JPS5962285A - Solid-state color image pickup device - Google Patents

Solid-state color image pickup device

Info

Publication number
JPS5962285A
JPS5962285A JP57172794A JP17279482A JPS5962285A JP S5962285 A JPS5962285 A JP S5962285A JP 57172794 A JP57172794 A JP 57172794A JP 17279482 A JP17279482 A JP 17279482A JP S5962285 A JPS5962285 A JP S5962285A
Authority
JP
Japan
Prior art keywords
signal
receiving element
solid
circuit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57172794A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57172794A priority Critical patent/JPS5962285A/en
Publication of JPS5962285A publication Critical patent/JPS5962285A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To prevent the sresolution of a solid-state image pickup element from being deteriorated, even if the sensitivity is overlapped vertically, by improving the color filter arrangement and signal processing system. CONSTITUTION:An output of the solid-state image pickup element 1 having three-color filters is led to a one picture element delay circuit 2, a two-picture- element delay circuit 3, and a 1H delay circuit. Thus, a signal of 2G+Ye+Cy is obtained at an adder circuit 7 (where; G is a signal corresponding to green color filter, Ye is a signal to green+red color filter and Cy is a signal to green+blue color filter), a signal of 2G+Ye+Cy having a peak in fN/2 (where; fN is a Nyquist limit frequency) is obtained at a subtracting circuit 11, and a signal of 2G+Ye+Cy having a broad band is obtained at an adding circuit 11. Further, R and B signals are added to the said broad band 2G+Ye+Ce signal as G:R:B= 0.59:0.30:0.11 at the adding circuit 15 in a suitable rate and the broad band luminance signal Y is obtained as an output.

Description

【発明の詳細な説明】 く技術分野〉 本発明(〆」−色分解機能を備えたカラー固体撮像装置
に関し、!庁に異々るスペクトル帯域に感応する後数種
の受光素子の配列に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a color solid-state imaging device with a color separation function, and relates to an arrangement of several types of light receiving elements sensitive to different spectral bands. It is.

〈従来技術〉 2次元固体4@豫素子を単板にてカラー化するには、通
常色フィルタを撮像素子上に配置して被写体像を各色成
分毎に空間サンプリングする方法が探られている。この
場合限られた画素を有効に用いてサンプリングの効率を
高めることが望ましく、色フィルタの配列に関して従来
より種々の手法が提唱されている。
<Prior Art> In order to colorize a two-dimensional solid-state 4@Y element using a single plate, a method has been explored in which a color filter is usually arranged on an image sensor and a subject image is spatially sampled for each color component. In this case, it is desirable to effectively use limited pixels to increase sampling efficiency, and various methods have been proposed for arranging color filters.

例えば、輝度信号は高い解像度を必要とするの妬対し色
信号は相対的に低い解像度で可能であるというビデオ信
号の特質を利用し、輝度信号の大半を占める緑色(G)
信号用のGフィルタのみ水平・垂直の両方向とも1素子
おきの市松状に配置し、その間の位置に赤色(R)フィ
ルタ及び青色(B)フィルタを各々繰返しパターンで配
置する手法はり(l率が高く、第1図(a)に示すベイ
ヤー配列、第1図(1〕)に示すインターライン配列等
として知られている。しかしこのような配列上の工夫を
行なっても、輝度信号の解像度は、全画素を輝度信号の
ために用いた白黒撮像の場合に比べ低くなる。
For example, by utilizing the characteristics of video signals that brightness signals require high resolution, but color signals can be achieved with relatively low resolution, green (G), which occupies the majority of brightness signals, is used.
The method of arranging only the signal G filter in a checkerboard pattern with every other element in both the horizontal and vertical directions, and placing the red (R) filter and blue (B) filter in a repeating pattern between them (the L rate is These are known as the Bayer array shown in Figure 1 (a), the interline array shown in Figure 1 (1), etc. However, even with these arrangements, the resolution of the luminance signal remains low. , is lower than in the case of black-and-white imaging in which all pixels are used for luminance signals.

さらに、フレーム転送型固体撮像素子のように、垂直方
向2画素間にわたり感度の重なりがある場合にB1異な
る色信号が混合し、各色信号への分解が不可能となる。
Furthermore, when there is overlap in sensitivity between two pixels in the vertical direction, as in a frame transfer type solid-state image sensor, color signals different in B1 are mixed, and separation into each color signal becomes impossible.

従って通常は垂直方向に同一色フィルタを配置し、G、
R1B5色を縦ストライプ状にて水平方向に繰返j−た
配列が用いられる。
Therefore, normally filters of the same color are arranged vertically, and G,
An arrangement in which R1B5 colors are repeated horizontally in a vertical stripe pattern is used.

この場合は、水平方向の繰返し周期は白黒撮像の場合に
比べ1/3となり、水平解像度は1/3に低下する。
In this case, the repetition period in the horizontal direction is 1/3 compared to the case of monochrome imaging, and the horizontal resolution is reduced to 1/3.

フレーム転送型固体J@像素子に適用可能なモザイク状
色フィルタ陀列としては、特開昭57−39684に透
明(W)フィルタ、Gフィルタ、黄色(Ye)フィルタ
、hびシアン色(Cy)フィルタを用いた手法が記され
ている(第2図(a))。この場合は垂部方向に隣接す
る2画素信号を加算するとW−L Ye SG 十Cy
の組合せと、W 十Cy 、 G −1−Yeの組合せ
が1水平走査期間(IH)毎11こ得られる。従ってR
及びB信号に一2画素周期で空間変調された信号として
I II毎に交互に得られる。まだ輝度(Y)信号Vま
ベースバンド信号として得られ、帯域は白黒撮像時のナ
イキスト限界周波数(f 、、 )からR信号ないしB
信号の帯域を差し引いた値まで得られる。従って垂直方
向2画素間に感度の重なりがあっても、YSR,B信号
の帯域はそれぞれf −ΔB、ΔB、ΔB(0く△B≦
f u/2)−1で得られ、1 従来の縦方向ストライプ状色フィルタに比べ高い水平解
像度が得られる。
As a mosaic color filter array applicable to the frame transfer type solid-state J@ image element, Japanese Patent Application Laid-Open No. 57-39684 discloses a transparent (W) filter, a G filter, a yellow (Ye) filter, and a cyan color (Cy) filter. A method using a filter is described (Fig. 2(a)). In this case, when two pixel signals adjacent to each other in the vertical direction are added, W-L Ye SG 10Cy
, and 11 combinations of W +Cy and G -1-Ye are obtained every horizontal scanning period (IH). Therefore R
and B signals are spatially modulated at 12 pixel periods and are obtained alternately every III. The luminance (Y) signal V can still be obtained as a baseband signal, and the band ranges from the Nyquist limit frequency (f, , ) during monochrome imaging to the R signal or B signal.
The value obtained is obtained by subtracting the signal band. Therefore, even if there is overlap in sensitivity between two pixels in the vertical direction, the bands of YSR and B signals are f - ΔB, ΔB, and ΔB (0ku ΔB ≦
f u/2)-1, and a higher horizontal resolution than conventional vertical striped color filters can be obtained.

しかしながら特開昭57−39684の手法は次のよう
な欠点を有している。即ちY信号の帯域はナイキスト限
界(f 、、 )より低い値であり、fNに近づけばR
ないしB信号の変調成分が混入して縦縞模様が入る。逆
にfN近傍の白黒画像を摘除した場合には、)・−々い
しB信号に偽色信号となって現われる。これら関係を第
2図(b)に示す。さらにとの手法ではR及びB信号け
IH毎に欠落するだめI H毎に補間する必要がある1
、これはR及びB信号の垂直解像度を低下させることに
なる。
However, the method disclosed in Japanese Patent Application Laid-Open No. 57-39684 has the following drawbacks. In other words, the band of the Y signal is a value lower than the Nyquist limit (f,, ), and as it approaches fN, R
Or, a modulation component of the B signal is mixed in, resulting in a vertical striped pattern. On the other hand, if the black and white image near fN is removed, a false color signal appears in the B signal. These relationships are shown in FIG. 2(b). Furthermore, in the above method, since the R and B signals are missing for each IH, it is necessary to interpolate for each IH.
, which will reduce the vertical resolution of the R and B signals.

〈発明の目的〉 本発明は以上のような問題点に鑑みて〃さhたもので、
垂直方向に感度の重なりがある素子に対して適用可能で
あるにもかかわらず、高解像度等の優れた特性を引き出
すことが可能な色フイルり4/11列及び信号処理方式
を提供するものである。
<Object of the invention> The present invention has been developed in view of the above-mentioned problems.
It provides a color filter 4/11 array and signal processing method that can bring out excellent characteristics such as high resolution even though it is applicable to elements with overlapping sensitivities in the vertical direction. be.

即ちY[信号け、fη近傍を除きfNまで解像可能であ
り、さらに1η付近はIH遅延信号により十分に補間す
ることが可能である。従ってfN−,1:での全域にわ
たりほぼ完全に解像することが可能となる。この場合、
色信号変調成分の混入は完全に除去される。一方、R及
びB信号は常時得られ垂直補間の必要がない。また水平
方向に輝度変化の大きい像を撮像した場合でも、偽色信
号の発生を抑えることが可能である。ここでR信号及び
B信号の帯域は N//2まで得られる。
That is, it is possible to resolve up to fN except for the Y signal around fη, and furthermore, the area around 1η can be sufficiently interpolated by the IH delay signal. Therefore, it is possible to almost completely resolve the entire area at fN-,1:. in this case,
Mixture of color signal modulation components is completely removed. On the other hand, R and B signals are always available and do not require vertical interpolation. Further, even when an image with large luminance changes in the horizontal direction is captured, it is possible to suppress the generation of false color signals. Here, the bandwidth of the R signal and B signal can be obtained up to N//2.

〈実#fii f、′−11’、’− 第3図(a)及び(b)に本発明の色フイルタ配列実施
例を示す、、色フィルタVま3種用い、G 、 G+R
=Ye、G −1−B = Cyの組合せとする0各水
平列内では4画素周期の繰返(2醒列となっており、1
周期内ではGフィルタが隣接り一で2画素存在し、残り
の位置にt/′iYeフィルタ及びcyフィルタが各1
画素ずつ、ないし同一フィルタのみ2画素存在する。ま
だ各垂直列内では4画素周期の繰返し配列となっており
、1周期内ではGフィルタが隣接して2画素存在し、残
りの位置にはYeフィルタ及びcyフィルタが各1画素
存在する。
<Actual #fii f, '-11', '- Figures 3 (a) and (b) show examples of color filter arrays of the present invention. Three types of color filters are used: G, G+R.
=Ye, G -1-B = Cy combination 0 In each horizontal column, 4 pixel periods are repeated (2 pixel columns, 1
Within the period, there are two adjacent pixels of G filters, and one t/'iYe filter and one cy filter each in the remaining positions.
For each pixel, there are only two pixels of the same filter. Each vertical column is still arranged in a repeating array with a period of four pixels, and within one period there are two adjacent pixels of the G filter, and in the remaining positions there are one pixel each of the Ye filter and the cy filter.

前記色フィルタと相合ぜた固体撮像素子の信号の読み出
1−は次のように行なう。力お以下では第3図(a)の
場合のフィルタ配列について説明を行なうが、第3図0
〕)についても同様に議論することが可能である。
Reading 1- of the signal of the solid-state image sensor combined with the color filter is performed as follows. In the following, we will explain the filter arrangement in the case of Fig. 3(a).
]) can be similarly discussed.

第3図(a)において、奇数フィールドでは第(4n−
3)行と第(4]1−2)行、第(4n−1)行と第4
n行、・が2行間時に読み出されかつ同一垂直列上02
2画素信は加算されて出力される。次に偶数フィールド
では第(4n−2)行と第(4n−1)行、第411行
と第(4n+1 )行、 ・が2行間時に読み出さIi
かつ同一垂直列上の2画素信号は加算されて出力される
。結局、実時間11片号(OH)は第4図(a)に示し
だ信号列となる。この場合隣接画素信号間で差を取ると
R及びB信号が1画素信号毎に交互に得られる。即ち、
R信号及びB信号1d’l信号列のみで同時に得られ、
その帯域は白黒撮像時の1/ であるfII/2まで得
られる。
In FIG. 3(a), in the odd field, the (4n-th
3) row and (4) 1-2) row, (4n-1) row and 4th
n row, . is read out between two rows and on the same vertical column 02
The two pixel signals are added and output. Next, in the even field, the (4n-2)th row and the (4n-1)th row, the 411th row and the (4n+1)th row, and ・ are read out between two rows.Ii
Two pixel signals on the same vertical column are added and output. In the end, the real time signal number 11 (OH) becomes the signal train shown in FIG. 4(a). In this case, by taking the difference between adjacent pixel signals, R and B signals are obtained alternately for each pixel signal. That is,
R signal and B signal can be obtained simultaneously with only 1d'l signal train,
The band can be obtained up to fII/2, which is 1/2 that of monochrome imaging.

一方、ベースバンド成分として得らh−る輝度信号はそ
のままでは IJ/2の所にR及びB信号の変調成分が
混入する。従って 1喝を中心とする±ΔBの帯域(Δ
B;R及びB信号の帯域)の成分を除去する。この帯域
の輝度信号はOH信号とIH遅延信号(IH)との加算
により得られる。即ち、fN、/2近傍の高域信号は一
般に垂直相関度が高いから、OI−I信号と1 iI遅
延信号の加算信号により近似することが可能であり、こ
のうち11滴を中心とする士△Bの帯域成分を抽出し、
前記した当該帯域除去輝度信号番・c二加算ずhばf’
+vまでの広帯域輝度−+=号を得ることが可能となる
On the other hand, if the h-luminance signal obtained as a baseband component is left as it is, the modulation components of the R and B signals will be mixed in at IJ/2. Therefore, the band of ±ΔB (Δ
B; R and B signal bands) are removed. The luminance signal in this band is obtained by adding the OH signal and the IH delay signal (IH). In other words, since the high-frequency signal near fN, /2 generally has a high degree of vertical correlation, it can be approximated by the sum signal of the OI-I signal and the 1 iI delayed signal, and among these, the signal centered on 11 drops Extract the band component of △B,
The above-mentioned band-removed luminance signal number/c2 addition/hbaf'
It becomes possible to obtain a wide band luminance of −+= up to +v.

上記操作の実施例を以下して述べる。第4図(b)、(
c)及び(d)に、第4図(a)に示したO H信号の
1画素遅延信号(IE)、2画素遅延信号(2E)、及
びIH遅延信号(1■()を示す。OH信号からIE倍
信号減算すると第4図(e)に示すようにR,B信号が
画素毎に交互に得られる。但し、符号は2画素毎に反転
する。従って例えば同期検波回路により正符号化し、R
信号とB信号に分配することによシ高解像度のR信号、
B(M号が得られる。一方、輝度信号によOH信号と2
E信号を加算することにより第4図(f)に示すように
画素毎に常に2 G+Y e −1−Cy信号が得られ
る。但し、この場合の信号帯域は、にfN//2丁応答
がOとなる特性になる。
An example of the above operation will be described below. Figure 4(b), (
c) and (d) show a 1-pixel delayed signal (IE), a 2-pixel delayed signal (2E), and an IH delayed signal (1) of the OH signal shown in FIG. 4(a).OH When the IE multiplied signal is subtracted from the signal, R and B signals are obtained alternately for each pixel as shown in FIG. ,R
High-resolution R signal by dividing into signal and B signal,
B (M number is obtained.On the other hand, the OH signal and 2
By adding the E signals, a 2 G+Y e -1-Cy signal is always obtained for each pixel as shown in FIG. 4(f). However, in this case, the signal band has a characteristic in which the response to fN//2 is O.

次に、OII信号とI H信号を加算すると画素毎に常
に2G−1−Ye+Cy信号が得られる○この信号は同
一垂直列上の画素の加算信号であるから、垂直解像度に
影響する低域成分を除けば高解像度輝度信号である。従
ってOf(+I H信号からOH+IH信号を2画素遅
延したイ計号(’OH−1−I H)・(2E)を減算
す−hば、 にf i’、(でピークを持ち、0とf、1でOとなる
応答特性になる。従ってこの信号を前記OH+2E信号
に加算すればfHまでの帯域全域にわたって高い応答特
性を持つ2G−1−Ye+Cy信号が祷られる0最終的
な輝度信号は2G+Ye+Cy信号にR信号及びB信号
を適宜加算し、G:R:B=0.59:0.30:01
1となるようにすれば色再現性も良好な高帯域の輝度信
号Yf3:得ることができる。以上の結果、R,B、Y
信号の帯域は第5図(c)に示す範囲まで・帰られるこ
とが判明する。
Next, by adding the OII signal and the IH signal, a 2G-1-Ye+Cy signal is always obtained for each pixel. Since this signal is a sum signal of pixels on the same vertical column, it contains low-frequency components that affect vertical resolution. Except for this, it is a high-resolution luminance signal. Therefore, if we subtract from the Of(+IH signal the 2-pixel delay of the OH+IH signal ('OH-1-IH)・(2E), we get f i', (which has a peak at 0 and The response characteristic becomes O at f, 1. Therefore, if this signal is added to the OH+2E signal, a 2G-1-Ye+Cy signal with high response characteristics over the entire band up to fH is expected.0 The final luminance signal is Appropriately add R signal and B signal to 2G+Ye+Cy signal, G:R:B=0.59:0.30:01
1, a high-band luminance signal Yf3 with good color reproducibility can be obtained. The above results, R, B, Y
It turns out that the signal band extends to the range shown in FIG. 5(c).

第6図は以上に述べた信号処理を実現するだめの回路ブ
ロック図を示1h二ものである。第3図(a)に示しだ
色フィルタを備えた固体撮像素子1の出力信号は分岐さ
れ、その一部は1画素遅延回路2.2画素遅延回路3、
IH遅延回路4へ各々導かれる。減算回路6では撮像素
子1の分岐出力信号から遅延回路2の出力信号が減算さ
れ同期検波回路12へ導かiしる。このときの信号波形
は第4図(e)に相当する。(σ・波回路12では信号
に同期して2画素お・きに符号を反転する機能を有し、
全て正符号のRSB信号を出力し7、次段のサンプリン
グ回路13及び14へ導く0サンプリング回路13では
R信号のみが、サンプリング回路14ではB信号のみが
サンプリングされ、それぞれ増幅器を介してR信号、B
信号が出力される。
FIG. 6 shows a circuit block diagram for realizing the signal processing described above. As shown in FIG. 3(a), the output signal of the solid-state image sensor 1 equipped with a color filter is branched, and a part of it is divided into a 1-pixel delay circuit 2, a 2-pixel delay circuit 3,
They are each guided to the IH delay circuit 4. In the subtraction circuit 6, the output signal of the delay circuit 2 is subtracted from the branched output signal of the image sensor 1, and the result is guided to the synchronous detection circuit 12. The signal waveform at this time corresponds to FIG. 4(e). (The σ wave circuit 12 has a function of inverting the sign every two pixels in synchronization with the signal,
The 0 sampling circuit 13 outputs RSB signals with all positive signs and leads them to the next stage sampling circuits 13 and 14. In the 0 sampling circuit 13, only the R signal is sampled, and in the sampling circuit 14, only the B signal is sampled. B
A signal is output.

一方、遅延回路3の出力は撮@素子1の分岐出力と加算
回路7で加算され2G−1−Ye+Cy信号を得る。こ
の場合の信号波形i[4図(f)にイ目自する。
On the other hand, the output of the delay circuit 3 is added to the branch output of the sensor 1 in an adder circuit 7 to obtain a 2G-1-Ye+Cy signal. In this case, the signal waveform i [see Fig. 4 (f)].

まだ第5図(a)に示す周波数応答特性である2、次に
、L H遅延回路4の出力は53−岐さJし、一方は加
算回路8へ導かれ、撮r象素子1の分岐出力と加算され
る。この、場合の信号波形は第4図(g)に相当する。
2, which still has the frequency response characteristic shown in FIG. is added to the output. The signal waveform in this case corresponds to FIG. 4(g).

遅延回路4の他の分岐出力は2画素遅延回路3′を介し
て加算回路9へ導かit、遅延回路3からの信号と加算
される。この場合の信号波形は第一4図1g)において
2画素遅延した信号に相当する。
The other branch output of the delay circuit 4 is led to the adder circuit 9 via the two-pixel delay circuit 3' and added to the signal from the delay circuit 3. The signal waveform in this case corresponds to the signal delayed by two pixels in FIG. 4 (1g).

減算回路10では前記加算回路8の出力信号から加算回
路9の出力信号が減算さiz、第5同側に示すようにf
!糠にピークを持つ2G1−YcICy信号が得られる
。加算回路11では、前記加算回路7からのf、滴に負
のピークを持つ2G+Ye+Cy信号と、減算回路10
からのf11/2にピークを持つ2G十Ye十CV信号
が加算され、広帯域の2G+YeCy信号が得られる。
In the subtracting circuit 10, the output signal of the adding circuit 9 is subtracted from the output signal of the adding circuit 8.
! A 2G1-YcICy signal having a peak in bran is obtained. The addition circuit 11 receives the f from the addition circuit 7, the 2G+Ye+Cy signal having a negative peak in the droplet, and the subtraction circuit 10.
The 2G + Ye + CV signals having a peak at f11/2 are added to obtain a broadband 2G+YeCy signal.

との信号は増幅器を介して加勢回路15へ導かれる。加
算回路15ではG:R:B=0.59:0.30:0.
11となるよう前記広帯域2G−l−Ye+Cy信号に
前記R信号及びB信号が適癌な比率で加算さり、広帯域
輝度信号Yが出力されろ。
The signal is led to the auxiliary circuit 15 via an amplifier. In the adder circuit 15, G:R:B=0.59:0.30:0.
The R signal and the B signal are added to the wideband 2G-l-Ye+Cy signal at an appropriate ratio so that the brightness signal Y becomes 11, and a wideband luminance signal Y is output.

第7図は本発明を実現するだめの別の回路ブロック図を
示したものである。R及びB信号を得る回路は第6図の
場合と同一である。輝度信号を得るには次のように行な
う。第3図(a)の色フィルタを備えだ固体撮像素子1
からの分岐出力の1つはfηに負のピークを持つ帯域除
去フィルタ16を通すととによりR,B信号変調成分を
除去した2 Gl−Y e −+−Cy信号を得る。一
方、固体撮像素子1の分岐2出力のうち一方は直接、他
方はI I−1遅延回路4を介して加算回路8へ導かれ
画素毎に加算されて、垂直解像度は低いが高い水平解像
度を持つ2G−1−Ye l−CV信号を得る。この信
号をf u7.、にピークを持つ帯域通過フィルタ17
を通すことにより前記帯域除去フィルタ16からの信号
を補イt′tするイ菖号を得る。従ってフィルタ16及
・び17からの信号を加算回路11で加算することによ
り、fNまで応答の劣化のない広帯域の2G+Ye十C
y信号が得られる。この後輝度信号を得る、回路は第6
図の場合と同一であり、前記2G+Ye+Cy信号にR
信号及びB信号を適宜加算することにより広帯域輝度信
号Yが得られる。
FIG. 7 shows another circuit block diagram for realizing the present invention. The circuit for obtaining the R and B signals is the same as in FIG. To obtain the luminance signal, proceed as follows. Solid-state image sensor 1 equipped with the color filter shown in FIG. 3(a)
One of the branched outputs is passed through a band-rejection filter 16 having a negative peak at fη, thereby obtaining a 2 Gl-Y e −+-Cy signal from which the R and B signal modulation components have been removed. On the other hand, one of the branch 2 outputs of the solid-state image sensor 1 is led directly to the adder circuit 8 through the I-1 delay circuit 4 and added for each pixel, resulting in a high horizontal resolution although the vertical resolution is low. Obtain a 2G-1-Yel-CV signal with This signal is f u7. , a bandpass filter 17 having a peak at
By passing the signal through the band-elimination filter 16, a signal which complements the signal from the band-removal filter 16 is obtained. Therefore, by adding the signals from the filters 16 and 17 in the adder circuit 11, a wide band of 2G+Ye+C with no response deterioration up to fN can be obtained.
A y signal is obtained. After this, the circuit obtains the luminance signal at the sixth
This is the same as the case shown in the figure, and R is applied to the 2G+Ye+Cy signal.
A wideband luminance signal Y is obtained by appropriately adding the signal and the B signal.

以上の信号処理方式においては水平方向に輝度変化の大
きい光像、殊にfl+/2の空間周波数の像においては
RないしB信号に偽信号が生じる。しかしながらこの偽
信号は以下の手法により消去可能である。
In the above signal processing method, a false signal occurs in the R or B signal in an optical image with a large change in luminance in the horizontal direction, especially in an image with a spatial frequency of fl+/2. However, this false signal can be eliminated by the following method.

第8図に示す状況においては、奇数フィールドflll
lでR信号に、偶数フィールド側でB信号に偽信号が生
じる。いま賃S数フィールトイ[1すを考えると、第]
ηライン走査時には同期検波後のR信号に十の偽信号が
生じ、第1n−1ライン走査時には−の偽信号が生じて
いる。従って両者の加算(i号を取れば偽信号は消失す
る。まだ本来のR信号の場合には正しく再生される。偶
数フィールド側も上記操作をB信号に適用することによ
り、偽のB信号は消失する。但し、以上の操作はR及び
B信号の垂直M@度を劣化させる。従って実際にd:次
のようとする。
In the situation shown in FIG.
A false signal occurs in the R signal at 1, and a false signal occurs in the B signal at the even field side. Now pay S number feel toy [considering 1 S]
During η line scanning, a 10 false signal occurs in the R signal after synchronous detection, and a - false signal occurs during 1n-1 line scanning. Therefore, if you add the two (take the i number), the false signal will disappear.If it is still the original R signal, it will be reproduced correctly.On the even field side, by applying the above operation to the B signal, the false B signal will be removed. However, the above operation degrades the vertical M@ degree of the R and B signals.Actually, d: is as follows.

第9図は偽色信号消去のだめの回路ブrllツク図であ
る。固体カラー撮像素子1の11」力信号から同信号を
遅延回路2により1画素遅延した信号を差し引き、2画
素毎に符号反転する同期検波回路12によりRSB検波
信号を得る。また撮像素子1の出力信号を遅延回路4に
よりI H遅延さぜた信号から、同信号をさらに遅延回
路2′により1画素遅延させた信号を差し引き、2画素
毎に符号反転する同期検波回路12′によりI H遅延
したR、B検波信号を得る。同期検波回路12の出力と
12′の出力を加算することにより偽色のないR,B信
号を得る。一方、撮像素子1の出カイ計号と同信号を遅
延回路3によシ2画素遅延した48号とを加算して2G
−1−Ye−1−C:i’倍信号得る。また、撮像素子
1の出力信号を遅延回路4により1 fl遅延した信号
と、同信号を遅延回路3′により2画素遅延した信号と
を加算して、I H遅延した2G−f−Ye+Cy信号
を得る。2G十Ye+Cy信号から同信号をIH遅延し
た信号を差し引くことにより垂直輪郭信号を得る。
FIG. 9 is a circuit block diagram for eliminating false color signals. A signal delayed by one pixel by a delay circuit 2 is subtracted from the 11'' output signal of the solid-state color image sensor 1, and an RSB detection signal is obtained by a synchronous detection circuit 12 which inverts the sign every two pixels. Furthermore, a synchronous detection circuit 12 subtracts a signal obtained by further delaying the same signal by one pixel by a delay circuit 2' from a signal obtained by IH delaying the output signal of the image sensor 1 by a delay circuit 4, and inverts the sign every two pixels. ' to obtain IH-delayed R and B detection signals. By adding the output of the synchronous detection circuit 12 and the output of the synchronous detection circuit 12', R and B signals without false colors are obtained. On the other hand, the output signal of the image sensor 1 and the signal No. 48, which is delayed by 2 pixels by the delay circuit 3, are added together to produce 2G.
-1-Ye-1-C: Obtain i' times signal. Also, by adding the output signal of the image sensor 1 delayed by 1 fl by the delay circuit 4 and the signal delayed by 2 pixels by the delay circuit 3', a 2G-f-Ye+Cy signal delayed by IH is obtained. obtain. A vertical contour signal is obtained by subtracting a signal obtained by IH delaying the same signal from the 2G+Ye+Cy signal.

この輪郭信号を前記偽色消去したR、B信号に付加して
、垂直解像度を改善し7だ偽色消去R,B信号を得、R
及びB信号を各々別個にサンプリングして目的とするR
信号、B信号を得る。
This contour signal is added to the false color canceled R and B signals to improve the vertical resolution and obtain the false color canceled R and B signals.
and B signals separately to obtain the desired R
Get signal, B signal.

〈効果〉 以上説明してきたように、本発明によれば、垂直方向2
画素にわたり感度の重なりがある固体撮像素子において
も、高い水平・垂直解像度を持ち、相互の干渉もほとん
どないR,BSY信号を得ることが可能となる。また使
用色フィルタはG、Ye。
<Effects> As explained above, according to the present invention, vertical direction 2
Even in a solid-state image sensor in which sensitivities overlap across pixels, it is possible to obtain R and BSY signals with high horizontal and vertical resolution and almost no mutual interference. The color filters used are G and Ye.

Cyの3色で十分であり、GフィルタをYeフィルタと
Cyフィルタの重ねて形成すれば2色で構成できる利点
を合わせ持っている。さらに16(色フイ)レタの場合
に比べ光の利用効率が高く、感度が高められることは言
うまでもない。
Three colors of Cy are sufficient, and if the G filter is formed by overlapping the Ye filter and the Cy filter, it has the advantage that it can be composed of two colors. Furthermore, it goes without saying that the light utilization efficiency is higher and the sensitivity is higher than in the case of 16 (color filters).

ここで、垂直方向の感度の重なりは、フレーノ・転送型
撮像素子のように構造的なものであっても、光学的なも
のであっても、さらに駆動方法により達成したものであ
っても、垂直2画素間にわたるものである限りはすべて
本発明が適用可能である。
Here, the overlap in sensitivity in the vertical direction may be structural, as in Freno transfer type image sensors, optical, or achieved by a driving method. The present invention is applicable to any area as long as it extends between two vertical pixels.

なお、以上においては第3図(a)、(b)に示す色フ
ィルタを固体撮像素子上に装置した場合を例に取り説明
してきだが、固体撮像素子の名画素自体が前記色フィル
タ配列に相当する分光特性を備える場合に対しても同様
に議論することができる。
In the above explanation, we will take as an example the case where the color filters shown in FIGS. 3(a) and 3(b) are installed on a solid-state image sensor, but the pixel of the solid-state image sensor itself corresponds to the above-mentioned color filter array. A similar argument can be made for the case where the spectral characteristics are as follows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来用いられている色フィルタ配列
の例で、第1図は各画素信号を独立して読み出せる場合
に適用可能な例、第2図は垂直方向に感度の重カリがあ
る場合に適用可能な例であり(a)は色フィルタ蘭列を
示す図、(b)はY、R,B信号の帯域を示す図、第3
図(a)及び(b)は本発明による色フィルタ配列を示
す図、第4図は本発明による信号処理のタイミングを示
す図、第5図は本発明により得ちれる信号の周波数応答
を示し、(a)及び(b)は信号処理の途中における2
信号の応答図、(c)は最終的なYSR,B信号の帯域
を示す図、第6図及び第7図は名々本発明を実現す、る
ための回路ブロック図、第8図及び第9図は偽色信号を
消去する手法を示すもので、第8図はタイミング図、第
9図は回路ブロック図を示す。 1:固体カラー撮像素子、2.2′、1画素遅延回路、
3.3′:2画素遅延回路、4:IH遅延回路、6.7
.8.9.10.11.15:加減算回路、12.12
′:同期検波回路、13.14:サンプリング回路、1
6:帯域除去フィルタ、17:帯域通過フィルタ。 代理人 弁理士 福 士 愛 彦(他2名)tσノ 47ノ 第2 tσノ 第 (b) 第 /lス1 0         ftv   鴇線(b) 図 (b) 31!1
Figures 1 and 2 show examples of conventionally used color filter arrays. Figure 1 is an example that can be applied when each pixel signal can be read out independently, and Figure 2 is an example where the sensitivity is stacked vertically. This is an example that can be applied when there is potency, and (a) is a diagram showing a color filter sequence, (b) is a diagram showing bands of Y, R, and B signals, and
Figures (a) and (b) are diagrams showing the color filter array according to the present invention, Figure 4 is a diagram showing the timing of signal processing according to the present invention, and Figure 5 is a diagram showing the frequency response of the signal obtained according to the present invention. , (a) and (b) are 2 in the middle of signal processing.
Signal response diagram, (c) is a diagram showing the final YSR and B signal bands, Figures 6 and 7 are circuit block diagrams for realizing the present invention, and Figures 8 and 7 are FIG. 9 shows a method for eliminating false color signals, FIG. 8 shows a timing diagram, and FIG. 9 shows a circuit block diagram. 1: Solid-state color image sensor, 2.2', 1 pixel delay circuit,
3.3': 2 pixel delay circuit, 4: IH delay circuit, 6.7
.. 8.9.10.11.15: Addition/subtraction circuit, 12.12
': Synchronous detection circuit, 13.14: Sampling circuit, 1
6: Band-removal filter, 17: Band-pass filter. Agent Patent attorney Aihiko Fukushi (and 2 others) tσ no. 47 no. 2 tσ no. 2 (b) No. /l s1 0 ftv Tokisen (b) Figure (b) 31!1

Claims (1)

【特許請求の範囲】 ■)水平・垂直方向に配列された受光素子群からなる撮
像装置において、各受光素子は第1スペクトル帯域に感
応する第1の受光素子、第1スペクトル帯域と第2スペ
クトル帯域に感応する第2の受光素子、第1スペクトル
帯域と第3スペクトル帯域に感応する第3の受光素子の
いずれかにより構成されており、さらに垂直方向に隣接
する2素子を組とし、該2素子組が水平方向に隣接する
任意の4組内においてd、前記第1の受光素子2素子か
らなる第1の組、第1の受光素子と第2の受光素子から
なる第2の組、第1の受光素子と第3の受光素子からな
る第3の絹、及び第2の受光素子と第3の受光素子から
なる第4の組がそれぞれ各1組存在し、かつ第1の組と
第4の組は前記4.11内において水平方向に間に1絹
おいて隔てた位置を占め、第2の組と第3の組は前記4
m内の残余の位置を占めてなることを特徴とする固体カ
ラー撮像装置、。 2)垂直方向に隣接する任意の4素手組内においては、
常に前記第1の受光素子が2素子、第2の受光素子及び
第3の受光素子が各々1素子存在することを特徴とする
特許請求の範囲第1項記載の固体カラー撮像装置。 3)前記第1スペクトル帯域は緑色帯域、第2スペクト
ル帯域は赤色帯域、第3スペクトル帯域は青色帯域とな
ることを特徴とする特許請求の範囲第1項ないし第2項
記載の固体カラー掃像装置。
[Claims] ■) In an imaging device consisting of a group of light receiving elements arranged in horizontal and vertical directions, each light receiving element is a first light receiving element sensitive to a first spectral band, a first spectral band and a second spectral band. It is composed of either a second light-receiving element sensitive to a band, a third light-receiving element sensitive to a first spectral band and a third spectral band, and two vertically adjacent elements are formed into a set, and the two Among any four horizontally adjacent element sets, d, a first set consisting of two first light receiving elements, a second set consisting of a first light receiving element and a second light receiving element, and a second set consisting of a first light receiving element and a second light receiving element; There is one set each of a third set consisting of the first light receiving element and the third light receiving element, and a fourth set consisting of the second light receiving element and the third light receiving element. The 4th set occupies horizontally spaced positions within the 4.11 space, and the 2nd and 3rd sets occupy positions within the 4.11 space.
A solid-state color imaging device, characterized in that the solid-state color imaging device occupies a residual position within m. 2) In any vertically adjacent four-arm pair,
2. The solid-state color imaging device according to claim 1, wherein there are always two first light-receiving elements, one second light-receiving element, and one third light-receiving element each. 3) The solid-state color sweeping image according to claim 1 or 2, wherein the first spectral band is a green band, the second spectral band is a red band, and the third spectral band is a blue band. Device.
JP57172794A 1982-09-30 1982-09-30 Solid-state color image pickup device Pending JPS5962285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172794A JPS5962285A (en) 1982-09-30 1982-09-30 Solid-state color image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172794A JPS5962285A (en) 1982-09-30 1982-09-30 Solid-state color image pickup device

Publications (1)

Publication Number Publication Date
JPS5962285A true JPS5962285A (en) 1984-04-09

Family

ID=15948478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172794A Pending JPS5962285A (en) 1982-09-30 1982-09-30 Solid-state color image pickup device

Country Status (1)

Country Link
JP (1) JPS5962285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714955A (en) * 1985-11-06 1987-12-22 Hitachi, Ltd. Solid-state color image pickup apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714955A (en) * 1985-11-06 1987-12-22 Hitachi, Ltd. Solid-state color image pickup apparatus

Similar Documents

Publication Publication Date Title
US4245241A (en) Solid-state color imaging device
US4288812A (en) Color filter
JPH0628450B2 (en) Solid-state imaging device
JPS5835434B2 (en) Color solid-state imaging device
JPS6348235B2 (en)
US4339771A (en) Solid-state color imaging apparatus having an excellent resolution
JPS6129197B2 (en)
JPS598491A (en) Color solid-state image pickup device
US4293871A (en) Solid state color television camera with multiple line readout
US4646139A (en) Color image pickup apparatus with color filter array comprising filter elements of three different colors arranged to provide reduced folding distortion
JPS5962285A (en) Solid-state color image pickup device
JPS5875393A (en) Single plate type color image pickup device
JPS5810916B2 (en) Color Kotai Satsuzou Sochi
JPS60263592A (en) Solid-state image pickup device
JPS6068788A (en) Solid-state color image pickup device
JP2655436B2 (en) Color solid-state imaging device
JPS59154891A (en) Single board color image pickup device
JPS59168790A (en) Color image pickup device
JPH0479195B2 (en)
JP2562287B2 (en) Solid-state imaging device
JPS58182978A (en) Color solid-state image pickup device
JPS6129287A (en) Color solid-state image pickup device
JPH0139273B2 (en)
JPH0572796B2 (en)
JPS5963892A (en) Solid-state color image pickup device