table, and exhibits the same effects.

そして、これらのケイ酸塩はケイ酸カルシウムと同様に
水熱反応により容易に得られる。またこれら支持材の表
面を例えば凹凸状に加工し、断熱容器の外槽や内槽もし
くは支持材相互の接触面積の減少をはかり、伝導熱を吹
減するようにしてもよく、更にこれら支持材をアルミニ
ウム箔等で被覆し、輻射熱を遮蔽するようにすることも
できる。また、支持体の形状も、自由であつて直方体、
円柱体や格子状のものなど適宜の形状を取ることB3で
き、格子状のものは真空断熱容器に充填した場合、真空
空間B3増加し断熱性の点で有利となる。以上説明した
ように、本発明によれば、低温液化ガス貯蔵用等の真空
断熱容器の支持材としてゾノライト型結晶のケイ酸カル
シウム等の連続開気孔構造を有するアルカリ土類金属ケ
イ酸塩成型体を使用することにより、従来のパーライト
真空断熱法に比べて同等もしくはそれ以上の断熱性能を
有すると共に、本発明に係る支持材は成型体であるため
、取扱い性、安全性、加工性等に優れ、しかも耐熱性を
有し、断熱空間充填前に予備加熱脱ガス処理t)3可能
であり、断熱空間充填までの期間は乾燥ガスを封入して
おくか、予熱温度を100゜C前後に保持すれば吸湿を
防止でき、また支持材の充填、施工t)3容易であると
共に、断熱空間に充填した後は加熱乾燥ガスの導入、真
空引きを数回行うだけで水分、その他の放出ガスt)3
確実に放出され、短時間のうちに必要保持真空度1×1
0−2T0rrb5達成され、このように真空排気工程
を短時間で効果的に行うことt)jできる。
These silicates, like calcium silicate, can be easily obtained by a hydrothermal reaction. In addition, the surface of these supporting materials may be processed to have an uneven shape, for example, to reduce the contact area between the outer tank, the inner tank, or the supporting materials of the heat insulating container, so that the conductive heat is blown away. It is also possible to cover it with aluminum foil or the like to shield it from radiant heat. In addition, the shape of the support is free, such as a rectangular parallelepiped,
It can take an appropriate shape B3 such as a cylindrical body or a lattice shape, and when a lattice shape is filled in a vacuum insulation container, the vacuum space B3 increases and it is advantageous in terms of heat insulation. As explained above, according to the present invention, an alkaline earth metal silicate molded product having a continuous open pore structure, such as zonolite-type crystal calcium silicate, can be used as a support material for a vacuum insulation container for storing low-temperature liquefied gas. By using this method, it has the same or better insulation performance than the conventional pearlite vacuum insulation method, and since the supporting material according to the present invention is a molded product, it has excellent handling, safety, processability, etc. In addition, it has heat resistance and can be preheated and degassed before filling the adiabatic space.During the period until the adiabatic space is filled, dry gas is sealed or the preheating temperature is maintained at around 100°C. Doing so can prevent moisture absorption, and is easy to fill and install with the supporting material.After filling the insulating space, you can simply introduce heated drying gas and vacuum several times to eliminate moisture and other released gases. )3
Reliably discharges and maintains required vacuum level 1x1 in a short time
0-2T0rrb5 has been achieved, and thus the vacuum evacuation process can be performed effectively in a short time.

また、上記支持材は耐圧縮性に優れ、容器の肉厚を薄く
形成しても真空荷重を確実に受けることができると共に
、それ自体で容器の内槽を支持することBjでき、かつ
それ自体軽量であるため軽量の断熱容器を安価に製作し
得るとともに、角型、球状、円筒状などの任意の形状の
断熱容器を製作し得る。更に、この支持材は連続開気孔
構造を有しており、真空排気時に吸蔵ガスを確実に放出
できると共に、支持材に集中荷重がかかつてもガスの発
生がなく、かつ吸湿性、低温吸収作用t)3あるため、
真空度維持t)3確実になされ、億温液化ガス用真空断
熱容器の支持材として好適に使用でき、また耐熱性を有
するため加熱乾燥工程に高温を採用できると共に、真空
ろう付工程も採用できる等の利点を有する。
In addition, the support material has excellent compression resistance and can reliably receive vacuum load even if the wall thickness of the container is made thin, and can support the inner tank of the container by itself. Since it is lightweight, a lightweight heat insulating container can be manufactured at low cost, and a heat insulating container in any shape such as square, spherical, or cylindrical can be manufactured. Furthermore, this support material has a continuous open pore structure, which allows the storage gas to be reliably released during evacuation, and does not generate gas even when a concentrated load is applied to the support material, and has hygroscopic and low-temperature absorption properties. t) Because there are 3,
It maintains the degree of vacuum t)3 reliably, and can be suitably used as a support material for vacuum insulated containers for liquefied gases at 100 million degrees Celsius.It also has heat resistance, so high temperatures can be used in the heating drying process, and vacuum brazing process can also be used. It has the following advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれ従来の断熱容器を示す縦断
面図、第4図は本発明に係るケイ酸カルシウム成型体支
持材の水分吸放出曲線を示すグラフ、第5図は本発明の
支持材を用いて製作した断熱容器の一例を示す縦断面図
、第6図は開口型容器における液体窒素蒸発速度と断熱
空間真空度との関係を示すグラフ、第7図は開口型容器
の容量と重量との関係を示すグラフである。 1−・−・・真空断熱容器、2・・・・・・外槽、3・
・・・・・内槽、4・・・・・・断熱空間、6−・・・
・・支持材。
1 to 3 are longitudinal cross-sectional views showing conventional heat insulating containers, FIG. 4 is a graph showing a moisture absorption/release curve of the calcium silicate molded body support material according to the present invention, and FIG. A vertical cross-sectional view showing an example of a heat insulating container manufactured using a support material, FIG. 6 is a graph showing the relationship between the liquid nitrogen evaporation rate and the degree of vacuum in the adiabatic space in an open container, and FIG. 7 is a graph showing the capacity of the open container. It is a graph showing the relationship between and weight. 1-... Vacuum insulation container, 2... Outer tank, 3.
...Inner tank, 4...Insulation space, 6-...
...Supporting material.

Claims (1)

【特許請求の範囲】 1 連続開気孔構造を有するアルカリ土類金属ケイ酸塩
成型体よりなり、内槽と外槽とからなる真空断熱容器の
内外槽間の真空空間に充填し、内外槽壁にそれぞれ負荷
される真空荷重を受けるとともに内槽を支持することを
特徴とする真空断熱容器用支持体。 2 アルカリ土類金属ケイ酸塩がゾノライト型結晶構造
を有するケイ酸カルシウムである特許請求の範囲第1項
記載の真空断熱容器用支持体。
[Scope of Claims] 1. A molded alkaline earth metal silicate body having a continuous open pore structure is filled in the vacuum space between the inner and outer vessels of a vacuum insulated container consisting of an inner vessel and an outer vessel, and the inner and outer vessel walls are A support for a vacuum insulated container, characterized in that it supports an inner tank while receiving a vacuum load applied to each. 2. The support for a vacuum insulation container according to claim 1, wherein the alkaline earth metal silicate is calcium silicate having a zonolite crystal structure.
JP52038630A 1977-04-05 1977-04-05 Support material for vacuum insulated containers Expired JPS596795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52038630A JPS596795B2 (en) 1977-04-05 1977-04-05 Support material for vacuum insulated containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52038630A JPS596795B2 (en) 1977-04-05 1977-04-05 Support material for vacuum insulated containers

Publications (2)

Publication Number Publication Date
JPS53124365A JPS53124365A (en) 1978-10-30
JPS596795B2 true JPS596795B2 (en) 1984-02-14

Family

ID=12530549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52038630A Expired JPS596795B2 (en) 1977-04-05 1977-04-05 Support material for vacuum insulated containers

Country Status (1)

Country Link
JP (1) JPS596795B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144487A (en) * 1979-04-26 1980-11-11 Nippon Oxygen Co Ltd Manufacture of vacuum structure
JPS55144486A (en) * 1979-04-26 1980-11-11 Nippon Oxygen Co Ltd Manufacture of vacuum structure
WO1994005499A1 (en) * 1992-09-09 1994-03-17 Clock Spring Company L.P. High tensile strength composite reinforcing bands and methods for making same

Also Published As

Publication number Publication date
JPS53124365A (en) 1978-10-30

Similar Documents

Publication Publication Date Title
US3108706A (en) Apparatus for improving vacuum insulation
US3238002A (en) Insulated shipping container for biological materials
US1608155A (en) Means for transporting and storing gases
US4481779A (en) Cryogenic storage container
US2108212A (en) Metal-walled vacuum chamber or container
JP2612005B2 (en) Asbestos-free filling with a solidified structure
US4594279A (en) Heat insulator
US1964795A (en) Refrigerating unit
US4495775A (en) Shipping container for storing materials at cryogenic temperatures
US4606196A (en) Vacuum insulation system
US6010762A (en) Self-evacuating vacuum insulation panels
JPS596795B2 (en) Support material for vacuum insulated containers
JPS6343669B2 (en)
KR100393663B1 (en) Process for producing calcium oxide, strontium oxide and barium oxide showing a high value of water sorption speed and oxides thus obtained
US4704068A (en) Process for introducing an adsorption agent
JPH0563715B2 (en)
JPS6327192Y2 (en)
JPH0788996B2 (en) Cooling method
JPH06281089A (en) Vacuum heat-insulating material
JPS61241595A (en) Vacuum heat-insulating structure body
JPS6316027B2 (en)
JP2768573B2 (en) Vacuum insulation for high temperature
JPS6212190B2 (en)
JPH02265513A (en) Insulated vessel and manufacture thereof
JPS61103089A (en) Vacuum heat-insulating structure