JPS596728A - Parallel operation control system for dc power sources - Google Patents

Parallel operation control system for dc power sources

Info

Publication number
JPS596728A
JPS596728A JP57115983A JP11598382A JPS596728A JP S596728 A JPS596728 A JP S596728A JP 57115983 A JP57115983 A JP 57115983A JP 11598382 A JP11598382 A JP 11598382A JP S596728 A JPS596728 A JP S596728A
Authority
JP
Japan
Prior art keywords
power supply
slave
load
master
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57115983A
Other languages
Japanese (ja)
Inventor
実 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57115983A priority Critical patent/JPS596728A/en
Publication of JPS596728A publication Critical patent/JPS596728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は直流定電圧装置(以下、AVRと略称)の標準
化を図るために同一容量の標準AVR)i複数組用意し
AVHの使用出力容量が増加した場合複数個の標準AV
RY:並列に接続して使用する場合の直流電源の並列運
転制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to standardize DC voltage regulators (hereinafter referred to as AVR) by preparing multiple sets of standard AVRs with the same capacity. Standard AV
RY: Relates to a parallel operation control method for DC power supplies when used in parallel connection.

従来より、この種直流電源の並列運転制御方式としては
第1図に示す様な回路方式がとられていた。すなわち、
図において11はAVRで同一容量の機種が複数個並列
に接続されている。12は前記、AVRK内蔵されてい
る逆り形過電流垂下保護回路、10は負荷である。
Conventionally, a circuit system as shown in FIG. 1 has been used as a parallel operation control system for this type of DC power supply. That is,
In the figure, reference numeral 11 denotes an AVR, in which a plurality of AVR models having the same capacity are connected in parallel. 12 is the above-mentioned reverse type overcurrent droop protection circuit built into the AVRK, and 10 is a load.

この様に構成された従来の並列電源接続方式において、
運転時の留意点は並列に接続された電源相互間の負荷バ
ランス?取ることで、仮に負荷バランスが崩れた場合に
も定格容量を越えての負荷分担は防止しなければならな
い。そして出力電圧設定値のバラツキや周囲温度の変化
等により各AVHの出力電圧が僅かでも変動すると負荷
分担の不均衡が生じるため、これt補正する目的で過電
流垂下保護回路が使用されていた。また通常の過電流垂
下保護回路は負荷異常時の電源保護、および電源誤動作
時の負荷の2次破損χ防止することにあり、AVR負荷
分担の設定値は各定格出力電流の100〜140%の範
囲内に決められている。
In the conventional parallel power supply connection system configured in this way,
Is it important to pay attention to load balance between power supplies connected in parallel during operation? By doing so, even if the load balance collapses, it is necessary to prevent load sharing exceeding the rated capacity. If the output voltage of each AVH fluctuates even slightly due to variations in output voltage setting values, changes in ambient temperature, etc., an imbalance in load sharing will occur, so an overcurrent droop protection circuit has been used to compensate for this. In addition, a normal overcurrent droop protection circuit is designed to protect the power supply in the event of a load abnormality and to prevent secondary damage to the load in the event of a power supply malfunction. determined within the range.

電源並列接続時の負荷バランス用に使用する場合(は、
この負荷分担の設定値χすべての電源について、定格出
力電流内に設定しておき他のAVRよりも大きな負荷分
担が起り得る場合にはこれY抑えるために過電流垂下保
護回路ン動作させ、その出力電圧ン低下させることによ
って他の電源にも均一な負荷分担ン行わせる様九制御し
ていた。
When used for load balancing when power supplies are connected in parallel (
This load sharing setting value χ is set for all power supplies within the rated output current, and if a larger load sharing than other AVRs may occur, the overcurrent droop protection circuit is activated to suppress this. By lowering the output voltage, it was controlled so that the other power supplies would share the load evenly.

しかし、第1図に示す様な従来の直流電源並列運転制御
方式では出力電圧および過電流垂下回路の設定値の不均
衡、または垂下特性がシャープでないこと、あるいは周
囲温度の変化を考慮したとき等に過負荷領域での使用Z
垂下保護回路の設定点、すなわち、出力容量値ン定格容
量値の70〜80俤に限定して使用せざるン得ず、各々
の電源の合計容量まで側底使用することが困難であると
いう欠点があった。また、負荷が変動する様な軽負荷で
の使用状態では、負荷バランスが取りにくく最悪の場合
、複数個のAVHのうち、あるものは過電流垂下特性の
設定点で動作しているものもあれば、他は無負荷の状態
で動作するといった運転状態が発生した。
However, with the conventional DC power supply parallel operation control method as shown in Figure 1, there may be problems such as an imbalance in the set values of the output voltage and overcurrent droop circuit, or when the droop characteristics are not sharp, or when taking into account changes in the ambient temperature. Use in overload area Z
The disadvantage is that it has to be used only at the set point of the droop protection circuit, that is, between 70 and 80 of the output capacitance value and the rated capacity value, and that it is difficult to use the bottom of the circuit up to the total capacity of each power supply. was there. In addition, under light load conditions where the load fluctuates, it is difficult to maintain load balance, and in the worst case, some of the multiple AVHs may operate at the set point of the overcurrent droop characteristic. For example, an operating condition occurred in which the other devices were operating under no-load conditions.

本発明は上記のような従来の欠点χ除去するためになさ
れたもので、並列電源の相互間に負荷電流バランサー回
路?夫々挿入し、その過電流バランサー回路によって夫
々のAVHの定格容量値までは少くとも使用可能とし、
仮に負荷変動が発生した時にもAVR相互の負荷分担を
直ちに均−九制御して高効率の電源使用ン可能とした直
流電源並列運転制御方式?提供するととt目的とする。
The present invention was made to eliminate the above-mentioned drawbacks of the conventional technology, and is a load current balancer circuit between parallel power supplies. The overcurrent balancer circuit allows each AVH to be used at least up to its rated capacity value.
Even if load fluctuations occur, the DC power supply parallel operation control method immediately controls the mutual load sharing between AVRs evenly and enables high-efficiency power supply usage. The purpose is to provide.

以下、本発明の一実施例を図について説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図中、第1図と同一の部分は同一の符号乞以って図示し
た第2図において、1,2.5は並列に接続された電源
装置(AVR)で、このうち1は基準のAVRとなるマ
スターAVR,2はスレーブA −A V R、5ハス
v −j B −A V R、4〜6 ハ各AVHの出
力電流を検出する検出抵抗、7はマスターAVR1と、
X、V−7”A−AVH2の出力電流χ比較する比較器
、8はマスターAVR1とスレーブB−AVR5の出力
電流比較器、9はスレーブA−AVR2に内蔵する出力
電圧安定化制御回路である。
In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. In FIG. The master AVR, 2 is the slave A-A VR, 5 is the detection resistor for detecting the output current of each AVH, 7 is the master AVR1,
X, V-7" Comparator for comparing the output current χ of A-AVH2, 8 is the output current comparator of master AVR1 and slave B-AVR5, and 9 is the output voltage stabilization control circuit built in slave A-AVR2. .

この様な構成からなる本発明忙おいて、回路動作を以下
説明する。すなわち、本発明の特徴は複数個のAVHの
うち1mをマスターAVRとし他tスレーブAVRとす
るものでマスターAVR1に流れる負荷電流11とスレ
ーブAVR2及び5に流れる負荷電流12.13ya−
夫々比較しその比較結果が常に等しくなるように負荷電
流バランス用閉ループ制御回路tスレーブ側の各々のA
VH2及び5の出力電圧安定化用閉ループ制御回路に付
加したものである。例えばマスターAVR1より負荷1
0に流れる電流11がスレーブA−AVR2より負荷に
流れる電流12より大で負荷電流バランスがくずれてい
るとすると、図示の負荷電流バランス用閉ループ制御回
路は負荷電流比較器7によりマスターAVR1の負荷電
流11に対して、スレーブA−AVR2の負荷電流が少
ないととン検出し比較器7の出力電圧レベルを低下させ
スレーブA−AVR2の出力電圧安定化用の閉ループ制
御回路に加える。この入力信号によりスレーブA−AV
R2の出力電圧安定化用の閉ループ制御回路はスレーブ
A−AVR2の出力電圧が低いことt検出し、出力電圧
を上げるようVC動作する。これによりスレーブA−k
VR2の負荷電流12は増加する。スレーブA−AVR
Z側に流れる負荷電流12が大きい場合には前記とは逆
の動作りして出力電圧を下げ負荷電流12′%:低減さ
せる。従って負荷電流バランス用閉ループ制御回路ン加
えたスレーブA−AVR2の出力電圧安定化閉ループ制
御回路としては常圧マスターAVR1の負荷電流11ス
レーブA−人VR2の負荷電流12が等しくなるように
スレーブA−AVR2の出力電圧を調整する。また並列
接続するAVHの個数乞増す場合には、スレーブ側の電
源がスレー7’A−AY R1スV−7’B−AVR−
@*e*等増スことになり、マスターAVRとスレーブ
A−AYR1マスターAVRとスレーブB−AVR・・
・曾・の負荷電流χ夫々比較し常にバランスが保たれる
ようにスレーブ側のAVHの出力電圧を各々に調整し、
AVR全体として負荷電流のバランスがとれるように動
作する。
The circuit operation of the present invention having such a configuration will be explained below. That is, the feature of the present invention is that 1 m of the plurality of AVHs is the master AVR and the others are slave AVRs, and the load current 11 flowing to the master AVR 1 and the load current 12.13 ya- flowing to the slave AVRs 2 and 5
Closed loop control circuit for load current balance t Each A on the slave side
This is added to the closed loop control circuit for stabilizing the output voltage of VH2 and VH5. For example, load 1 from master AVR1
Assuming that the current 11 flowing to the slave A-AVR 2 is larger than the current 12 flowing to the load from the slave A-AVR 2 and the load current balance is out of balance, the illustrated closed-loop control circuit for load current balance uses the load current comparator 7 to adjust the load current of the master AVR 1. 11, when the load current of the slave A-AVR2 is low, it is detected that the output voltage level of the comparator 7 is lowered and applied to the closed loop control circuit for stabilizing the output voltage of the slave A-AVR2. This input signal causes slave A-AV
The closed loop control circuit for stabilizing the output voltage of R2 detects that the output voltage of slave A-AVR2 is low and performs a VC operation to increase the output voltage. This allows slave A-k
The load current 12 of VR2 increases. Slave A-AVR
When the load current 12 flowing to the Z side is large, the operation is opposite to that described above to lower the output voltage and reduce the load current by 12'%. Therefore, as a closed loop control circuit for stabilizing the output voltage of slave A-AVR2, which has been added to the closed loop control circuit for load current balance, the load current 11 of normal pressure master AVR1 is adjusted so that the load current 12 of slave A - person VR2 is equal. Adjust the output voltage of AVR2. Also, if the number of AVHs connected in parallel increases, the power supply on the slave side should be
@*e* etc. will be increased, master AVR and slave A-AYR1 master AVR and slave B-AVR...
・Compare the load currents χ and adjust the output voltage of the AVH on the slave side so that the balance is always maintained.
The AVR operates so that the load current is balanced as a whole.

従って、本発明によれば並列運転方式のAVHの負荷電
流が夫々、マスターとスレーブAVHの出力電流との比
較によって帰還制御されて常に均等に分割されるため、
各々のAVHの定格容量一杯まで使用=I能になり、ま
た負荷電流が変イしした場合にも常に速やかに出力追従
し、負荷電流の均等分割がなされるため信頼性の高い直
流電源の並列運転制御方式χ提供できる効果がある。
Therefore, according to the present invention, the load currents of the parallel operation type AVHs are feedback-controlled by comparing the output currents of the master and slave AVHs and are always divided equally.
Each AVH can be used up to its rated capacity = I function, and even if the load current changes, the output always follows quickly, and the load current is divided evenly, making it possible to connect highly reliable DC power supplies in parallel. The operation control method χ has the effect that it can provide.

更に、本発明は標準設定機種を極力限定した電源装置の
標準化7図ることができるため、同一品種のAVHの量
産化が可能となり経済的な効果が極めて大きい。
Furthermore, since the present invention allows standardization of power supply devices with as few standard models as possible, it is possible to mass-produce AVHs of the same type, which has an extremely large economical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流電源並列運転制御方式のブロック構
成図、第2図は本発明の一実施例を示す同上図である。 10、、、負荷、11 ・1affiii源(AY R
)、12・・・逆り形過電流垂下保護回路、1・・・マ
スターAVR,2,5・・・スレーブAVR,4〜6・
・・負荷電流検出抵抗、7〜8・・・比較器、9・・・
スレーブ出力電圧安定化制御回路。 なお、図中同一符号は同−又は相当部分ケ示す。 代理人 葛野信−(ほか1名) 11!1図 2 第  2  図
FIG. 1 is a block diagram of a conventional DC power supply parallel operation control system, and FIG. 2 is a diagram showing an embodiment of the present invention. 10, Load, 11 ・1affiii source (AY R
), 12... Reverse overcurrent droop protection circuit, 1... Master AVR, 2, 5... Slave AVR, 4-6.
...Load current detection resistor, 7-8...Comparator, 9...
Slave output voltage stabilization control circuit. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (and 1 other person) 11!1 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 並列に接続した直流電源のうち1個tマスターとするマ
スター電源と、前記マスター電源以外の並列電源をスレ
ーブとするスレーブ電源と、前記マスター電源に流れる
負荷電流とストレープ電源に流れる負荷電流とを夫々比
較する出力電流比較回路とt備え、前記電流比較回路の
出力信号ンスレープ側電源の出力電圧安定化回路に夫々
加え、スレーブ側電源の出力電圧を調整し並列電源負荷
電流の均一的に制御することt特徴とする直流電源の並
列運転制御方式。
A master power supply in which one of the DC power supplies connected in parallel is a master, a slave power supply in which a parallel power supply other than the master power supply is a slave, a load current flowing to the master power supply, and a load current flowing to the striped power supply, respectively. An output current comparison circuit for comparison is provided, and the output signal of the current comparison circuit is added to the output voltage stabilizing circuit of the slave side power supply, respectively, and the output voltage of the slave side power supply is adjusted to uniformly control the parallel power supply load current. tCharacteristic parallel operation control method for DC power supplies.
JP57115983A 1982-07-01 1982-07-01 Parallel operation control system for dc power sources Pending JPS596728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115983A JPS596728A (en) 1982-07-01 1982-07-01 Parallel operation control system for dc power sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115983A JPS596728A (en) 1982-07-01 1982-07-01 Parallel operation control system for dc power sources

Publications (1)

Publication Number Publication Date
JPS596728A true JPS596728A (en) 1984-01-13

Family

ID=14675966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115983A Pending JPS596728A (en) 1982-07-01 1982-07-01 Parallel operation control system for dc power sources

Country Status (1)

Country Link
JP (1) JPS596728A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301002A (en) * 1987-05-30 1988-12-08 Tokai Rika Co Ltd Prism nonglaring mirror
JPS6440241U (en) * 1987-09-04 1989-03-10
JPH01129718A (en) * 1987-11-04 1989-05-23 Internatl Business Mach Corp <Ibm> Dc stabilized source
JP2007221958A (en) * 2006-02-20 2007-08-30 Power System:Kk Charging device for capacitor storage power supply
JP2007259648A (en) * 2006-03-24 2007-10-04 Power System:Kk Charger for capacitor storage power supply
JP2020058161A (en) * 2018-10-03 2020-04-09 株式会社日立パワーソリューションズ Power demand-supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301002A (en) * 1987-05-30 1988-12-08 Tokai Rika Co Ltd Prism nonglaring mirror
JPS6440241U (en) * 1987-09-04 1989-03-10
JPH01129718A (en) * 1987-11-04 1989-05-23 Internatl Business Mach Corp <Ibm> Dc stabilized source
JP2007221958A (en) * 2006-02-20 2007-08-30 Power System:Kk Charging device for capacitor storage power supply
JP2007259648A (en) * 2006-03-24 2007-10-04 Power System:Kk Charger for capacitor storage power supply
JP2020058161A (en) * 2018-10-03 2020-04-09 株式会社日立パワーソリューションズ Power demand-supply system

Similar Documents

Publication Publication Date Title
US7000122B2 (en) Managing system and synchronization method for a plurality of VRM-type modules
US4074182A (en) Power supply system with parallel regulators and keep-alive circuitry
US4356403A (en) Masterless power supply arrangement
US4675770A (en) Multiple voltage regulator integrated circuit having control circuits for selectively disabling a voltage regulator in an over-current condition
EP1705787A1 (en) Current balancing circuit
GB2056199A (en) Controlling power supplies connected in parallel
US6236582B1 (en) Load share controller for balancing current between multiple supply modules
JPS596728A (en) Parallel operation control system for dc power sources
US7746613B1 (en) Method and apparatus for providing an adaptive current limiter
CN216052961U (en) Power-down time sequence control circuit
JPH01209924A (en) Dc power supply
EP0638857B1 (en) Circuit for use with a feedback arrangement
CN217930607U (en) Over-temperature detection circuit and switching power supply
JPS5989537A (en) Control system for inverter
JP2857442B2 (en) Power supply low voltage detector
JP2846679B2 (en) Parallel redundant operation of power supply units
CN113867461B (en) Power consumption control system and security system
JPH0659786A (en) Power unit
JPH0145223Y2 (en)
KR100300812B1 (en) High voltage detecting circuit in ups
JPS63283463A (en) Power source device equipped with temperature protecting circuit
SU905930A1 (en) Device for monitoring network voltage
JPH06105464A (en) Parallel d.c. power supply circuit
SU756388A1 (en) Stabilized power supply source
JPS62216015A (en) Overcurrent protecting circuit for dc stabilized power supply circuit