JPS59632A - Signal analyzer - Google Patents

Signal analyzer

Info

Publication number
JPS59632A
JPS59632A JP9942383A JP9942383A JPS59632A JP S59632 A JPS59632 A JP S59632A JP 9942383 A JP9942383 A JP 9942383A JP 9942383 A JP9942383 A JP 9942383A JP S59632 A JPS59632 A JP S59632A
Authority
JP
Japan
Prior art keywords
autocorrelation function
pitch
linear prediction
signal
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9942383A
Other languages
Japanese (ja)
Other versions
JPH0139056B2 (en
Inventor
Hisashi Nishiyama
久司 西山
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9942383A priority Critical patent/JPS59632A/en
Publication of JPS59632A publication Critical patent/JPS59632A/en
Publication of JPH0139056B2 publication Critical patent/JPH0139056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform noise elimination and to improve extraction precision, by finding a coefficient of linear prediction by using an autocorrelation function in an area centering on the point of time when a time difference is one pitch of a signal peak away. CONSTITUTION:The autocorrelation function is found at intervals of specific time from a digital signal obtained by sampling an input signal and accumulated by an accumulating device 3 to extract a rough pitch value, and an autocorrelation function in a time area is found from an interpolating device. An autocorrelation function regenerating device 6 finds the peak of one pitch accurately to regenerate an autocorrelation function synchronizing with the pitch by performing sampling with original sampling time centering the estimated pitch. This autocorrelation function is applied to an extracting device 7 for a coefficient of liner prediction of optimum order based on AIC (information volume standard) to find a band width and a resonance frequency and a band-width and resonance frequency selector 8 selects a significant band width and resonance frequency, which are displayed on a spectrum display device 9. Thus, the band width and resonance frequency are found respectively to improve the extraction precision greatly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は・、音響等の連続信号から帯域幅、共振周波数
等を抽出して出力する信号分析装置に関し。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a signal analysis device that extracts and outputs the bandwidth, resonance frequency, etc. from a continuous signal such as an acoustic signal.

−1:、とじて船舶の航走音などの1機械音から対象に
特有の帯域幅、共振周波数、インパルス応答等を特徴と
して捕えることを目的とする信号分析装置に関するもの
である。
-1: This relates to a signal analysis device whose purpose is to capture characteristics such as a bandwidth, resonance frequency, and impulse response specific to an object from a single mechanical sound such as the sound of a ship running.

〔発明の背景〕[Background of the invention]

この種の信号分析装置として、線形予測係数を用いるも
のが提案(特開昭51−112377参照)されている
が、その場合9時間差零付近の自己相関関数から線形予
測係数を求めていたので、雑音除去が不充分で、抽出精
度が悪かった。
As this type of signal analysis device, one that uses linear prediction coefficients has been proposed (see Japanese Patent Laid-Open No. 51-112377), but in that case, the linear prediction coefficients were obtained from the autocorrelation function near zero time difference. Noise removal was insufficient and extraction accuracy was poor.

〔発明の目的〕[Purpose of the invention]

本発明は9時間差零付近の自己相関関数を用し・る代り
に2時間差が信号ピークの1ピツチだけ離れた時点を中
心とするある領域内の自己相関関数を用いて線形予測係
数を求めることで、雑音除去を可能にし、抽出精度の向
上化を図ろうとするも〔発明の概要〕、 本発明の特徴は、上記目的を達成するために。
In the present invention, instead of using an autocorrelation function near zero time difference, the linear prediction coefficient is obtained by using an autocorrelation function in a certain region centered at a time point where the two time difference is one pitch away from the signal peak. [Summary of the Invention] In order to achieve the above object, the features of the present invention are as follows.

入力信号をサンプリングして得られ名デジタル信号から
一定時間間隔ごとに自己相関関数を求める自己相関計と
、この自己相関関数をある所定数だけ累加する累加装置
と、この累加自己相関関数から入力信号のピークのピッ
チ概略値を抽出するピッチ抽出装置と9時間差が時間零
時点から上記ピッチ概略値だけ離れた点を中心とする前
後の、ある一定時間幅領域内の自己相関関数を補間で求
める補間装置と、補間された自己相関関数から時間差が
正確に1ピツチ離れた点の自己相関関数を再生する再生
装置と、この再生自己相関関数からAIC(情報量規準
)による最適次数の線形予測係数を求める線形予測係数
抽出装置と、この線形予測係数を用いてスペクトル」ユ
で意味のある帯域幅共振周波数あるいはインパルス応答
を求めてこれをスペクトル表示装置、インパルス応答聴
音器にそれぞれ出力する回路手段とを備えた構成とする
にある。
An autocorrelator that calculates an autocorrelation function at regular time intervals from a digital signal obtained by sampling an input signal, an accumulator that accumulates this autocorrelation function by a predetermined number, and an input signal from this cumulative autocorrelation function. A pitch extraction device that extracts the approximate pitch value of the peak of a reproducing device for reproducing an autocorrelation function at a point exactly one pitch away from the interpolated autocorrelation function; A device for extracting linear prediction coefficients to be obtained, and circuit means for obtaining a meaningful bandwidth resonance frequency or impulse response in a spectrum using the linear prediction coefficients and outputting these to a spectrum display device and an impulse response hearing device, respectively. It is important to have a well-equipped configuration.

〔発明の実施例〕[Embodiments of the invention]

まず9本発明の原理について説明する。 First, the principle of the present invention will be explained.

十、述のように2本発明においては9時間差が1ピツチ
だけ離れた時点付近の自己相関関数から線形予測係数を
求める。そのために、シャノンのサンプリング定理によ
り、ピッチ非同期の自己相関関数から、補間により、ピ
ッチに同期した自己相関関数を再生する。即ち、ピッチ
非同期の相関関数V5が1時間中+b−lzでの信号波
形をfl。
10. As mentioned above, in the present invention, the linear prediction coefficient is obtained from the autocorrelation function around the time point where the time difference is 1 pitch. To this end, a pitch-synchronized autocorrelation function is reproduced from a pitch-asynchronous autocorrelation function by interpolation using Shannon's sampling theorem. That is, the pitch-asynchronous correlation function V5 defines the signal waveform at +b-lz during one hour as fl.

1=o、 ]、 2.・・・Nとして ■、−Σfifi−Ls+  8=0.1 、2.・・
・−二〇 で与えられるとき、再生自己相関関数R1はn= o 
+ 1+ ・・・+ N+ (Nll+ 1) 1とな
る。ただし、Δは信号のサンプリング時間間・・1隔〔
第1図fbl参照L ”+は1ピッチ当りのデータ数で
あり、予め求めた概略ピッチをP+ [第1図tal参
照〕とすれば N1=Pi/1 の関係があり、また再生自己相関関数におけるサンプリ
ング時間T(ピッチ分解能とも呼ばれる)は T−Δ/(No+1) となる。
1=o, ], 2. ...N as ■, -Σfifi-Ls+ 8=0.1, 2.・・・
・When given by −20, the reproduction autocorrelation function R1 is n= o
+ 1+ ...+ N+ (Nll+ 1) becomes 1. However, Δ is the signal sampling time interval...1 interval [
Refer to Figure 1 fbl.L''+ is the number of data per pitch, and if the approximate pitch determined in advance is P+ [Refer to Figure 1 tal], there is a relationship of N1=Pi/1, and the reproduction autocorrelation function The sampling time T (also called pitch resolution) in is T-Δ/(No+1).

このとき、再生自己相関関数列R0のピークの存在する
時刻をnmaXとすれば、推定ピッチP1 はP(””
 2 N1”Δ+(n、、、、、x−1)Tであり、補
間再生された自己相関関数V5′はVs””R((nm
ax 1)T+sΔ)+  S=0+ 1+”’+ P
で与えられる。ただし、 R(nT)=Rnである。
At this time, if the time at which the peak of the reproduced autocorrelation function sequence R0 exists is nmaX, the estimated pitch P1 is P(""
2 N1"Δ+(n, , , , x-1)T, and the interpolated and reproduced autocorrelation function V5' is Vs""R((nm
ax 1)T+sΔ)+S=0+ 1+”'+ P
is given by However, R(nT)=Rn.

従って、正規方程式を解いて線形予測係数を求める際に
は、第1図talに示すように1ピッチ付近の雑音に乱
されない、信号だけの自己相関関数V:を用いることに
より、雑音の影響のない線形予測係数か得られる3゜ 予測次数の決定に際しては、AIC(情報量規準)を用
いる。即ち AIC=Ntogeσ、+2(p+1)で定義され、p
は予測次数、Nは全データ数、σ2は残差自乗平均であ
る。各次数について正規方程式を解き、線形予測係数 (A1)       ・ p=1 (A+、A2)     1  p=2p (A+ l A21・・・+ Ap) +  p””p
を求め、そのときのAICの値が最小となる予測次数を
最適パラメータ数とする。
Therefore, when calculating the linear prediction coefficient by solving the normal equation, by using the autocorrelation function V: of the signal alone, which is not disturbed by noise around one pitch, as shown in Figure 1, the influence of noise can be reduced. AIC (information criterion) is used to determine the 3° prediction order that yields linear prediction coefficients that do not exist. That is, it is defined as AIC=Ntogeσ, +2(p+1), and p
is the prediction order, N is the total number of data, and σ2 is the root mean square of the residual. Solve the normal equation for each order and calculate the linear prediction coefficient (A1) ・ p=1 (A+, A2) 1 p=2p (A+ l A21...+ Ap) + p""p
is determined, and the prediction order with which the value of AIC at that time is the minimum is determined as the optimal number of parameters.

最適パラメータ数をp。とすれば、96次の線形予測係
数(A1.A2.・・・+ Apg )を係数とする代
数方程式を解くことにより、98個の(共振周波数fi
 +帯域幅B、)の組(f+、 BIL (f2. B
4C”””l (rpo。
The optimal number of parameters is p. Then, 98 (resonant frequencies
+Bandwidth B,) set (f+, BIL (f2.B
4C”””l (rpo.

B、。)が得られる。このとき、対象となる物理系の極
の数が既知であれば、帯域幅の小さい方から。
B. ) is obtained. At this time, if the number of poles in the target physical system is known, start with the one with the smallest bandwidth.

その次数分だけの共振周波数、帯域幅を残し、残りは捨
て去る。あるいは、帯域幅の極端に大きいものは、雑音
や計算誤差を近似している次数であるとみなせるので、
取り込む必要はない。
Leave only the resonance frequency and bandwidth for that order, and discard the rest. Alternatively, extremely large bandwidths can be considered to be orders that approximate noise and calculation errors, so
There is no need to import it.

なお、第1図falは時間差零付近に雑音の相関が加わ
って本来の自己相関関数波形が損なわれるが。
Note that in FIG. 1 fal, the original autocorrelation function waveform is impaired due to the addition of noise correlation near the zero time difference.

1ピツチ付近では雑音の影響のない、信号だけの自己相
関関数が現われることを示す図である。図中の“′Δ′
′印はピッチ非同期のサンプリング点を示し、“0”′
印はそれから補間再生されたピッチ同期のサンプリング
点を示している。第1図tblはサンプリング時間間隔
ΔにNl(個の補間点をとることを示す図である。
FIG. 6 is a diagram showing that an autocorrelation function of only the signal appears without the influence of noise in the vicinity of 1 pitch. “′Δ′” in the figure
'mark indicates pitch asynchronous sampling point, "0"'
The marks indicate the pitch-synchronous sampling points that were then interpolated and reproduced. FIG. 1 tbl is a diagram showing that Nl (interpolation points) are taken at the sampling time interval Δ.

以下9本発明の一実施例を、第2図に示すブロック構成
図に従って説明する。入力された連続信号をA/D変換
器1でデジタル符号列に変換し。
An embodiment of the present invention will be described below with reference to the block diagram shown in FIG. The input continuous signal is converted into a digital code string by the A/D converter 1.

自己相関計2で、制御装置12の制御により、一定・時
間間隔ごとに自己相関関数を求める。この自己相関関数
は、累加装置3で累加される。累加装置3において累加
される自己相関関数の個数は制御装置12により制御さ
れる。累加された自己相関関数はピッチ抽出装置4に送
られ、ここで、ピッチ1 。    3 概略値が抽出され、〜ヒツチからlピッチまでの時間領
域1りにおける自己相関関数が、補間装置5により補間
で求められる。このときの補間の個数は制御装置12で
制御される。次の自己相関関数再生装置6において、」
ユ記の補間された自己相関関数から、1ピツチロのピー
クを正確に求め、それを推定ピッチとし、この推定ピッ
チを中心にして。
The autocorrelation meter 2 calculates an autocorrelation function at regular time intervals under the control of the control device 12. This autocorrelation function is accumulated in an accumulation device 3. The number of autocorrelation functions accumulated in the accumulation device 3 is controlled by the control device 12. The accumulated autocorrelation function is sent to the pitch extractor 4, where the pitch 1. 3. Approximate values are extracted, and an autocorrelation function in the time domain 1 from ~ hit to l pitch is determined by interpolation by interpolation device 5. The number of interpolations at this time is controlled by the control device 12. In the next autocorrelation function reproducing device 6,
Accurately find the peak of 1 pitch from the interpolated autocorrelation function of the Book of Yu, use it as the estimated pitch, and center around this estimated pitch.

自己相関関数を元のサンプリング時間でサンプリングす
ることにより、ピッチに同期した自己相関関数が再生さ
れる。この再生自己相関関数をAIOによる最適次数の
線形予測係数抽出装置7に加え。
By sampling the autocorrelation function at the original sampling time, the pitch-synchronized autocorrelation function is reproduced. This reproduced autocorrelation function is added to the optimal order linear prediction coefficient extraction device 7 using AIO.

得られた最適次数の線形予測係数から帯域幅、共振周波
数を求めるが、帯域幅、共振周波数選択装置8において
、スペクトル上で意味のある帯域幅。
The bandwidth and resonant frequency are determined from the obtained linear prediction coefficient of the optimum order, and in the bandwidth and resonant frequency selection device 8, the bandwidth is determined to be a meaningful bandwidth on the spectrum.

共振周波数をより分ける。選択された帯域幅、共・振周
波数はスペクトル波形としてスペクトル装置9で表示さ
れる。また、最適次数の線形予測係数はインパルス応答
装置10にも印加され、ここでインパルス応答が求めら
れ、これをインパルス応答聴音器11で聴くことも可能
である。これらの全体の動作は制御装置12により制御
される。制御装置12は、操作パネル13を介して、使
用者からの指示により、動作モードを変更する。
Separate the resonance frequencies. The selected bandwidth and resonance frequency are displayed on the spectrum device 9 as a spectrum waveform. The optimal order linear prediction coefficient is also applied to the impulse response device 10, where an impulse response is obtained, and it is also possible to listen to this using an impulse response hearing device 11. These entire operations are controlled by a control device 12. The control device 12 changes the operating mode according to instructions from the user via the operation panel 13.

〔発明の効果〕〔Effect of the invention〕

以下9本発明の効果を、シミュレーション実験結果によ
り説明する。従来の信号分析装置においては、SN比が
悪いとき、帯域幅が真値よりかなり広くなる傾向がある
。即ち、単一共振モデルの信号として5 exp (−
t ) sin 2πtの減衰正弦波をピッチ周期5秒
で繰り返した第3図波形を、サンプリノブ時間0.2秒
でサンプリングし、それに雑音として正規乱数を加法的
に加えることで第4図波形が得られる。この場合、ピッ
チに同期したサンプリング時間なので、補間数を零とし
た。そのとき。
The effects of the present invention will be explained below using the results of simulation experiments. In conventional signal analyzers, when the signal-to-noise ratio is poor, the bandwidth tends to be much wider than the true value. That is, 5 exp (-
The waveform in Figure 3, which is a damped sine wave of t ) sin 2πt repeated with a pitch period of 5 seconds, is sampled with a sampling knob time of 0.2 seconds, and the waveform in Figure 4 is obtained by additively adding normal random numbers as noise. It will be done. In this case, since the sampling time is synchronized with the pitch, the number of interpolations is set to zero. then.

でSN比を定義すれば、SN比= −2,75dBの減
衰正弦波信号である。この第4図の波形信号を、従来の
信号分析装置を用いて、予測次数は単共振であるので2
とし、自己相関関数の累加数を500回。
If we define the SN ratio as follows, it is an attenuated sine wave signal with an SN ratio of −2.75 dB. Using a conventional signal analyzer, the predicted order of the waveform signal shown in Fig. 4 is 2 because it is a single resonance.
and the cumulative number of autocorrelation functions is 500 times.

積分区間は75データ数として2分析した。その結果、
帯域幅は1.29 Hz 、共振周波数は1.14Hz
と求められた。この結果は、自己相関関数の累加数及び
積分区間をさらに増大させても、はとんど変化しなかっ
た。
Two analyzes were performed with 75 data points as the integral interval. the result,
Bandwidth is 1.29 Hz, resonant frequency is 1.14 Hz
was asked. This result did not change much even when the cumulative number and integral interval of the autocorrelation function were further increased.

」1記の減衰正弦波から得られる帯域幅、共振周波数の
真値は、それぞれ0.318 Hz 、 1.00 H
zである。
The true values of the bandwidth and resonance frequency obtained from the damped sine wave in item 1 are 0.318 Hz and 1.00 H, respectively.
It is z.

従って、従来方式での分析結果は、帯域幅では真値の約
4倍となる過大推定であり、共振周波数で10%以」二
の誤差となる。これに対し1本考案の方式によるときは
、帯域幅及び共振周波数がそれぞれ0.310 Hz 
、 1.01 Hzと求めらし、抽出精度カ著シく改善
されることが確認された。
Therefore, the analysis result using the conventional method is an overestimation of about four times the true value in terms of bandwidth, and an error of 10% or more in terms of resonance frequency. On the other hand, when using the method of the present invention, the bandwidth and resonance frequency are each 0.310 Hz.
, 1.01 Hz, and it was confirmed that the extraction accuracy was significantly improved.

なお、第2図実施例回路において自己相関関数を求める
積分時間が雑音に比較して長いときは。
Incidentally, when the integration time for obtaining the autocorrelation function in the circuit of the embodiment shown in FIG. 2 is long compared to the noise.

累加装置3の設置は省略しても差支えない。またインパ
ルス応答聴音器11とスペクトル表示装置9とは、必要
に応じてその一方を省略することも。
The installation of the summing device 3 may be omitted. Further, one of the impulse response hearing device 11 and the spectrum display device 9 may be omitted if necessary.

あるいはその機能の一部のみを使用することも可能であ
る。
Alternatively, it is also possible to use only part of its functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図falは自己相関関数と時間差との関係を説明す
る図、第1図fblはサンプリング時間間隔Δ内・にN
14個の補間点をとることを示す図、第2図は本発明の
一実施例のブロック構成図、第3図は効果の比較実験用
に想定した物理系から得られる信号波形図、第4図は第
3図の信号に雑音を加法的に加えて得られる信号波形図
である。 符号の説明 1・・・A/D変換器    2・・・自己相関計3・
・・累加装置     4・・・ピッチ抽出装置5・・
・補間装置 6・・・自己相関関数再生装置 7・・・線形予測係数抽出装置 8・・・帯域幅、共振周波数選択装置 9−・・スペクトル表示装置 10・・・インパルス応答装置 11・・・インパルス応答聴音器 12・・・制御装置     13・・・操作、(ネル
代理人弁理士 中村純之助 11図 (引
Fig. 1 fal is a diagram explaining the relationship between the autocorrelation function and time difference, and Fig. 1 fbl is a diagram for explaining the relationship between the autocorrelation function and the time difference.
FIG. 2 is a block diagram of an embodiment of the present invention; FIG. 3 is a signal waveform diagram obtained from a physical system assumed for an effect comparison experiment; and FIG. 4 is a diagram showing that 14 interpolation points are taken. The figure is a signal waveform diagram obtained by additively adding noise to the signal of FIG. 3. Explanation of symbols 1... A/D converter 2... Autocorrelation meter 3.
... Addition device 4 ... Pitch extraction device 5 ...
- Interpolation device 6... Autocorrelation function reproducing device 7... Linear prediction coefficient extraction device 8... Bandwidth and resonance frequency selection device 9... Spectrum display device 10... Impulse response device 11... Impulse response hearing device 12...control device 13...operation,

Claims (1)

【特許請求の範囲】 1 音響等の連続信号の信号分析装置において人力信号
から自己相関関数に対応した量を計算する計算手段と、
該自己相関関数に対応した量から入力信号のピークのピ
ッチ概略値を算出するピッチ算出手段と2時間差が時間
零時点から上記ピッチ概略値だけ離れた概略時点を基準
とする所定時間領域内の自己相関関数を補間演算により
求める補間演算手段と、補間演算により求められた自己
相関関数にもとづき上記時間零時点から1ピツチだけ離
れた時点の自己相関関数を再生する再生手段と、再生さ
れた自己相関関数から線形予測係数を算出する線形予測
係数算出手段とを備えたことを特徴とする信号分析装置
。 2、 上記自己相関関数に対応した量はフレーム周期ご
とに計算された自己相関関数を累加した量であることを
特徴とする特許請求の範囲第1項の信号分析装置。 3、上記所定領域は上記概略時点を中心とする前後を含
む所定時間幅の領域であることを特徴とする特許請求の
範囲第1項または第2項の信号分析装置。 4、上記所定領域は」ユ記概略時点の前または後におけ
る所定時間幅の領域であることを特徴とする特許請求の
範囲第1項または第2項の信号分析装置。 5、上記線形予測係数算出手段は再生された自己相関関
数から情報量規準により最適次数の線形予測係数を求め
ることを特徴とする特許請求の範囲第1項乃至第4項い
ずれか1項の信号分析装置。 6、上記線形予測係数算出手段は線形予測係数から求め
られた帯域幅と共振周波数とスペクトル包絡またはイン
パルス応答とを表示するスペクトル表示手段と、インパ
ルス応答聴音手段とを含むことを特徴とする特許請求の
範囲第1項乃至第5項いずれか1項の信号分析装置。
[Scope of Claims] 1. Calculating means for calculating a quantity corresponding to an autocorrelation function from a human signal in a signal analysis device for continuous signals such as acoustic signals;
pitch calculation means for calculating an approximate pitch value of the peak of the input signal from a quantity corresponding to the autocorrelation function; interpolation calculation means for calculating a correlation function by interpolation calculation; reproduction means for reproducing the autocorrelation function at a time point one pitch away from the time zero point based on the autocorrelation function calculated by interpolation calculation; A signal analysis device comprising: linear prediction coefficient calculation means for calculating a linear prediction coefficient from a function. 2. The signal analysis device according to claim 1, wherein the amount corresponding to the autocorrelation function is an amount obtained by summing up the autocorrelation functions calculated for each frame period. 3. The signal analysis device according to claim 1 or 2, wherein the predetermined region is a region having a predetermined time width including before and after the approximate time point. 4. The signal analysis device according to claim 1 or 2, wherein the predetermined region is a region of a predetermined time width before or after the approximate time point recited in ``U''. 5. The signal according to any one of claims 1 to 4, wherein the linear prediction coefficient calculating means calculates a linear prediction coefficient of an optimal degree from the reproduced autocorrelation function using an information criterion. Analysis equipment. 6. A patent claim characterized in that the linear prediction coefficient calculation means includes spectrum display means for displaying the bandwidth, resonance frequency, spectral envelope or impulse response obtained from the linear prediction coefficients, and impulse response listening means. A signal analysis device according to any one of the ranges 1 to 5.
JP9942383A 1983-06-06 1983-06-06 Signal analyzer Granted JPS59632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9942383A JPS59632A (en) 1983-06-06 1983-06-06 Signal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9942383A JPS59632A (en) 1983-06-06 1983-06-06 Signal analyzer

Publications (2)

Publication Number Publication Date
JPS59632A true JPS59632A (en) 1984-01-05
JPH0139056B2 JPH0139056B2 (en) 1989-08-17

Family

ID=14247050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9942383A Granted JPS59632A (en) 1983-06-06 1983-06-06 Signal analyzer

Country Status (1)

Country Link
JP (1) JPS59632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259789A (en) * 2005-03-15 2006-09-28 National Institute Of Advanced Industrial & Technology Period determining device, period determining method, and period determining program
JP2014081352A (en) * 2012-09-27 2014-05-08 Daihen Corp Frequency analysis device, signal processing apparatus using the device, and high-frequency measurement instrument using the apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259789A (en) * 2005-03-15 2006-09-28 National Institute Of Advanced Industrial & Technology Period determining device, period determining method, and period determining program
JP4505589B2 (en) * 2005-03-15 2010-07-21 独立行政法人産業技術総合研究所 Period determination device, period determination method, and period determination program
JP2014081352A (en) * 2012-09-27 2014-05-08 Daihen Corp Frequency analysis device, signal processing apparatus using the device, and high-frequency measurement instrument using the apparatus

Also Published As

Publication number Publication date
JPH0139056B2 (en) 1989-08-17

Similar Documents

Publication Publication Date Title
CN100356445C (en) Method and apparatus for separating sound-source signal and method and device for detecting pitch
US5365592A (en) Digital voice detection apparatus and method using transform domain processing
US20090047003A1 (en) Playback apparatus and method
US20120290296A1 (en) Method, Apparatus, and Computer Program for Suppressing Noise
US5576978A (en) High resolution frequency analyzer and vector spectrum analyzer
JP2001298368A (en) Compressing method and device, expanding method and device, compression and expansion system and recording medium
JP3402748B2 (en) Pitch period extraction device for audio signal
EP1289152A1 (en) Compression method and apparatus, expansion method and apparatus, compression and expansion system, recorded medium, program
JP2625622B2 (en) Signal processor and method for converting analog signals
JP5035815B2 (en) Frequency measuring device
JPS59632A (en) Signal analyzer
JPS62229200A (en) Pitch detector
JPS642960B2 (en)
JPH06289072A (en) Burst signal analyzer
JP3919359B2 (en) Device for detecting the attack position of a musical sound signal
JPH0758734A (en) Digital data detector
JPH0229239B2 (en)
KR100745133B1 (en) Sampling rate conversion method and sampling rate conversion system
JPS6091227A (en) Synthesizing apparatus of sound analyzer
KR0147185B1 (en) Score estimation controlling apparatus for optical disc reproducing system
JPS5876891A (en) Voice pitch extraction
JPH0934448A (en) Attack time detecting device
CN114465628A (en) Accurate sub-audio CTCSS frequency searching system and method
JPS58172559A (en) Measuring system of signal power to noise power ratio
JPH09232980A (en) Device and method for eliminating noise