JPS5966983A - Welding method of titanium plate - Google Patents

Welding method of titanium plate

Info

Publication number
JPS5966983A
JPS5966983A JP17756682A JP17756682A JPS5966983A JP S5966983 A JPS5966983 A JP S5966983A JP 17756682 A JP17756682 A JP 17756682A JP 17756682 A JP17756682 A JP 17756682A JP S5966983 A JPS5966983 A JP S5966983A
Authority
JP
Japan
Prior art keywords
welding
titanium
heating
titanium plate
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17756682A
Other languages
Japanese (ja)
Inventor
Tatsuaki Noda
野田 辰明
Shinichi Nishijima
西島 信一
Kihachiro Azuma
東 喜八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP17756682A priority Critical patent/JPS5966983A/en
Publication of JPS5966983A publication Critical patent/JPS5966983A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To form a weld zone which generates no arrowhead-like ripple pattern nor blow-hole by heating the circumference of both edges to be joined of a titanium plate immediately before welding, and simultaneously, blowing inert gas, and thereafter, executing TIG welding. CONSTITUTION:A titanium plate 6 to be welded by TIG welding is moved in the direction as indicated with an arrow A, a heating fusion zone 11 is generated by heating the circumference of both edges to be joined of the titanium plate 6 immediately before welding, by a heating tungsten electrode 9, and simultaneously, inert gas 10 is blown by a circular slit-like nozzle 12 from the circumference of the electrode 9, and thereafter, TIG welding is executed in an inert gas atmosphere by a welding tungsten electrode 8, by which a weld zone 7 having no welding tungsten defect can be formed. In this respect, it is desirable that the edge of the titanium plate 6 at the time of said heating is separated by 0.3-3mm.. Also, said method displays its effect especially when a thin titanium pipe is manufactured by bending a titanium plate, shifting continuously both its opposed edges, and executing TIG welding.

Description

【発明の詳細な説明】 本発明は、チタン板のTIG溶接、特に薄板の高速TI
G溶接に際して従来時として見られた鐵(やじり)状の
波打模様やブルーホールのような溶接欠陥を著しく軽減
ないし解消するチタン板TIG溶接方法に関する。尚、
本明細書においてチタンと云う時、チタンにマンガン、
クロム、アルミニウム、バナジウム、鉄その他の一棟以
上の添加元素を加えた工業用チタン合金全般をも包括す
るものとする。また、チタン板の溶接とは、チタン薄板
、板、ブロック、棒材等同志の接合および板を筒状に屈
曲して縁部を溶接することによる管の製造を含むもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to TIG welding of titanium plates, especially high-speed TI welding of thin plates.
This invention relates to a titanium plate TIG welding method that significantly reduces or eliminates welding defects such as iron-like wavy patterns and blue holes that are conventionally seen during G welding. still,
When referring to titanium in this specification, titanium includes manganese,
It also covers all industrial titanium alloys with one or more additive elements such as chromium, aluminum, vanadium, iron, etc. Further, welding of titanium plates includes joining together titanium thin plates, plates, blocks, bars, etc., and manufacturing pipes by bending the plates into a cylindrical shape and welding the edges.

チタンは、航空機体、ジェットエンジンやガスタービン
、化学工業設備、原子炉設備、軟−容器へのライニング
等の広く様々の分野で使用されているが、空気中で60
0 T;以上に加熱されると酸化および窒化されて硬く
もろくなるので、その溶接は仲々困難である。現在、T
IG溶接やMIG溶接のようなイナートガスアーク溶接
が実用的な方法と′して採用され、特にTIG溶接が主
として行われている。
Titanium is used in a wide variety of fields, including aircraft bodies, jet engines and gas turbines, chemical industry equipment, nuclear reactor equipment, and linings for soft containers.
When heated above 0 T, the material becomes oxidized and nitrided, becoming hard and brittle, making it difficult to weld. Currently, T
Inert gas arc welding, such as IG welding and MIG welding, has been adopted as a practical method, and TIG welding is mainly used.

TIG溶接法は、周知のように、イナートガスタングス
テンアーク溶接のことであり、不活性ガス雰囲気中でタ
ングステン電極棒を用いて溶接を行う。溶加材のロッド
をアークで融かしつつ溶接する。ただし、薄板にはロッ
ドを用いないでアーク熱のみで溶接する。このタングス
テン電極棒はほとんど消耗しないので非消耗式イナート
ガスアーク溶接とも言われている。
As is well known, TIG welding is inert gas tungsten arc welding, and welding is performed using a tungsten electrode rod in an inert gas atmosphere. Weld the filler metal rod while melting it with an arc. However, thin plates are welded only by arc heat without using a rod. Since this tungsten electrode rod hardly wears out, it is also called non-consumable inert gas arc welding.

TIG溶接では交流あるいは直fAc、が用いられ、そ
の極性は溶接結果に大きい影響を及ぼす。チタンのTI
GM接の場合母材の溶は込み深さからみて′11℃極を
負極としそして母材を+E極とする所謂直1’+tr、
 、E極性がもつとも好結果を与える。
TIG welding uses alternating current or direct fAc, and its polarity has a large effect on the welding result. Titanium TI
In the case of GM welding, the so-called straight 1'+tr, where the '11°C electrode is the negative electrode and the base metal is the +E electrode, considering the weld penetration depth of the base metal.
, E polarity also gives good results.

このように、チタン板の溶接は直流正極性TIG溶接に
よって広〈実施されているが、特に薄板を高速で溶接す
る場合、第1図に示すように、チタン板1の溶接部3に
おいて母材の進行方向A(ここでは母材を移動)に向う
鎌(やじり)状の波釘模様4が発生する事態がときおり
発生し、またX線透過写真による非破壊検査を行うとブ
ローホールが存在することがあった。この原因としては
、何らかの理由による溶接アークの瞬間的断続が生じ、
そのため溶着部の乱れが生じるものと推測されている。
In this way, welding of titanium plates is widely carried out by DC positive polarity TIG welding, but especially when welding thin plates at high speed, as shown in Fig. Occasionally, a sickle-shaped wave peg pattern 4 occurs in the direction of movement A (in this case, the base material is moved), and non-destructive inspection using X-ray photography reveals the presence of blowholes. Something happened. The cause of this is the momentary interruption of the welding arc for some reason,
It is presumed that this causes disturbances in the welded area.

このような鎌(やじり)状の波釘模様4が浅い場合には
、強度や耐食性の面でさほど大きな問題が生じないが、
この波釘模様が強く現出して波打の高低が@著になると
、鎌(やじり)の板木両側にへこみ5が生じるようにな
る。このような場合には、その個所から割れが発生し、
また同時にブローホールが内部に存在すると極めて劣悪
な溶接継手となる。チタンは、優れた耐食性、耐熱性お
よび強度を本来具備するが故に、環境の厳しいところで
使用することが多いのであるが、上記のような欠陥があ
ると商品価値を著しく下げ、また状況によっては使用不
可となった。
If such a sickle-shaped wave nail pattern 4 is shallow, there will not be much problem in terms of strength and corrosion resistance, but
When this wavy nail pattern appears strongly and the height of the wavy becomes @ marked, dents 5 will appear on both sides of the wood of the sickle. In such a case, cracks will occur at that location,
At the same time, if a blowhole exists inside, the welded joint will be extremely poor. Titanium is often used in harsh environments because it inherently has excellent corrosion resistance, heat resistance, and strength, but defects such as those mentioned above can significantly reduce product value and, depending on the situation, make it impossible to use titanium. It became impossible.

このような欠陥発生傾向は、溶加材を使用せずチタン薄
板を高速溶接する場合に多いが、厚板の場合にもまれに
見られることがある。
Such a tendency for defects to occur is often seen when thin titanium plates are welded at high speed without using filler metal, but it can rarely be seen in the case of thick plates as well.

この点に鴎み、本発明は、鎮状の波打ち模様の消失した
、極めて滑らかな溶接部外観を与えまたブローホールの
つtj生がなくなる溶接部を生成するチタン板TIG溶
接法を提供することを目的とするものである。
In view of this point, the present invention provides a titanium plate TIG welding method that produces a welded part that has an extremely smooth appearance without the wavy pattern and is free from blowholes. The purpose is to

本発明者は広範な試行の結果、溶接直前のチタン板の接
合すべき両エツジ周辺をタングステン電極により加熱す
ると同時にそこにイナートガスの吹付けを行い、然かろ
紙TIG溶接を行ってやれば上記問題は解決しうろこと
を見出した。この因果関係につい°Cは、定かではない
が一つの推論としては、加熱用タングステン電極による
加熱によってチタン板エツジの尖鋭部は溶融して丸みを
帯び同時にその表1rijに残存している微少な付着物
やパリあるいはこれらに吸着している水分、油脂等がイ
ナートガスにより吹飛ぶことに関係するのではないかと
考えている。
As a result of extensive trials, the present inventor found that the above-mentioned problem could be solved by heating the area around both edges of the titanium plate to be joined immediately before welding using a tungsten electrode, and at the same time spraying inert gas there. I found a solution. Although this causal relationship is not certain, one inference is that heating with a tungsten heating electrode melts the sharp edges of the titanium plate and makes them rounded, while at the same time causing the slight adhesion that remains in Table 1rij. We believe that this may be related to the fact that the kimono, paris, or moisture, oil, etc. adsorbed on these items are blown away by the inert gas.

斯くして、本発明は、TIG溶接によりチタン板を溶接
するに際し、溶接直前のチタン板の接合すべき両エツジ
周辺を加熱すると同時にイナートガスの吹付けを行い、
然かる後TIG溶接を行うことを特徴とするチタン板の
溶接方法を提供する。
Thus, the present invention, when welding titanium plates by TIG welding, heats the periphery of both edges of the titanium plate to be joined immediately before welding, and at the same time sprays inert gas.
A titanium plate welding method is provided, which is characterized in that TIG welding is then performed.

加熱時の両エツジ間隔は0.3〜3 mm離間させた状
態にあることが好ましい。本方法は、チタン板を屈曲し
て連続的に移行しつつその対向縁を溶接することにより
薄肉チタン管をHpH潰する高速TIG溶接に特に効果
を発揮する。本発明により、ブローホールの発生がなく
なり、また装状の波釘模様が消失して、極めて滑らかな
チタン板溶接継手が得られる。
The distance between both edges during heating is preferably 0.3 to 3 mm. This method is particularly effective in high-speed TIG welding in which the HpH of a thin-walled titanium tube is crushed by bending a titanium plate and welding the opposite edges while continuously moving the titanium plate. According to the present invention, the occurrence of blowholes is eliminated, the corrugated peg pattern on the sheathing is eliminated, and an extremely smooth titanium plate welded joint can be obtained.

本発明においては、第2図に示すように、例えばA方向
に移動するチタン板乙の上方部に溶接用タングステン電
極8とそのやや前方に加熱用型1極9を配置する。逆に
チタン板6を固定して両電極9を移動してもよい。また
、ここではチタン板6は極薄板のものとし、溶加材ロッ
ドは使用していない。溶接部周辺は箱型のシールドボッ
クスでおおい、このシールドボックス内にアルゴンある
いはヘリウム等の高純度イナートガスが連続的に供給さ
れる。チタンが高温で空気と接触して酸化、背比等を起
すのを防止するため、イナートガスで溶jd部をシール
ドすることが肝要である。継手の裏面は裏当および(あ
るいは)補助シールドガスを使用して空気との接触を防
止することが好ましイ1.ここでタングステン【IL極
はトリウム入りのものも含めるものとする。
In the present invention, as shown in FIG. 2, a welding tungsten electrode 8 and a heating mold 1 pole 9 are arranged above the titanium plate B moving in the A direction, for example, and a heating mold 1 pole 9 slightly in front of the welding tungsten electrode 8. Conversely, the titanium plate 6 may be fixed and both electrodes 9 may be moved. Further, here, the titanium plate 6 is an extremely thin plate, and no filler rod is used. The welding area is surrounded by a box-shaped shield box, into which high-purity inert gas such as argon or helium is continuously supplied. In order to prevent titanium from coming into contact with air at high temperatures and causing oxidation, backlash, etc., it is important to shield the molten JD part with inert gas. It is preferable to use a backing and/or an auxiliary shielding gas to prevent the back side of the joint from coming into contact with air.1. Here, tungsten [IL poles include those containing thorium.

加熱用タングステン電極の周囲には、吊3図に示すよう
に、円彫のスリット状ノズIv12を設けて加熱用タン
グステン電極9の周囲よりチタン板乙のエツジに向はイ
ナートガス10を噴射する。
As shown in Figure 3, a circular slit nozzle Iv12 is provided around the heating tungsten electrode 9 to inject inert gas 10 from around the heating tungsten electrode 9 toward the edge of the titanium plate A.

チタン板6の裏側に吸引箱を設けて、シールドボックス
内のイナートガスをエツジ間隙を通して連続的に吸引す
る(R成も可能である。加熱時のチタン板6のエツジは
、唄)3図に示すように0.3〜377’1171 、
好まし、くけ0.5〜1.5 mmの間隔を置いて対面
ざセるのが好ましく、加熱用タングステン電極9により
上端角隅の一部は溶融油11が形成される程度に加g′
、される。溶融池は、垂れ落ちが生ずる稈に忙(1度に
加熱されてはならない。チタン板の融点(工業用純チタ
ンの融点1680℃)を越えて1800℃位まで、好ま
しくは1700℃程度に加熱するのが良い。同時に、溶
融池は前述したようにイナートガス流れ10と接触して
いる。
A suction box is provided on the back side of the titanium plate 6, and the inert gas in the shield box is continuously sucked through the edge gap (R formation is also possible.The edges of the titanium plate 6 during heating are shown in Figure 3). 0.3~377'1171,
Preferably, the grooves face each other with an interval of 0.5 to 1.5 mm, and a part of the upper corner is heated by the heating tungsten electrode 9 to the extent that molten oil 11 is formed.
, will be done. The molten pool should not be heated all at once, which causes dripping.Heat it to about 1800°C, preferably about 1700°C, exceeding the melting point of the titanium plate (the melting point of industrially pure titanium, 1680°C). At the same time, the molten pool is in contact with the inert gas stream 10 as described above.

こうして加熱用’1(049により加熱されそしてイナ
ートガス流れで洗われたチタン板6は、その直後溶接用
タングステン電極8により溶接され、後に溶接部7が形
成される。
The titanium plate 6 thus heated by heating '1 (049) and washed by the inert gas flow is immediately welded by a welding tungsten electrode 8, and a welded part 7 is later formed.

先に触れたように、加熱用タングステン電極9による加
熱に際してチタン板のエツジの間隔を0.6〜yy 、
mmあけるようにするのが好ましい。これにより、アー
クの発生による溶融池の形成およびイナートガスの吹付
けに際して、イナートガスはエツジ間隔を通して裏側に
而出し、その除エツジ周辺の付着物がエツジの下方に有
効に吹飛ばされ、接合すべき面がきわめて効果的に清浄
化される。0.3 mmより狭いと、この吹飛ばし効果
がなくなり清浄化が適切に行われず、他方3 mmを越
えるとアークの発生が安定しない。しかし、この清浄化
作用は、イナートガス流れを加熱部に吹付りるだけでも
また溶接用タングステン電極8と反対向きの水平流れ成
分を持つようイナートガスを次相けることによっても充
分に得られる。
As mentioned earlier, when heating with the heating tungsten electrode 9, the edge spacing of the titanium plate is set to 0.6 to yy,
It is preferable to leave a gap of mm. As a result, when a molten pool is formed by arc generation and inert gas is sprayed, the inert gas is ejected to the back side through the edge spacing, and deposits around the removed edges are effectively blown away below the edges, and the surfaces to be joined are is cleaned very effectively. If it is narrower than 0.3 mm, this blowing effect will be lost and cleaning will not be performed properly, while if it exceeds 3 mm, arc generation will not be stable. However, this cleaning effect can be sufficiently obtained by simply spraying the inert gas flow onto the heating section, or by directing the inert gas so that it has a horizontal flow component opposite to the welding tungsten electrode 8.

チタン薄板を溶加材無しに溶接する場合には、溶接時に
は両エツジを当接せしめねばならないので、加熱時にエ
ツジ間に間隙を持たせた場合には溶接時に至るまで間隙
を零にするようチタン板エツジを互いに近づけて変位せ
ねばならない。これは、通律の平板同志の溶接の場合、
少くとも一方の板を内方に少しづつ移動することにより
達成しうる。チタン条をベンディングロールにより漸時
屈曲しつつ円管を生成する場合には、間隙が次第に狭っ
ていくので本方法は特に好適に適用しうる。
When welding thin titanium plates without filler metal, both edges must be brought into contact during welding, so if a gap is left between the edges during heating, the titanium plate must be welded so that the gap is zero until welding. The plate edges must be displaced closer together. This is the standard welding between flat plates.
This can be achieved by moving at least one plate inward in small increments. This method is particularly suitable for forming a circular tube by gradually bending a titanium strip using bending rolls, since the gap gradually narrows.

厚板を間隔を置いて対面し、溶加材ロンドを使用する溶
接法においては、エツジ間に間隙が存するので本発明の
実施に何ら支障はない。もちろん、+111述したよう
に、エツジ間に間隙が存しない場合でもイナートガスを
加熱部に吹付けることによりあるいはその流れ方向を工
夫することにより充分の清浄化効果が得られるので、始
めからチタン板を当接したままの状態で実施することに
全く障害はない。
In a welding method in which thick plates face each other at intervals and filler metal ronds are used, there is no problem in implementing the present invention since there are gaps between the edges. Of course, as mentioned in +111, even if there is no gap between the edges, a sufficient cleaning effect can be obtained by spraying inert gas onto the heating section or by adjusting the flow direction, so the titanium plate should be used from the beginning. There is no problem at all with carrying out the test while they are still in contact with each other.

加熱用電極と溶接用電極との間1バは、電極または母材
の移動速度、板厚、開先状況、溶接施行等に依存するの
で、−6的に定められないが、溶融池が左程に冷えない
程度に且つ加熱用電極およびイナートガス噴射の影響が
溶接用′電極に及ばない程度に適宜調節する必要がある
。加熱用タングステン電極と溶接用タングステン電極へ
の供給電流比も上記のような様々の因子に依存するが、
一般に前者を後者の30〜70%程度とすればよい。
The distance between the heating electrode and the welding electrode depends on the moving speed of the electrode or the base metal, the plate thickness, the groove condition, the welding process, etc., so it cannot be determined based on −6, but the distance between the molten pool and the welding electrode is It is necessary to appropriately adjust the temperature so that the heating electrode and the inert gas injection do not affect the welding electrode. The ratio of current supplied to the heating tungsten electrode and welding tungsten electrode also depends on various factors such as those mentioned above.
Generally, the former should be about 30 to 70% of the latter.

゛  タングステン電極による加熱のための消費電力は
TIG溶接の消費嘗、力の /66度であり、またこの
加熱によりTIG溶接自体の消費電力は少くてすむので
、従来行っていたTIG溶接単独の場合に比較して、わ
ずかに消lta力が増加するのみである。
゛ The power consumption for heating with a tungsten electrode is /66 degrees of the power consumption of TIG welding, and this heating reduces the power consumption of TIG welding itself, so when conventionally performed TIG welding alone There is only a slight increase in the erasing power compared to .

例示目的でチタン薄板に対する本発明溶接方法条件を示
すと次の通りである: チタン板厚:0,5〜1.5 mm 溶接スピー ド=6〜i o tn、/分加熱用電極供
給電流=60〜150A 溶接      ;120〜350A 両1+:1極間VI・A : 60〜200 mmエツ
ジ間隔=0.3〜3 mm 加熱用電極周囲イナートガス流t4xo〜601/分最
初に述べたように、本発明により溶接欠陥間h:11が
解決されるのは、タングステン電極によるエツジ隅角部
の局所11′J加熱溶融化とイナートガスのそこへの吹
付けにより、エツジの先端鋭尖部は丸みを帯びまたパリ
等の微小突起が消失すると同時に、表1jjiにある微
小な付着物あるいはぞこに吸着している水分、油脂等が
吹飛される結果として、溶接の際汚れのないきわめて清
浄な且つきわめて7けらかな被接合面が得られるので、
これまでこれらが原因となって起っていた溶接dt極と
母材間のアークの瞬間的な断続が押えられまたアークが
安定するためと考えられる。従来、サブマージドアーク
溶接と関連して2本使用するタンデム方式はあったが、
これは溶接能率を高めるためのもので2本の1a極とも
溶接電極を使用するものであり、本発明とはその目的を
全く異にする。
For illustrative purposes, the welding method conditions of the present invention for titanium thin plates are shown as follows: Titanium plate thickness: 0.5 to 1.5 mm Welding speed = 6 to i o tn,/min Heating electrode supply current = 60 to 150A Welding; 120 to 350A Both 1+: 1 between poles VI・A: 60 to 200 mm Edge spacing = 0.3 to 3 mm Inert gas flow around heating electrode t4xo to 601/min As mentioned at the beginning, this book The reason why the welding defect distance h: 11 is solved by the invention is that the sharp tip of the edge becomes rounded by locally heating and melting the edge corner 11'J with a tungsten electrode and by spraying inert gas there. In addition, at the same time that minute protrusions such as particles disappear, the minute deposits shown in Table 1jji, as well as the moisture, oil, etc. adsorbed on the surface, are blown away, resulting in an extremely clean and extremely clean welding surface with no contamination. 7 A bright surface to be joined can be obtained, so
It is thought that this is because the momentary interruption of the arc between the welding dt pole and the base metal, which had previously occurred due to these factors, is suppressed and the arc is stabilized. Previously, there was a tandem method using two welding rods in connection with submerged arc welding, but
This is to increase welding efficiency and uses welding electrodes for both 1a electrodes, and its purpose is completely different from that of the present invention.

以上説明した通り、本発明は、従来問題となったチタン
板TIG溶接における鋼状の波釘模様やブローホール等
の溶接欠陥をNIi単な構成でもって解消もしくは著し
く低減するものであり、苛酷な環境下で使用されるチタ
ン部相に対して高品質の浴接継手を保証する点できわめ
て有意鵜なものである。本発明はまた、ベンディングロ
ールによりチタン板を連続的に屈曲しつつ移送するチタ
ン薄板管製造のための高速TIG71(接にも効果的に
適応しうる。
As explained above, the present invention eliminates or significantly reduces welding defects such as corrugated steel patterns and blowholes in titanium plate TIG welding, which have been a problem in the past, by using a simple NIi configuration. This is extremely important in ensuring high quality bath weld joints for titanium parts used in the environment. The present invention can also be effectively applied to high-speed TIG71 (contact) for manufacturing titanium thin plate tubes, in which the titanium plate is continuously bent and transferred using bending rolls.

実施例 肉厚0.5mm 、 0.7 mtnおよび0.75 
mmのチタン条をベンディング寵−ルにより屈曲して円
管状にし、この円管状チタン材を表面清浄化した後、円
管状チタン拐を移動しながらその縁部をタングステン電
極を用いた直流正極性TIG溶接法により溶接した。溶
接部周辺は箱型のシールドボックスでお才3い、このボ
ックス内にアルコ°ンあるいはヘリウム絽−のイナート
ガスを連続的に供給し、ボックス内をイナートガス雰囲
気に保持した。
Example wall thickness: 0.5 mm, 0.7 mtn and 0.75
After bending a titanium strip of mm in diameter into a circular tube shape using a bending wheel and cleaning the surface of this circular titanium strip, the edges of the titanium strip were subjected to DC positive polarity TIG using a tungsten electrode while moving the circular titanium strip. Welded by welding method. A box-shaped shield box was placed around the welding area, and inert gas such as alcon or helium gas was continuously supplied into this box to maintain an inert gas atmosphere inside the box.

加熱用タングステン電極と溶接用タングステン↑(L枠
を溶接すべきエツジに沿って離間して配置し、ベンディ
ングロールの屈曲度の調節により、加熱111タングス
テン1(1,極の下側ではエツジ相互の間隔が03〜3
t+tmの範囲となるようにそして溶接用タングステン
官、極の下側ではエツジ相互が密着するようにした。両
電極の間隔は100〜15 Q m1nに設定した。
The heating tungsten electrode and the welding tungsten Interval is 03-3
t+tm, and the edges were in close contact with each other on the lower side of the tungsten electrode and pole. The spacing between both electrodes was set to 100 to 15 Q m1n.

溶接用タングステン電極に供給する溶接電流はチタン鉛
肉厚が0.5 ntm 、 0.7 mmおよび075
]ntnの場合にそれぞれ135A、2BOAおよび6
00Aとし、他方加熱用タングステン電極にはそれぞれ
80A、100Aおよび110Aの加熱用′屯流を供給
した。
The welding current supplied to the tungsten electrode for welding is applied when the titanium lead wall thickness is 0.5 ntm, 0.7 mm and 075 ntm.
] 135A, 2BOA and 6 for ntn respectively
00A, and heating currents of 80A, 100A, and 110A were supplied to the other heating tungsten electrodes, respectively.

また、加熱用タングステン電極の周囲に円形のスリット
状ノズルを設け、アルゴンガスを10〜301/分の流
量でノズル口がら流出させた。トーチのノズルを出るガ
スτ)1シ辻は2〜3?n/秒となった。
Further, a circular slit-shaped nozzle was provided around the heating tungsten electrode, and argon gas was flowed out through the nozzle opening at a flow rate of 10 to 301/min. The gas τ) leaving the torch nozzle is 2 to 3? n/second.

以上の条件において4〜131+1/分の溶接速度で溶
接を施行したところ、鎖状の波釘模様の発生は皆無とな
り、滑らかな溶接継手が得られた。X線透過法によりブ
ローホールの存在を調べたが、ブローホールは実質上見
出されなかった。
When welding was carried out under the above conditions at a welding speed of 4 to 131+1/min, a smooth welded joint was obtained with no chain-like wave peg pattern. The presence of blowholes was investigated by X-ray transmission, but virtually no blowholes were found.

【図面の簡単な説明】[Brief explanation of drawings]

>g 1図は従来のTIG溶接において発生する欠陥の
説明図、第2図は本発明の方法を示す斜視図、絹3図は
本発明の加熱部の部分断面図である。 1.6;チタン板 2.8:浴接用タングステン知1極 6.7:溶接部 4:録(やじり)状波打模様 5:へこみ部 9:加熱用タングステン電極 10:イナートガス流 11:加熱溶融部 12:ノズル A:母材の移動方向 第1図 第3 正 L−〜に 7−−−−−− −[1 445− 12 9 0
>g Figure 1 is an explanatory diagram of defects that occur in conventional TIG welding, Figure 2 is a perspective view showing the method of the present invention, and Figure 3 is a partial sectional view of the heating section of the present invention. 1.6; Titanium plate 2.8: Tungsten tip 1 pole for bath contact 6.7: Welded part 4: Curved wavy pattern 5: Recessed part 9: Tungsten electrode for heating 10: Inert gas flow 11: Heating Melting part 12: Nozzle A: Movement direction of base material Fig. 1 Fig. 3 Positive L-~7 - [1 445- 12 9 0

Claims (1)

【特許請求の範囲】 1)TIG溶接によりチタン板を溶接するに際し、溶接
直前のチタン板の接合すべき両エツジ周辺を加熱すると
同時にイナートガスの吹付けを行い、然かる後1” T
 G溶接を行うことを特徴とするチタン板の溶接方法。 2)TIG溶接によりチタン板を溶接するに際し1溶接
直前のチタン板の接合すべき両エツジ相互を0.3〜3
 m7n離間さぜた状態で該両エツジ周辺をタングステ
ン電極により加熱すると同時にイナートガスの吹付けを
?1い、然かる後’r I G溶接を行うことを特徴と
するチタン板の溶接方法。 3) チタン管を製造するためチタン板を屈曲して両エ
ツジを溶接する特許請求の範囲第1項或は咥tt 2項
記載の溶接方法。
[Claims] 1) When welding titanium plates by TIG welding, the area around both edges of the titanium plate to be joined immediately before welding is heated and at the same time inert gas is sprayed, and then 1” T is applied.
A titanium plate welding method characterized by performing G welding. 2) When welding titanium plates by TIG welding, the two edges of the titanium plates to be joined immediately before welding should be 0.3 to 3
Heat the area around both edges with a tungsten electrode with a distance of m7n, and at the same time spray inert gas? 1. A method for welding titanium plates, which is characterized by subsequently performing 'r IG welding. 3) The welding method according to claim 1 or claim 2, in which a titanium plate is bent and both edges are welded to manufacture a titanium tube.
JP17756682A 1982-10-12 1982-10-12 Welding method of titanium plate Pending JPS5966983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17756682A JPS5966983A (en) 1982-10-12 1982-10-12 Welding method of titanium plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17756682A JPS5966983A (en) 1982-10-12 1982-10-12 Welding method of titanium plate

Publications (1)

Publication Number Publication Date
JPS5966983A true JPS5966983A (en) 1984-04-16

Family

ID=16033201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17756682A Pending JPS5966983A (en) 1982-10-12 1982-10-12 Welding method of titanium plate

Country Status (1)

Country Link
JP (1) JPS5966983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310248A (en) * 2011-07-01 2012-01-11 云南钛业股份有限公司 Welding method of titanium plate in operation process link

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323846A (en) * 1976-08-17 1978-03-04 Matsushita Electric Ind Co Ltd Tig welding
JPS5768292A (en) * 1980-10-14 1982-04-26 Kobe Steel Ltd Production of titanium of its alloy pipe
JPS5788972A (en) * 1980-11-21 1982-06-03 Hitachi Ltd Two electrode arc welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323846A (en) * 1976-08-17 1978-03-04 Matsushita Electric Ind Co Ltd Tig welding
JPS5768292A (en) * 1980-10-14 1982-04-26 Kobe Steel Ltd Production of titanium of its alloy pipe
JPS5788972A (en) * 1980-11-21 1982-06-03 Hitachi Ltd Two electrode arc welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310248A (en) * 2011-07-01 2012-01-11 云南钛业股份有限公司 Welding method of titanium plate in operation process link

Similar Documents

Publication Publication Date Title
US4721837A (en) Cored tubular electrode and method for the electric-arc cutting of metals
JPS6317554B2 (en)
KR100241193B1 (en) Method of applying erosion resistant surfaces to steam turbine components
US4037078A (en) Process for welding aluminum and aluminum alloys in horizontal welding position
US4684411A (en) Method for finishing steel shapes with magnetite and product obtained therefrom
JPS5966983A (en) Welding method of titanium plate
CN113927193A (en) Novel combined large-penetration welding method for thick plate copper alloy
RU2505385C1 (en) Method of argon arc welding by nonconsumable electrode
RU2688350C1 (en) Method of hybrid laser-arc welding with steel clad pipes deposition
JPH0252586B2 (en)
JPH0994658A (en) One side butt welding method
JPH08281429A (en) Method for fillet-welding stainless steel and manufacture of stainless steel shapes
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JPS62286675A (en) Multi electrode gas shield arc welding method for strip steel
JPS598866Y2 (en) ERW steel pipe manufacturing equipment
JPS6015068A (en) Arc welding method
JPH0292464A (en) Gas shielded arc high speed welding method
JPH03234368A (en) Root running method for narrow groove welding
Hadzihafizovic A-TIG welding
JPH0557072B2 (en)
JPH0724935B2 (en) Horizontal pulse arc welding method
JPS5496446A (en) Welding method for welded steel pipe of high toughness
CN116060762A (en) Copper-nickel alloy and stainless steel laser welding device and process
JPS61186173A (en) Butt welding method
JPH0635067B2 (en) Welding method for high alloy clad steel pipe