JPS5966059A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS5966059A
JPS5966059A JP57177246A JP17724682A JPS5966059A JP S5966059 A JPS5966059 A JP S5966059A JP 57177246 A JP57177246 A JP 57177246A JP 17724682 A JP17724682 A JP 17724682A JP S5966059 A JPS5966059 A JP S5966059A
Authority
JP
Japan
Prior art keywords
electrode
charging
positive
secondary battery
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57177246A
Other languages
Japanese (ja)
Inventor
Yoshinori Toyoguchi
豊口 「よし」徳
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57177246A priority Critical patent/JPS5966059A/en
Publication of JPS5966059A publication Critical patent/JPS5966059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a secondary battery with improved charging/discharging characteristics by utilizing as positive or negative terminal, polymer substance having the pherocene functional group in the principal chain. CONSTITUTION:A secondary battery where a polymer substance having the pherocene functional group in the principal chain is used for the positive or negative pole, while a solution dissolving a solvent having the negative ion and positive ion which are absorbed or released in/from this polymer substance by charging/discharging process is used for the electrolyte. For example, a positive pole material obtained by molding under pressure the powder of such polymer substance is bonded to a collector of titanium plate by means of carbon paint etc., thus, an electrode can be formed. When such electrode made of polymer material is used for the one or both of the positive and negative poles, the charging/discharging characteristics of a secondary battery can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高分子・物質を電極拐料に用いた二次型〆1
uに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to a secondary molding method using a polymer/substance as an electrode coating material.
This is related to u.

従逮例の構成とその問題点 最近、高分子・重合体にある種の物質をドープすると電
気伝導性が向上し、ついにU:金属電導を示すようなも
のが知られており、このような高分子物質に1合成金属
と呼ばれている。その代表例としてポリアセチレンやポ
リフェニレンがある。
Structure of conventional examples and their problems Recently, it has been known that doping polymers with certain substances improves their electrical conductivity, and finally there are some that exhibit U: metal conductivity. Polymer substances are called synthetic metals. Representative examples include polyacetylene and polyphenylene.

これらは、高分子主鎖の炭素原子のπ電子が共役二重結
合により主鎖の間で非局在化しており、ある種の物質を
ドープすることにより高導電率を示すようになる。
In these materials, the π electrons of carbon atoms in the main chain of the polymer are delocalized between the main chains due to conjugated double bonds, and when doped with a certain substance, they exhibit high electrical conductivity.

この種の高分子物質を電極材料に用いた新しいタイプの
二次電池が、例えは特開昭56−136469号公報に
記載されている。高分子物質を正極に用いた場合の充電
放電反応は、高分子物質の電解液中の陰イオンの取り込
み(ドープ)による充電反応と、陰イオンの放出(アン
ドープ)による放電反応であり、負極に用いた’IA合
は陽イオンの取り込みによる充電反応と陽イオンの放出
による放電反応である。
A new type of secondary battery using this type of polymer material as an electrode material is described, for example, in Japanese Patent Application Laid-Open No. 136469/1983. The charge/discharge reaction when a polymeric material is used as the positive electrode is a charging reaction due to the uptake of anions in the electrolyte of the polymeric material (doping), and a discharging reaction due to the release of anions (undoping). The 'IA combination used is a charging reaction due to the uptake of cations and a discharging reaction due to the release of cations.

高分子物質としてポリアセチレン(CH)n、電解液と
して過塩素酸リチウムを例えはプロピレンカーボネート
に溶解した溶液を用いた」賜金の充放電反応をり、下に
示す。
The charge-discharge reaction using polyacetylene (CH)n as the polymer material and a solution of lithium perchlorate dissolved in propylene carbonate as the electrolyte is shown below.

正極 (CH)、、n 4− n x (CQ O4)放′亀 負極 (CH)  +nxe (〜nxLi″このように高分
子物質は、正極又は負極として機能するので、他の負極
又は正極と組み合わせることは勿論、高分子物質同志の
組み合わせでも二次電メ山を構成することができる。
Positive electrode (CH),, n 4- n Of course, a secondary electric mound can also be constructed by a combination of polymeric substances.

この種の篩分)物質としては、上記の曲、ポリ硫化フェ
ニレン、ポリピロールあるいは水素原子の若干がハロゲ
ン原子、アルキル基、フェニル基。
This type of sieving material includes the above-mentioned material, polyphenylene sulfide, polypyrrole, or some of the hydrogen atoms are halogen atoms, alkyl groups, and phenyl groups.

アルキルフェニル基、ハロフェニル基などで置換された
ポリアセチレンなどが知られている。
Polyacetylenes substituted with alkylphenyl groups, halophenyl groups, etc. are known.

一方、高分子物質を負極として用いる場合、こ11と組
み合わせる電解液としてd:、過塩素酸リチウム(L 
i CuO2)、硼フッ化’J f ”) L (L 
IBF4)、六フッ化リン酸リチウム(L iP Fe
 )などのリチウム塩を溶質とし、プロピレンカーボネ
ートやテトラヒドロフランを溶媒とした有機電解液が知
られている。
On the other hand, when a polymer material is used as the negative electrode, the electrolyte to be combined with this 11 is d:, lithium perchlorate (L
i CuO2), borofluoride 'J f '') L (L
IBF4), lithium hexafluorophosphate (L iP Fe
Organic electrolytes are known that use lithium salts such as ) as solutes and propylene carbonate or tetrahydrofuran as solvents.

しかし、上記に示した高分子物質を電極に用いた場合に
は、高率充放電が困與1tであるという欠点があった。
However, when the above-mentioned polymeric substances were used for electrodes, there was a drawback that high rate charging and discharging was difficult at 1 ton.

発明の1」的 本発明の目的は、高率充放電が可能な高分子物質電極を
提供することである。
An object of the present invention is to provide a polymer material electrode that is capable of high rate charging and discharging.

発明の構成 本発明は、主鎖にフェロセン官能基を有する高分子物質
を正極または負極とし、電解液には充放電により、高分
子物質中に取り込まれたり放出されたりする陰イオンや
陽イオンを有する溶質を溶解したものを用いることを特
徴としている。
Structure of the Invention The present invention uses a polymer material having a ferrocene functional group in its main chain as a positive electrode or a negative electrode, and an electrolyte containing anions and cations that are incorporated into or released from the polymer material during charging and discharging. It is characterized by using a dissolved solute.

本発明の高分子物質は、電極反応に関与するのはフェロ
セン官能基であり、この官能基の結合する基トシてはエ
ステル基、アミド基、アルキル基(1)式の篩分−rは
、フェロセン官能基を主鎖に持つポリニスデルであり、
01)式の高分子はポリアミドである。以[:″の実施
例において、それぞれ篩分J’(1) 、高分子(11
)と記す。
In the polymeric substance of the present invention, the ferrocene functional group is involved in the electrode reaction, and the groups to which this functional group is bonded include ester groups, amide groups, and alkyl groups. It is a polynisdel with a ferrocene functional group in its main chain,
The polymer of formula 01) is polyamide. In the examples below [:'', the sieve fraction J' (1) and the polymer (11
).

実施例の説明 一°0次電lルの+E 4函として実施例を以下に示す
DESCRIPTION OF THE EMBODIMENTS An example is shown below as a +E 4 box of 1° zero-order electric current.

実施例1 電解液に1モル/a の過塩素酸リチウムを溶解させた
プロピレンカーボネートを用いた。対極すなわち負極上
して、大きさ20n ×2 Cm、厚さ1 mmのリチ
ウム板、また照合電極としてリチウト板を用いた。正極
拐料には、比較例としてのポリアセチレン及び1)II
記の高分子(1) 、 (II)を用いた。ポリアセチ
レンは大きさ2 cnIX 2 cm 、重器tsom
gのフィルムを用い、高分子m 、 (n)は4.それ
ぞれ粉末50m5を大きさ2 cm X 2 ctnの
シート状に圧縮成形したものを用いた。これらのiE電
極=A料1を、第1図に示すようにカーボン塗料2を用
いて集電体であるチタン板3に接着して電極を構成した
Example 1 Propylene carbonate in which 1 mol/a of lithium perchlorate was dissolved in an electrolytic solution was used. A lithium plate having a size of 20 nm x 2 cm and a thickness of 1 mm was used as a counter electrode, that is, a negative electrode, and a lithium plate was used as a reference electrode. For the positive electrode material, polyacetylene as a comparative example and 1) II
The following polymers (1) and (II) were used. Polyacetylene size 2 cnIX 2 cm, heavy equipment tsom
Using a film of g, the polymer m, (n) is 4. Each of the powders was compression molded from 50 m5 of powder into a sheet having a size of 2 cm x 2 ctn. These iE electrode = A materials 1 were adhered to a titanium plate 3 serving as a current collector using a carbon paint 2 to form an electrode, as shown in FIG.

充放電試験は、すべて2Q℃で行った。充電は電極の電
位が照合電極に対して→4.2■になるまで、放電は+
2.0■になるまで行った。
All charge/discharge tests were conducted at 2Q°C. Charging is performed until the potential of the electrode becomes →4.2■ with respect to the reference electrode, and discharge is +
I continued until it reached 2.0 ■.

まず0.12771Aの電流で第1ザイクルの充放′4
をした後、4mAで連続的に第2ザイクル以降の充放電
をした。第2図には、第10ザイクルにおけるそれぞれ
のiE極の充電曲線、放電曲線を示す。
First, the first cycle is charged with a current of 0.12771A.
After that, the battery was continuously charged and discharged from the second cycle onward at 4 mA. FIG. 2 shows the charging curve and discharging curve of each iE electrode in the 10th cycle.

図中、Aはポリアセチレン、Bは篩分−J’(11、C
は高分子(11)である。また第1表には第10ザイク
ルにおける充電客員、放電容腓を示す。
In the figure, A is polyacetylene, B is sieve fraction -J' (11, C
is a polymer (11). Table 1 also shows the number of charging passengers and discharge capacity in the 10th cycle.

第  1   表 実施例2 実施例1と同じ構成のiE極を用い、電解液には1モル
/Qのヨウ化亜鉛(Z n I2 )水溶液を用いた。
Table 1 Example 2 An iE electrode having the same configuration as in Example 1 was used, and a 1 mol/Q zinc iodide (Z n I2 ) aqueous solution was used as the electrolyte.

対極すなわち負極には即鉛板を、照合電極には飽−0,
24,Vになるまで放電した。第1ザイクルの放電は0
.12mAで、第2サイクル以降の充放電はすべて4m
Aで行った。第2表には、第1Qサイクルにおける各正
極の充電容量、放電容置を示した。このように水溶液を
電解液とした場合にも、篩分E) 、 (n)は優れた
性能を示す。
The counter electrode, that is, the negative electrode, is a ready-to-lead plate, and the reference electrode is a saturation-0,
It was discharged until it reached 24.V. The discharge of the first cycle is 0
.. 12mA, all charging/discharging after the second cycle is 4m
I went with A. Table 2 shows the charging capacity and discharge container of each positive electrode in the first Q cycle. Even when an aqueous solution is used as the electrolyte in this way, the sieve fractions E) and (n) exhibit excellent performance.

第   2   表 実施例1,2からフェロセン官能基を主鎖に持つポリエ
ステルや、ポリアミドなどの高分子物質を正極に用いた
場合、充放電反応として有機電解液中や水溶液中の過塩
素酸イオンやヨウ素イオンなどの険イオク反り込みや放
出を行わせることができ、従来のポリアセチレンに比へ
優れた性能を示すことがわかる。
Table 2 Examples 1 and 2 show that when a polymeric material such as polyester or polyamide having a ferrocene functional group in its main chain is used as a positive electrode, perchlorate ions or It can be seen that it is capable of warping and releasing dangerous ions such as iodine ions, and exhibits superior performance compared to conventional polyacetylene.

以下に二次電池負極としての実施例を述べる。Examples as a secondary battery negative electrode will be described below.

実施例3 実施例1で示したのと同様にして第1図のような電極を
構成し負極とした。ただし、第1図で示した電極構成の
うち、2のカーボン塗料は白金塗料であり、3の集電体
としては、チタン板の代りにニッケル板を使った。対極
すなわち正極には、二硫化チタン(Tl52 )を用い
た。二硫化チタン11に導電利としてのアセチレンブラ
ック0.1p及び結着剤として四フッ化エチレン樹脂0
.1J7を加えた混合物を1トンの圧力で大きさ2 C
m X 2 Cmのシート状に圧縮成形したものである
。照合電極としては、リチウム板を用いた。電解液には
、1−eJQの六フッ化リン酸リチウムを溶解したプロ
ピレンカーボネートを用いた。充放電は全て、負極の電
位がリチウム照合電極に対して+2.OVになるまで充
電し、同じ(I−2,OVになるまで放電した。
Example 3 An electrode as shown in FIG. 1 was constructed as a negative electrode in the same manner as shown in Example 1. However, in the electrode configuration shown in FIG. 1, the carbon paint in 2 was platinum paint, and the current collector in 3 was a nickel plate instead of a titanium plate. Titanium disulfide (Tl52) was used for the counter electrode, that is, the positive electrode. Titanium disulfide 11, acetylene black 0.1p as a conductive agent and tetrafluoroethylene resin 0 as a binder
.. The mixture containing 1J7 and the size 2C at a pressure of 1 ton
It is compression molded into a sheet shape of m x 2 cm. A lithium plate was used as a reference electrode. Propylene carbonate in which 1-eJQ lithium hexafluorophosphate was dissolved was used as the electrolyte. In all charging and discharging, the potential of the negative electrode was +2. Charged until it reached OV and discharged until it reached the same (I-2, OV).

第1ザイクルの充放電電流は、0.12 mA  とし
、第2ザイクル以降は4mAとした。第3図には、第1
0ザイクルにおける各負極の充放電曲線を示す。図中、
A’&、J、ポリアセチレン、B1は高分子−(I)、
C′は篩分、l’−(l+)である。第3表には、第1
0サイクルにおける充電容[甘、放電容量を示す。
The charging/discharging current for the first cycle was 0.12 mA, and for the second and subsequent cycles it was 4 mA. Figure 3 shows the first
The charge-discharge curve of each negative electrode in 0 cycle is shown. In the figure,
A'&, J, polyacetylene, B1 is polymer -(I),
C' is the sieve fraction, l'-(l+). Table 3 shows the first
Charging capacity at 0 cycle [sweet, indicating discharge capacity.

第3表 この実施例では、対極すなわち1[極に二硫化チタンを
用いたが、負極の特性をリチウム照合電極に対する電位
の変化をパラメータとして評価した。
Table 3 In this example, titanium disulfide was used as the counter electrode, that is, the electrode, and the characteristics of the negative electrode were evaluated using the change in potential with respect to the lithium reference electrode as a parameter.

この方法により負極の特性が明確に把握できるからであ
る。正極に、実施例1と同じ電極、すなわち高分子物質
を用いた場合にも、負極の特性は同じであった。
This is because this method allows the characteristics of the negative electrode to be clearly understood. Even when the same electrode as in Example 1, that is, a polymer substance was used for the positive electrode, the characteristics of the negative electrode were the same.

またヨウ化亜鉛を溶かした水溶液を電解液に用いて・高
分子物質の負極とじ5秤放電特性を1灸討した場合にも
、フェロセン官能基を主鎖に持つ、Ifリエステルやポ
リアミドなどの高分子の方が優れていた。
Furthermore, when using an aqueous solution containing zinc iodide as an electrolyte and examining the discharge characteristics of a polymer material as a negative electrode, we found that high Molecules were better.

以上より、フェロセン官能基を主鎖に持つ高分子を負極
とした場合にも、充放電反応として、有機電解液中ある
いは水溶液中のリチウムイオンや亜鉛イオンなどの陽イ
オンの取り込みや放出を行わせることができ、従来のポ
リアセチレンに比へ、優れた性能を示すことがわかる。
From the above, even when a polymer having a ferrocene functional group in its main chain is used as a negative electrode, cations such as lithium ions and zinc ions in an organic electrolyte or an aqueous solution can be taken in and released as a charge/discharge reaction. It can be seen that it shows superior performance compared to conventional polyacetylene.

本発明の高分子物質で、電極としての充放電に直接に関
与しているのは、フェロセン官能基である。フェロセン
官能基を持たないポリエステルやポリアミドを電極とし
た場合、はとんど充放電特性を示さなかった。しかし、
フェロセン官能基が、エステル基に付いているか、アミ
ド基に伺いているかによって、実施例1〜3に示したよ
うに、高分子・物質の充放電特性は変化した。種々検討
しまた結果、フェ「1セン官能基が付いている基として
、次の順で電極の充放電特性は優れていた。
In the polymeric substance of the present invention, the ferrocene functional group is directly involved in charging and discharging as an electrode. When polyester or polyamide, which does not have a ferrocene functional group, was used as an electrode, almost no charge/discharge characteristics were shown. but,
As shown in Examples 1 to 3, the charge/discharge characteristics of the polymer/substance changed depending on whether the ferrocene functional group was attached to an ester group or an amide group. After conducting various studies, the results showed that the charge and discharge characteristics of the electrodes were excellent in the following order as a group with a Fe-1 sen functional group.

エステル基〉アミド基〉アルキル基 以上の例で主鎖にフェロセン官能基を有する篩分P物質
を、正極または負極に用いた場合、その充放電特性が向
−にすることを示した。これより1、−次′准准の正極
、負極のどちらか一方、又は両方に使用することにより
、二次電池の充放電特性が向jニすることが明らかであ
る。
Ester group>Amide group>Alkyl group The above examples show that when a sieved P material having a ferrocene functional group in the main chain is used as a positive electrode or a negative electrode, its charge/discharge characteristics are improved. It is clear from this that the charge/discharge characteristics of the secondary battery are improved by using it as either the positive electrode, the negative electrode, or both of the 1st and -th order's quasi-quasi.

発明の効果 本発明によれは、高分子物質を正極および、丑たは負極
に用いた二次電池の充放電特性を向上させることができ
る。
Effects of the Invention According to the present invention, it is possible to improve the charging and discharging characteristics of a secondary battery using a polymeric substance for the positive electrode and/or the negative electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に用いた電極の縦断面図、第2図は有機
電解液中での各種正極の充放電曲線を示す図、第3図は
有機電解液中での各種負極の充放電曲線を示す。 第 1 図 第2図 274− 第3図
Figure 1 is a longitudinal cross-sectional view of the electrode used in the example, Figure 2 is a diagram showing the charging and discharging curves of various positive electrodes in an organic electrolyte, and Figure 3 is a diagram showing the charging and discharging curves of various negative electrodes in an organic electrolyte. Show a curve. Figure 1 Figure 2 274- Figure 3

Claims (1)

【特許請求の範囲】[Claims] 充放電によりjす通約に陰イオンまたは陽イオンを取り
込み、放出1゛る高分子物質よりなる正極またd負極と
、前記の陰イオンまたは陽イオンを含む?1Σ解液を備
え、+’jJ記高分子物質が、その主鎖に7エロセン官
能基を有することを特徴とする二次′tに准。
A positive electrode or a negative electrode made of a polymer material that takes in and releases anions or cations during charging and discharging, and a negative electrode containing the anions or cations mentioned above. A second-order polymeric material having a 1Σ solution and characterized by having 7 erocene functional groups in its main chain.
JP57177246A 1982-10-07 1982-10-07 Secondary battery Pending JPS5966059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177246A JPS5966059A (en) 1982-10-07 1982-10-07 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177246A JPS5966059A (en) 1982-10-07 1982-10-07 Secondary battery

Publications (1)

Publication Number Publication Date
JPS5966059A true JPS5966059A (en) 1984-04-14

Family

ID=16027705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177246A Pending JPS5966059A (en) 1982-10-07 1982-10-07 Secondary battery

Country Status (1)

Country Link
JP (1) JPS5966059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111237A2 (en) * 1982-12-04 1984-06-20 BASF Aktiengesellschaft Battery or electrochemical accumulator based on electrochemically oxidizable and/or reducible polymers
EP0667032A1 (en) * 1992-09-01 1995-08-16 Motorola, Inc. Rechargeable electrical energy storage device having organometallic electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111237A2 (en) * 1982-12-04 1984-06-20 BASF Aktiengesellschaft Battery or electrochemical accumulator based on electrochemically oxidizable and/or reducible polymers
EP0667032A1 (en) * 1992-09-01 1995-08-16 Motorola, Inc. Rechargeable electrical energy storage device having organometallic electrodes
EP0667032A4 (en) * 1992-09-01 1995-11-08 Motorola Inc Rechargeable electrical energy storage device having organometallic electrodes.

Similar Documents

Publication Publication Date Title
JP6370584B2 (en) Lithium sulfur secondary battery
JP2010530602A (en) Nitroxide-containing electrode material for secondary batteries
JP7174998B2 (en) Zinc ion secondary battery containing aqueous electrolyte
JPWO2017209233A1 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY AND ALL-SOLID SECONDARY BATTERY AND SOLID ELECTROLYTE-CONTAINING SHEET
KR20020053861A (en) Polymer cell
ITMI951651A1 (en) COMPOSITE CATHOD PROCEDURE FOR ITS PREPARATION AND ITS USE IN SOLID ELECTROCHEMICAL CELLS
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JPS5966059A (en) Secondary battery
JPS63102162A (en) Secondary battery
JP2004200058A (en) Power storage device
JP2003109594A (en) Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JPS61206170A (en) Secondary battery and its electrode
JP3726013B2 (en) Battery adjustment method by low-speed cycle process
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JPS5946760A (en) Secondary battery
JPS5966057A (en) Secondary battery
JPH0526305B2 (en)
JPS5966056A (en) Secondary battery
JPH01132045A (en) Battery
JPH03163752A (en) Electrode
JP3956289B2 (en) Non-aqueous electrolyte battery
JPS59184461A (en) Secondary battery
JPS63213267A (en) Nonaqueous electrolyte secondary cell
JPS5966058A (en) Secondary battery
JPH06223832A (en) Positive electrode material for lithium battery