JPS5964745A - Semirigid magnetic alloy - Google Patents

Semirigid magnetic alloy

Info

Publication number
JPS5964745A
JPS5964745A JP57175747A JP17574782A JPS5964745A JP S5964745 A JPS5964745 A JP S5964745A JP 57175747 A JP57175747 A JP 57175747A JP 17574782 A JP17574782 A JP 17574782A JP S5964745 A JPS5964745 A JP S5964745A
Authority
JP
Japan
Prior art keywords
alloy
magnetic properties
coercive force
semirigid
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57175747A
Other languages
Japanese (ja)
Inventor
Akio Nakanishi
中西 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57175747A priority Critical patent/JPS5964745A/en
Publication of JPS5964745A publication Critical patent/JPS5964745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a semirigid magnetic alloy excellent in magnetic properties, in particular, coercive force, by making an alloy to contain Mn, Ti and W and/or Zr in a prescribed proportion, with the balance thereof being substantially Fe. CONSTITUTION:The semirigid alloy contains 7-15wt% Mn and 0.5-5wt% W and/or 0.05-3wt% Zr, with the balance thereof being Fe and unavoidable impurities. The alloy is melted for example in a high frequency furnace, forged, and hot-rolled to obtain a blank material of 5mm. thick. Then after it is subjected to solution heat treatment at 1,100 deg.C, the surface is ground to be freed from flaws, and the stock is cold-rolled to have a thickness of 1mm. and is heat-treated at 480 deg.C for 40hr. After this treatment, the magnetic properties of this alloy are measured and the results are given in Table 1. As shown the alloy is remarkably excellent in magnetic properties, in particular, coercive force. The alloy is inexpensive and can be suitably used for hysteresis motors, etc.

Description

【発明の詳細な説明】 本発明はFe、MnおよびTi主成分とする高Mn半硬
質磁性材料の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in high Mn semi-hard magnetic materials based on Fe, Mn and Ti.

半硬質磁性材料はヒステリシヌモーター用材料、リレー
鉄心等として使用される。従来はこれら用途にアルニコ
磁石、Fe−V−Co系磁石、Fe−Cr−Co系磁石
等が用いられてきたが、これら合金は多量のCo、Ni
あるいは■が含有されるため、製造コストに占める材料
費の割合が大きく経済的に極めて不利である。そのため
高価なCo、Niを含有しない磁性材料としてTiを含
有するFe−Mn系合金が知られているが、保磁力Hc
が最大120Oeと小さく、ヒステリシスモーター用と
して磁気特性が不十分であり、余り使用されていない現
状である。
Semi-hard magnetic materials are used as materials for hysteretic motors, relay cores, etc. Conventionally, alnico magnets, Fe-V-Co magnets, Fe-Cr-Co magnets, etc. have been used for these purposes, but these alloys contain large amounts of Co and Ni.
Alternatively, since it contains ■, the material cost accounts for a large proportion of the manufacturing cost, which is extremely disadvantageous economically. For this reason, Fe-Mn alloys containing Ti are known as magnetic materials that do not contain expensive Co and Ni, but the coercive force Hc
It has a small maximum value of 120 Oe, and its magnetic properties are insufficient for use in hysteresis motors, so it is currently not used much.

発明者はFe、Mn、Tiを主成分とする高Mn半硬質
磁性材料の磁気特性、特に保持力を向上させるため、種
々検討した結果、Fe、Mn、Tiを主成分とする高M
n半硬質磁性材料に特定量のWまたはZrの1種または
2種を含有せしめることにより、保持力の向上が得られ
ることが判明した。
In order to improve the magnetic properties, especially the coercive force, of a high Mn semi-hard magnetic material whose main components are Fe, Mn, and Ti, the inventor conducted various studies and found that a high Mn semi-hard magnetic material whose main components are Fe, Mn, and Ti.
It has been found that the coercive force can be improved by incorporating a specific amount of one or both of W and Zr into the semi-hard magnetic material.

本発明は上記知見に基くものであって、Mn7〜15w
t%、Ti0.3%〜5wtにW0.5〜5wt%また
はZrO.05〜3wt%の1種または2種を含有し、
残部は不可避的不純物およびFeからなることを特徴と
する半硬質磁性合金を要旨とする。
The present invention is based on the above findings, and is based on Mn7-15w.
t%, Ti0.3% to 5wt and W0.5 to 5wt% or ZrO. 05 to 3 wt% of one or two types,
The remainder is a semi-hard magnetic alloy characterized by consisting of unavoidable impurities and Fe.

本発明合金の成分を上記の如く限定した理由を次に説明
する。
The reason why the components of the alloy of the present invention are limited as described above will be explained below.

Mnは7%未満では溶体化処即後の残留γ相が少ないた
め、その後の冷間加工により非磁性γ相が極めて少なく
なり、半硬質磁性材料としての特注を示さなくなり、ま
たMnが15%を越えると溶体化処理後、被磁性γ相が
多くなりすぎ、残留磁束密度Brが大巾に低下し、磁性
材料として実用に適さなくなり好ましくない。所期の磁
気特性を得るためには強磁性を示すα相と被磁性のγ相
が適度の量で混在していることが重要であり、Mnの所
要の成分期間は7〜15wt%である。
If Mn is less than 7%, there will be little residual γ phase immediately after solution treatment, so the non-magnetic γ phase will be extremely reduced by subsequent cold working, and it will no longer be customizable as a semi-hard magnetic material, and if Mn is 15% Exceeding this is not preferable, as the magnetized γ phase will be too large after the solution treatment, and the residual magnetic flux density Br will be greatly reduced, making it unsuitable for practical use as a magnetic material. In order to obtain the desired magnetic properties, it is important that the ferromagnetic α phase and the magnetized γ phase coexist in appropriate amounts, and the required component period of Mn is 7 to 15 wt%. .

Tiは従来からするが、残留磁束密度Brの低下が大き
く、また加工性が悪化するので好ましくなく、また0.
3%より下では保持力を向上させる効果が少なく、半硬
質磁性材料として好ましくない。
Although Ti has been used conventionally, it is not preferable because it causes a large decrease in residual magnetic flux density Br and deteriorates workability.
If it is less than 3%, the effect of improving coercive force is small and it is not preferred as a semi-hard magnetic material.

Wは残留磁束密度Brを余低下させないで、保磁カHe
を向上させる著るしい効果があるが、5%を越えるとB
rの低下が大きくなり、ヒステリシスモーター材料等と
しては不適となり、また0.5%未満ではその効果が小
さく、好ましくない。
W increases the coercive force He without lowering the residual magnetic flux density Br.
There is a remarkable effect of improving the
The decrease in r becomes large, making it unsuitable as a hysteresis motor material, etc. If it is less than 0.5%, the effect is small, which is not preferable.

Zrは保持力Heの向上に特に著るしい効果があるが、
3%よりも多いと加工性を劣化するとともにBrの低下
が大きすぎるため、判硬質磁性材料として不適となり、
また0.05%未満では所期の保磁力Heを得ることが
難かしく、好ましくない。Zrの特に望ましい含有量は
1.0〜2.0wt%である。
Zr has a particularly remarkable effect on improving the holding force He, but
If it exceeds 3%, the workability deteriorates and the Br decreases too much, making it unsuitable as a hard magnetic material.
Further, if it is less than 0.05%, it is difficult to obtain the desired coercive force He, which is not preferable. A particularly desirable content of Zr is 1.0 to 2.0 wt%.

第1表に成分を記した比較合金および本発明合金を高周
波数解炉により溶製し、鍛造、熱間圧延により5mmの
素材を得た。その後1100℃で溶体処理後、表面を研
削により疵取りして1mmまで冷間圧延を行い、480
℃で40時間の熱処理を行い、その後磁気特性を測定し
た。その結果を第1表に表わす。
Comparative alloys and alloys of the present invention whose components are listed in Table 1 were melted by high frequency furnace melting, and 5 mm materials were obtained by forging and hot rolling. After that, after solution treatment at 1100℃, the surface was removed by grinding and cold rolled to 1mm.
A heat treatment was performed at ℃ for 40 hours, and then the magnetic properties were measured. The results are shown in Table 1.

第1表より明らかな如く、本発明合金は磁気特性、特に
保磁力が著しくすぐれている。従って高価な材料を使用
せず、しかもヒステリシスモーター用等に適するもので
ある。
As is clear from Table 1, the alloys of the present invention have extremely excellent magnetic properties, especially coercive force. Therefore, it does not use expensive materials and is suitable for hysteresis motors.

Claims (1)

【特許請求の範囲】[Claims] (1)Mn7〜15wt%、Ti0.3〜5wt%にW
0.5〜5wt%またはZr0.05〜3wt%の1種
または2種を含有し、残部は不可避的不純物およびFe
からなることを特徴とする半硬質磁性合金。
(1) W in Mn7-15wt%, Ti0.3-5wt%
Contains one or two of 0.5 to 5 wt% or 0.05 to 3 wt% of Zr, and the remainder is unavoidable impurities and Fe.
A semi-hard magnetic alloy characterized by consisting of.
JP57175747A 1982-10-05 1982-10-05 Semirigid magnetic alloy Pending JPS5964745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175747A JPS5964745A (en) 1982-10-05 1982-10-05 Semirigid magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175747A JPS5964745A (en) 1982-10-05 1982-10-05 Semirigid magnetic alloy

Publications (1)

Publication Number Publication Date
JPS5964745A true JPS5964745A (en) 1984-04-12

Family

ID=16001540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175747A Pending JPS5964745A (en) 1982-10-05 1982-10-05 Semirigid magnetic alloy

Country Status (1)

Country Link
JP (1) JPS5964745A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108823A (en) * 1977-03-07 1978-09-22 Denki Jiki Zairiyou Kenkiyuush Magnetic alloy with rectangular hysterisis loop and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108823A (en) * 1977-03-07 1978-09-22 Denki Jiki Zairiyou Kenkiyuush Magnetic alloy with rectangular hysterisis loop and method of making same

Similar Documents

Publication Publication Date Title
JPH03115546A (en) Corrosion-resisting magnetic alloy
US3982973A (en) Cube textured nickel
US4695333A (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JP2708682B2 (en) Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same
KR830001327B1 (en) Method of manufacturing magnetic element made of alloy
JPS5964745A (en) Semirigid magnetic alloy
JP2760013B2 (en) Method for producing high permeability magnetic material
US3124491A (en) Heavy gauge double oriented magnetic sheet material
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPS6232267B2 (en)
JP2674137B2 (en) High permeability magnetic material
JP4258854B2 (en) Manufacturing method of electrical steel sheet
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
JPH04337604A (en) Rare-earth iron permanent magnet
JP3176385B2 (en) Method for producing Ni-Fe-Cr soft magnetic alloy sheet
JPH03277718A (en) Production of ni-fe-cr soft-magnetic alloy
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH0456752A (en) Manufacture of alloy material having high barkhausen effect and alloy wire rod for magnetic wire pulser using the same
JP2001192784A (en) High permeability magnetic alloy
JPH0726324A (en) Production of nonoriented silicon steel sheet excellent in magnetic property and rust resistance
JPS5810462B2 (en) Fe↓-Cr↓-Co magnetic alloy
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH10183247A (en) Production of nonorieneted silicon steel sheet high in magnetic flux density in low magnetizing force
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property