JPS5962349A - Production of high silica zeolite catalyst - Google Patents

Production of high silica zeolite catalyst

Info

Publication number
JPS5962349A
JPS5962349A JP57173234A JP17323482A JPS5962349A JP S5962349 A JPS5962349 A JP S5962349A JP 57173234 A JP57173234 A JP 57173234A JP 17323482 A JP17323482 A JP 17323482A JP S5962349 A JPS5962349 A JP S5962349A
Authority
JP
Japan
Prior art keywords
liquid
soln
gel
gel mixture
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57173234A
Other languages
Japanese (ja)
Other versions
JPH0417095B2 (en
Inventor
Yoshinobu Takegami
武上 善信
Satoyuki Inui
智行 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Showa Oil Co Ltd
Original Assignee
Showa Shell Sekiyu KK
Showa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, Showa Oil Co Ltd filed Critical Showa Shell Sekiyu KK
Priority to JP57173234A priority Critical patent/JPS5962349A/en
Publication of JPS5962349A publication Critical patent/JPS5962349A/en
Publication of JPH0417095B2 publication Critical patent/JPH0417095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To produce a high silica zeolite catalyst having a uniform compsn. and particle shape by grinding the gel formed by bringing an aq. soln. contg. Al salt, nitrogen contg. org. cation and an inorg. acid, an aq. soln. of rilicate, and an aq. soln. of an ion regulator into reaction then subjecting the ground gel to a specific heat treatment. CONSTITUTION:A soln. A contg. Al salt such as Al2(SO4)3, nitrogen-contg. cation such as tetrapropylammonium bromide or the like and an inorg. acid such as sulfuric acid; an aq. soln. B of silicate such as water glass; and a soln. C contg. an ion regulator such as NaCl or the like are prepd. as raw materials. NaCl is added to the soln. A, and nitrogen-contg. cation, inorg. acid and NaOH are added to the soln. C to adjust the pH to 9-11 in the stage of adding the soln. C to the solns. A, B. The formed gel mixture is ground and disintegrated and is thereafter heated to 150-190 deg.C at 1-3 deg.C/min rate; further the mixture is heated up to 220 deg.C at a specified speed or at a speed with exponential function to induce the hydrothermal synthesizing reaction, whereby the high silica zeolite catalyst is produced.

Description

【発明の詳細な説明】 本発明はゲル組成およびゲル粒子の形状が均一な間シリ
カゼオライト触媒の製法に関するものである。通常の筒
シリカゼオライト触媒の合成に際し、従来は、例えばモ
ーピル社の特許(英国特許第1042981号)に記載
されているようにアルミニウムイオンとシリケートイオ
ンとを反応させてアルミノシリケートゲルを生成させる
方法として、アルミニウムイオン源として帆酸アルミニ
ウム、含窒累有・:涜カチオンとして臭化テトラプロピ
ルアンモニウム(TPAB ) 、イオン調整剤として
塩化ナトリウム水溶1(A液)とケイ酸ソーダ水溶液(
By)とを混合してゲルを生成させる方法が採用された
。結晶化の過程において反応混合物は筒速で攪拌し、こ
れによって物質移動速度をすみやかにする方法が採用さ
れた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silica zeolite catalyst in which the gel composition and shape of the gel particles are uniform. When synthesizing ordinary cylindrical silica zeolite catalysts, the conventional method was to react aluminum ions and silicate ions to produce aluminosilicate gel, as described in Mopil's patent (British Patent No. 1042981). , aluminum oxide as the aluminum ion source, tetrapropylammonium bromide (TPAB) as the nitrogen-containing cation, sodium chloride aqueous solution 1 (liquid A) and sodium silicate aqueous solution (liquid A) as the ion regulator.
By) was adopted to form a gel. During the crystallization process, the reaction mixture was stirred at a cylinder speed to speed up the mass transfer rate.

この方法によるとケル生成の初期の結晶母液組成と末期
の結晶母液組成とが者しく異なる。
According to this method, the composition of the crystal mother liquor at the initial stage of Kel formation and the composition of the crystal mother liquor at the final stage are markedly different.

その結果、生成するゲルの組成および形状が不均一にな
ることはさけられない。
As a result, it is inevitable that the composition and shape of the gel produced will be non-uniform.

上記欠点な袖うため入部(触媒第23巻、第3号)等は
上記A′leL中のイオン調整剤(Nacl)をとり出
してC液を調望し、A液とB液とをC液に添加する方法
を採用しているが、この方法においてもイオン調整剤(
Nac7 )以外の液組成についてはゲル生成反応の初
期と末期では著しい差異が生ずることはさけがたい。
For the above-mentioned defective sleeve entry (Catalyst Vol. 23, No. 3), etc., take out the ion regulator (Nacl) in A'leL, prepare liquid C, and mix liquid A and B into C. This method uses an ion regulator (
Regarding liquid compositions other than Nac7), it is inevitable that a significant difference will occur between the initial and final stages of the gel formation reaction.

本発明では、ゲル生成反応にともなって結晶母液の各成
分に濃度変化が起るのをできるだけ少なくしてゲル生成
の沈澱条件を均一にするため次のような方法を試みた。
In the present invention, the following method was tried in order to minimize changes in concentration of each component of the crystal mother liquor due to the gel formation reaction and to make the precipitation conditions for gel formation uniform.

すなわち、アルミニウム塩、含窒素有俄カチオンおよび
無機酸を含む水浴液をAgとし、ケイ酸塩水溶液をB液
とし、イオン調整剤水溶液をC液とし、A液およびBN
7.をそれぞれ一定速度でC液に添加混合するに除し、
1)A液にもイオン調整剤(NacA )を祭加し、2
)cwはその容量を2借にしてイオン調雁炸jのみなら
ずへ赦中のTPABの一部およ乙1無徐ば(H2CO4
)の一部を予じめC液に徐力nし、さらに水ば化アルカ
リによりphン9な(・し11に調整する(第1工程)
That is, the water bath solution containing aluminum salt, nitrogen-containing cation, and inorganic acid is Ag, the silicate aqueous solution is B solution, the ion regulator aqueous solution is C solution, A solution and BN.
7. Add and mix each to liquid C at a constant speed,
1) Add an ion regulator (NacA) to solution A, and
) cw borrows its capacity by 2 and uses not only the ion-toned wild goose j but also a part of the TPAB that is in use and the otsu 1 (H2CO4
) in advance into liquid C, and further adjust the pH to 9 to 11 with hydrated alkali (first step)
.

上記方法を採用することによって納1図に示す如くケル
生成反応に際し、結晶母液に含゛まれるむ成分のIII
V変化を者しく低減させることカスできた。
By employing the above method, as shown in Figure 1, during the Kel formation reaction, the components contained in the crystal mother liquor are
We were able to clearly reduce the V change.

またA液とB液とをそれぞれC戒に添加する除、A液お
よびB液を定量ポンプ等により流速を市1]徊]しつ\
一定量づ\C液に糸カルてC液が常に一定の成分比率を
維持するように調搬して母畝中の各成分の濃+3E K
化を低減させる(第1工程)。その結果、ゲル組成およ
びゲル粒子の形状の均一性を2嵜させることができる。
In addition, by adding liquid A and liquid B to C, respectively, the flow rate of liquid A and liquid B was adjusted using a metering pump, etc.
Add a certain amount of yarn to C liquid and adjust the C liquid so that it always maintains a constant component ratio to increase the concentration of each component in the main ridge + 3E K
(first step). As a result, it is possible to improve the uniformity of the gel composition and the shape of the gel particles.

次に、上記第1工程から得られたケル混合物をそのま\
または上澄准を分離した後梱潰により結晶形状な倣細化
、均一化する(第2工程)。
Next, the Kel mixture obtained from the first step above was used as it was.
Alternatively, the supernatant is separated and then crushed to refine and homogenize the crystal shape (second step).

ケルの匍償は超音波撹拌、ボールミルおよび惰漬により
行なうが、惰潰が適当である。グルの慣潰乗件の1例を
示せば次の如くである。
The melting process is carried out by ultrasonic stirring, ball milling, and incubation, but incubation is suitable. An example of Guru's habitual multiplication is as follows.

土澄紗 遠心分離(1500r、p、m、、 15分間)除去 捕漬30分N」 し190℃、好ましくは160℃ないし180℃に毎分
1ないし3″Cの速度で昇温した後さらに該温度から2
20°Cまでは一定速度または指数函数的速度で昇温し
て短時間で水熱合成を行なう(第3工程)。
Soil gauze centrifugation (1500 r, p, m, for 15 minutes), removal of immersion for 30 minutes, heating to 190°C, preferably 160°C to 180°C at a rate of 1 to 3″C per minute, and further 2 from the temperature
Hydrothermal synthesis is carried out in a short time by raising the temperature up to 20°C at a constant rate or an exponential rate (third step).

本発明の第3工程を実施する一水熱合奴栄件は次の如く
である。
The conditions for implementing the third step of the present invention are as follows.

温一度=160℃ないし210℃ 時間:2時間50分ないし13時間20分、好ましくは
4時間10分 方法二段階的(指数函数的)または連続的に昇温、好ま
しくは連続的に昇温する。
Temperature: 160°C to 210°C Time: 2 hours 50 minutes to 13 hours 20 minutes, preferably 4 hours 10 minutes Method: Two-step (exponential) or continuous temperature increase, preferably continuous temperature increase .

その他の未件 10時間 2時間        5時間 指認函数的速度 上記(g)ないしく1)は特に好ましい方法である。Other outstanding items 10 hours 2 hours 5 hours Directive functional speed The above methods (g) to 1) are particularly preferred.

ゼオライ)Mfflkの製法について本兜明方法と従来
法(モービル法および八−法)とを比軟すれば=−次の
如くである。
Regarding the manufacturing method of Mfflk (zeolite), the present Tomei method and the conventional methods (Mobil method and Hachi method) are compared as follows.

谷試架の混合割合は第1表に示した(第1工程)。The mixing ratio of the valley test rack is shown in Table 1 (first step).

本発明方法と従来法との比較を第2表に示した(第2工
程、第3工程)。
Table 2 shows a comparison between the method of the present invention and the conventional method (second step, third step).

第 2 表 本発明方法を実施するに当り、第1工程と第2工程、第
1工程と第3工程、第2工程とをそれぞ度変化を第1図
に示した。
Table 2 When carrying out the method of the present invention, changes in the first step and the second step, the first step and the third step, and the changes in the second step are shown in FIG.

また上記の第1工程ないし第3工程の各工程がケル生成
に及ぼす影響を明らかにするためゲルの状態(形状およ
び大きさ)をそれぞれ第2図ないし第6図に示した。
Further, in order to clarify the influence of each of the above-mentioned first to third steps on the formation of a gel, the state (shape and size) of the gel is shown in FIGS. 2 to 6, respectively.

第2図(KS−20)は従来法によりグルを調歪し、 
160 ’C,20時間水熱合成を行なったときのゲル
の状態を表わした図(写真倍率5000 )である。
Figure 2 (KS-20) shows the glue adjusted and distorted using the conventional method.
This is a diagram (photograph magnification: 5000) showing the state of gel when hydrothermal synthesis was performed at 160'C for 20 hours.

第3図(KS−232)は従来法によりゲルを調整した
後室温から160℃まで1.5時間を要して昇温し、1
60℃から210℃まで毎分0.2℃の速度で昇温して
水熱合成を行なったときのゲルの状態を表わした図(写
真倍率5ooo )である。第4図(KS、−23b’
)はKS−23のゲルの状態を表わした図(写真倍率2
000 )である。
Figure 3 (KS-232) shows that after preparing the gel using the conventional method, the temperature was raised from room temperature to 160°C over 1.5 hours.
This is a diagram (photograph magnification: 5ooo) showing the state of a gel when hydrothermal synthesis was carried out by increasing the temperature from 60°C to 210°C at a rate of 0.2°C per minute. Figure 4 (KS, -23b'
) is a diagram showing the gel state of KS-23 (photo magnification: 2)
000).

第5図(Ks−33)は従来法によりゲルを調整した後
沈澱物を分離し、これを薄情後洗澱物と上澄液とを混合
後KS−23と同様にして水熱合成を行なった。このと
きの薄情条件は薄情を15分間行なった後上澄液を除去
し、さらに15分間藩潰後再び上澄液を除去した後30
分間捕薄情沈淑物と上澄液とを混合し、次にKS−23
と同様にして水熱合成を行なった。この場合のゲルの状
態を表わす図(写真倍率2000 )である。
In Figure 5 (Ks-33), a gel was prepared using the conventional method, the precipitate was separated, and the precipitate was mixed with the washed product and supernatant, and then hydrothermal synthesis was performed in the same manner as in KS-23. Ta. At this time, the conditions were as follows: after 15 minutes of performing the process, the supernatant was removed, and after another 15 minutes, the supernatant was removed again.
Mix the precipitate and supernatant liquid for a minute, then use KS-23
Hydrothermal synthesis was carried out in the same manner. This is a diagram (photograph magnification: 2000) showing the state of the gel in this case.

第6図(KS−36)は水熱合成ゲル生成の際マイクロ
フィーダーを使用し濃度変化が起らないように調整し、
その後捕潰、水熱合成はKS−33と同様に行なった場
合のゲルの状態を表わす図(写真倍率2000 )であ
る。
Figure 6 (KS-36) shows the use of a microfeeder during hydrothermal synthesis gel generation to avoid concentration changes.
This is a diagram (photograph magnification: 2000) showing the state of the gel when the subsequent crushing and hydrothermal synthesis were performed in the same manner as for KS-33.

第2図(KS−20)と第3図(KS−23a)とを比
較すれば、水熱合成における連続昇温による効果が明ら
かである。
Comparing FIG. 2 (KS-20) and FIG. 3 (KS-23a), the effect of continuous temperature increase in hydrothermal synthesis is clear.

本発明方法実施に適する高シリカゼオライト触媒の組成
の他の1例を示せば次の如くである。
Another example of the composition of a high silica zeolite catalyst suitable for carrying out the method of the present invention is as follows.

組成(モル%)   適用範囲   最適範囲Si/A
7      15以上   25−3500QH/ 
′5i02    0.30−1.0  0.62−0
.8H20/5I02       30 100  
   42 60R/R十M       O,05−
0,150,10−0,12NaCA!/HzOO,0
1−0,060,030,05上記式中Rは第4級アル
キルアンモニウムカチオン、好ましくは第4級プロピル
アンモニウムカチオンであり、Mはナトリウムまたはカ
リウムイオンである。
Composition (mol%) Applicable range Optimal range Si/A
7 15 or more 25-3500QH/
'5i02 0.30-1.0 0.62-0
.. 8H20/5I02 30 100
42 60R/R1M O,05-
0,150,10-0,12NaCA! /HzOO,0
1-0,060,030,05 In the above formula, R is a quaternary alkylammonium cation, preferably a quaternary propylammonium cation, and M is a sodium or potassium ion.

実施例 本発明方法の各工程の効果を確認するため、第1工程に
おいて従来法の入部法(KS−20)を使用し、第2工
程を省略し、これに第2工程の連続昇温操作を組み合せ
た場合(KS −23a、 b) 、第1工程において
従来法の入部法を使用し、これに第2工程の細潰操作と
第3工程の連続昇温操作とを組み合せた場合(KS−3
3)、および第1工程の水熱合成用ゲル生成時の濃度均
一化操作と、第2工程の細潰操作と第3工程の連続昇温
操作とを組み合せた場合(KS−36)について比較検
討を行なった。
Example: In order to confirm the effects of each step of the method of the present invention, the conventional Iribe method (KS-20) was used in the first step, the second step was omitted, and the second step was a continuous temperature increase operation. (KS-23a, b), when the first step uses the conventional Iribe method, and this is combined with the second step of crushing operation and the third step of continuous temperature raising operation (KS-23a, b). -3
Comparison of 3) and the case (KS-36) in which the concentration uniformization operation during gel generation for hydrothermal synthesis in the first step, the crushing operation in the second step, and the continuous temperature raising operation in the third step are combined. We have considered this.

各試薬の混合割合は第3表に示した。また水熱合成用ゲ
ル生成時の濃度変化を第4表に示した。
The mixing ratio of each reagent is shown in Table 3. In addition, Table 4 shows the concentration changes during the formation of gel for hydrothermal synthesis.

第1表および第2表の方法によって得られたゼオライト
ゲルはr過、水洗、乾燥後400℃ないし600℃、好
ましくは450℃ないし550”C10,5ないし5時
間、            ■焼後触媒として使用し
た〇 各種触a (KS  23a s b−KS  33、
KS−36)について、メタノールからの炭化水素転化
反応を行ない、その結果を第5表ないし第7表に示した
The zeolite gel obtained by the methods in Tables 1 and 2 was filtered, washed with water, and dried at 400°C to 600°C, preferably 450°C to 550"C10.5 to 5 hours, and used as a catalyst after calcination. 〇Various touch a (KS 23a s b-KS 33,
KS-36) was subjected to a hydrocarbon conversion reaction from methanol, and the results are shown in Tables 5 to 7.

ゼオライトゲルの結晶化条件: 温度160℃からI210℃までの昇温速度 0.2°
C/分反応条件: GH8V 1889 (hr”−”
)KS−23a、b触媒の場合(Si/A140 )反
応温度”C280300 炭化水素の分析 (モル%) C1+C211,812,40 c310.79    13.46 C417,7525,97 C5、ν<z                   
 25.62          58.17芳香族 
   6.13  24.15トルエン      0
.53    4.36キンレン      2.37
    10.74(モル%)       65.9
7    100上記実験結果から、本発明方法によっ
て製造された触媒では反応温度が低温(280℃)の場
合従とがわかった。
Zeolite gel crystallization conditions: Temperature increase rate from 160°C to I210°C 0.2°
C/min Reaction conditions: GH8V 1889 (hr"-"
) For KS-23a, b catalyst (Si/A140) Reaction temperature "C280300 Hydrocarbon analysis (mol%) C1+C211,812,40 c310.79 13.46 C417,7525,97 C5, ν<z
25.62 58.17 Aromatic
6.13 24.15 Toluene 0
.. 53 4.36 Kinren 2.37
10.74 (mol%) 65.9
7 100 From the above experimental results, it was found that the catalyst produced by the method of the present invention performed well when the reaction temperature was low (280° C.).

本発明方法の特徴をのべれば次の如くである。The characteristics of the method of the present invention are as follows.

(1)試薬A、B、Cの缶液を混合してゼオライトゲル
を生成する際混合時の濃度勾配をなくするようにC液中
に含窒素有機カチオン(TPAB )、無機酸、水酸化
アルカリを、A液中にイオン調整剤を添加して、ゲル生
成過程に、おける缶液(A−C液)の濃度勾配をなくす
るようにした。
(1) When mixing canned solutions of reagents A, B, and C to produce zeolite gel, nitrogen-containing organic cations (TPAB), inorganic acids, and alkali hydroxides are added to solution C to eliminate the concentration gradient during mixing. An ion regulator was added to liquid A to eliminate the concentration gradient of the canned liquid (liquid A-C) during the gel formation process.

(2)試薬A液およびB液の送量をマイクロフィーダー
を用い−て定量化し、生成ゲル中のSi/A7のモル比
の均一化をはかった。
(2) The feeding amounts of reagents A and B were quantified using a microfeeder to equalize the Si/A7 molar ratio in the resulting gel.

(3)生成したゼオライトゲル混合物を傾瀉または遠心
分離により母液と分離し、分離されたゲルを薄情により
細分化することによって結晶生成(4)水熱合成時の温
度の上げ、核形成、結晶\長とについて水熱合成用ゲル
製造の際におけるA、B、Cの缶液の成分の濃度変化を
示すグラフ、第2図ないし第6図は各工程のゼオライト
ゲル生成に及ぼす影響を明らかにするためのゲルの状態
を示す図(写真)である。
(3) The resulting zeolite gel mixture is separated from the mother liquor by decanting or centrifugation, and the separated gel is finely divided to produce crystals. (4) Raising the temperature during hydrothermal synthesis, nucleation, and crystallization. Graphs showing changes in the concentration of components in canned liquids A, B, and C during the production of gel for hydrothermal synthesis, Figures 2 to 6 clarify the influence of each process on zeolite gel production. FIG. 2 is a diagram (photograph) showing the state of the gel.

第2図 第3図 511flO; 第  4  図 X 2IfII′’、−′   に7゛第5 X200OF、u。Figure 2 Figure 3 511flO; Figure 4 X2IfII'', -' 7th 5th X200OF, u.

第6図 ×2!lll+)   、、□Figure 6 ×2! lll+) ,,□

Claims (1)

【特許請求の範囲】 (1)アルミニウム塩、含蟹累有俵カチオンおよび無機
酸を含む水溶准をA液とし、ケイ酸塩水溶液をB液とし
、イオン調至剤水溶数をC液とし、A液およびB液をそ
れぞれ一定速度でC液に添加するに際し、A液にはイオ
ン調整剤を添加し、Cgには含望素有機カチオン、びB
rLの添加速度を調整する第1工程、および第1工程か
ら得られたゲル混合物を梱潰、細分化する第2工程、お
よび第2工程から優られたゲル混合物を150“Cない
し190”Cに母分1ないし3℃の速度で昇温した後さ
らに220“Cまで一定速度または指数函数的速度で昇
温して水熱合成反応を行なう第3工程を包含することを
特徴とする昼シリカゼオライト触媒の製法。 (27第2工程は第1工程より得られたゲル混合物をそ
のま\または上澄液と分離した後信潰、細分化する前記
第1項記載の方法。 (3)第3工程は(a)第2工程から得られたゲル混合
金物を150℃ないし190℃、好ましくは160゜C
ないし180℃に加熱した後毎分0.05ないし1℃、
好ましくは毎分0.1ないし0.6℃の一定速度で昇温
し、190℃ないし220℃に達した後放冷するかまた
は(b)上記ゲル混合物を150℃ないし190℃、好
ましくは160℃ないし180℃に加熱した後−。 °−°  指数面 数的に昇温し、190℃ないし220℃に達した後放冷
する前記第1項記載の方法。 (4)第3工程は第2工程から得られたゲル混合物を1
70℃ないし190℃に加熱した後xso’cないし1
70℃に急冷し、次に一定速度または指数函数的速度で
190ないし220℃に昇温後放冷する前記第3項記載
の方法。 (5)  第1工程と第2工程、第1工程と第3工程、
第2工程と第3工程とをそれぞれ組み合せる前記第1項
ないし第4塊のいずれかに記載の方法。
[Scope of Claims] (1) An aqueous solution containing an aluminum salt, an aqueous cation, and an inorganic acid is liquid A, an aqueous silicate solution is liquid B, and an ion conditioning agent aqueous solution is liquid C; When adding liquid A and liquid B to liquid C at a constant rate, an ion regulator is added to liquid A, and an element-containing organic cation and B are added to liquid A.
a first step of adjusting the rate of addition of rL; a second step of crushing and comminuting the gel mixture obtained from the first step; and heating the superior gel mixture from the second step to 150"C to 190"C. daytime silica, which comprises a third step of raising the temperature at a base rate of 1 to 3°C and further raising the temperature to 220"C at a constant rate or an exponential rate to perform a hydrothermal synthesis reaction. Method for producing a zeolite catalyst. (27 The second step is the method described in the above paragraph 1, in which the gel mixture obtained in the first step is crushed as it is or separated from the supernatant liquid, crushed and finely divided. (3) The third step is (a) heating the gel mixture metal obtained from the second step at 150°C to 190°C, preferably 160°C.
0.05 to 1°C per minute after heating to 180°C to
(b) The gel mixture is heated at a constant rate of preferably 0.1 to 0.6°C per minute and allowed to cool after reaching 190°C to 220°C, or (b) the gel mixture is heated to 150°C to 190°C, preferably 160°C. After heating from ℃ to 180℃-. The method according to item 1 above, wherein the temperature is raised in an exponential plane number, and after reaching 190°C to 220°C, it is allowed to cool. (4) In the third step, the gel mixture obtained from the second step is
xso'c to 1 after heating to 70℃ to 190℃
The method according to the above item 3, wherein the method is rapidly cooled to 70°C, then raised to 190 to 220°C at a constant rate or an exponential rate, and then allowed to cool. (5) The first step and the second step, the first step and the third step,
The method according to any one of the above items 1 to 4, which combines the second step and the third step, respectively.
JP57173234A 1982-10-04 1982-10-04 Production of high silica zeolite catalyst Granted JPS5962349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173234A JPS5962349A (en) 1982-10-04 1982-10-04 Production of high silica zeolite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173234A JPS5962349A (en) 1982-10-04 1982-10-04 Production of high silica zeolite catalyst

Publications (2)

Publication Number Publication Date
JPS5962349A true JPS5962349A (en) 1984-04-09
JPH0417095B2 JPH0417095B2 (en) 1992-03-25

Family

ID=15956631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173234A Granted JPS5962349A (en) 1982-10-04 1982-10-04 Production of high silica zeolite catalyst

Country Status (1)

Country Link
JP (1) JPS5962349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541492A (en) * 2010-11-05 2013-11-14 シェブロン ユー.エス.エー. インコーポレイテッド Method for preparing small crystal SSZ-32

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541492A (en) * 2010-11-05 2013-11-14 シェブロン ユー.エス.エー. インコーポレイテッド Method for preparing small crystal SSZ-32

Also Published As

Publication number Publication date
JPH0417095B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
CA1057272A (en) Process for producing grit-free zeolitic molecular sieves
CN104876238B (en) A kind of method that synthesis of molecular sieve is assisted by ultraviolet radiation
US3671191A (en) Preparation of high silica synthetic faujasite
US20010054549A1 (en) Continuous process and apparatus for preparing inorganic materials employing microwave
US4562055A (en) Process for preparation of zeolites
US2979381A (en) Process for producing zeolite x
US4178352A (en) Synthesis of type Y zeolite
US4164551A (en) Preparation of zeolite
US2285477A (en) Method of producing sols
CN105000574B (en) HZSM-5 molecular sieve with special appearance and preparation method and application thereof
CN103232044A (en) Synthesis method of nanoscale MCM-49 (Multi Chip Module) molecular sieve
GB1601040A (en) Crystalline sodium aluminosilicate and its preparation
CN100443407C (en) High silicon aluminium ratio small crystal NaY molecular sieve
CN113371731A (en) Rapid crystallization synthesis method of HZSM-5 molecular sieve
JPS60127223A (en) Manufacture of zeolite l
CN101279746A (en) Method for fast synthesizing ZSM-5 molecular sieve by variable temperature crystallization method
JPS5962349A (en) Production of high silica zeolite catalyst
JPS60108317A (en) Manufacture of zsm-5 type zeolite
CN110156037A (en) A kind of preparation method of beta-molecular sieve
CN106315612B (en) A kind of preparation method of low silica-alumina ratio X-type molecular sieve
CN104291351A (en) Method for synthesizing beta molecular sieve by utilizing beta molecular sieve mother solution
JP3677807B2 (en) Clinotylolite and synthesis method thereof
GB2051024A (en) Process for preparing crystalline sodium silico-aluminate of zeolite A type
CN1021570C (en) Preparing process for non-hydrate sodium metasilicate
JPS6049130B2 (en) Manufacturing method of A-type zeolite