JPS5961716A - Weir type flow rate measuring apparatus - Google Patents

Weir type flow rate measuring apparatus

Info

Publication number
JPS5961716A
JPS5961716A JP57170833A JP17083382A JPS5961716A JP S5961716 A JPS5961716 A JP S5961716A JP 57170833 A JP57170833 A JP 57170833A JP 17083382 A JP17083382 A JP 17083382A JP S5961716 A JPS5961716 A JP S5961716A
Authority
JP
Japan
Prior art keywords
flow rate
notches
weir
flow
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57170833A
Other languages
Japanese (ja)
Other versions
JPH0359366B2 (en
Inventor
Toshiyuki Nagahama
長浜 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57170833A priority Critical patent/JPS5961716A/en
Publication of JPS5961716A publication Critical patent/JPS5961716A/en
Publication of JPH0359366B2 publication Critical patent/JPH0359366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To achieve an economical and highly accurate measurement both for a large and small flow rate by providing a plurality of notches at the upper part of a weir while covers for checking a water passage are provided at the respective notches in such a manner as to free to detach. CONSTITUTION:A weir 2 is provided with a plurality of notches 2a and covers 6 are provided at the respective notches to check overflows of water. With such an arrangement, a highly accurate measurement can be done even for a small flow rate and the cover for the alteration of the measuring range is only required to merely intercept the flow, making it cheap. Removing the cover is enough to alter the measuring range and everything can be done very simply for a short time.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は水路に」1すを設け、越流する水割の大きさを
測定することによシ′Off、喰測定を行う堰式流11
1測定装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a weir-type flow 11 that measures the flow rate by installing a weir in a waterway and measuring the size of overflowing water.
1. Regarding a measuring device.

〔従来技術〕[Prior art]

p1↓1図に従来用いられている堰式流量測定装置の代
表的な構成を示す。
Figure p1↓1 shows a typical configuration of a conventionally used weir type flow rate measuring device.

第1図において、水が矢印方向に流れる水路1の途中に
設けられた堰2の切欠き部2a′fc越流する水位を水
位計3で測定し演37器4で流量に対応した信号に演算
し、指示計5でその数値を読みとるというものである。
In Fig. 1, the water level overflowing the notch 2a'fc of the weir 2, which is provided in the middle of the waterway 1 where water flows in the direction of the arrow, is measured by the water level gauge 3, and the signal corresponding to the flow rate is generated by the controller 4. The calculation is performed and the numerical value is read using the indicator 5.

かかる堰式流情、装置の測定積度について考察してみる
と次のようになる。
If we consider the weir type flow and the measurement capacity of the device, we will see the following.

通常、測定誤差は定格値(最大目盛)に対する決められ
た割合で許容されている。例えば、許容誤差が5%、測
定範囲が0〜100 +n3/ hの流電測定装置につ
いて検討してみると下表のようになる。
Normally, measurement errors are allowed at a predetermined percentage of the rated value (maximum scale). For example, if we consider a current measuring device with a tolerance of 5% and a measurement range of 0 to 100 +n3/h, the results will be as shown in the table below.

この表から明らかなように測定量が小さくなればなるほ
ど、相対誤差は大きくなる。
As is clear from this table, the smaller the measured quantity, the larger the relative error.

ところで、浄水場、下水処理場などにおいては人口増加
などの要因によ′つて流入水面が次第に増大する。その
だめ、測定流量も徐々に増えて行く。
Incidentally, at water treatment plants, sewage treatment plants, etc., the surface of inflow water gradually increases due to factors such as population increase. Unfortunately, the measured flow rate also increases gradually.

その比は1対4から1対16程度である。この場合、i
’jl:’、Mi測定装置1自1を晟終時点に於ける流
量に合わせて製作ずれPJ: 、rlf 、”;”H’
+の少ない時期に測定誤差が非′7iに大きくなる。
The ratio is about 1:4 to 1:16. In this case, i
'jl:', manufacturing deviation PJ:, rlf, ``;''H' for Mi measurement device 1 to 1 according to the flow rate at the end of the night.
The measurement error becomes larger than non-'7i when there is less +.

このこと全解決するには流−b:の増加に合わせて装置
〜、水路、堰、7寅q器等を取外えることが考えらノす
る。しかし、その手数と’i’+” )TJ il膨大
なものとなり、また、装f+’1′を1&替える都度、
設備の稼動を長時11旧て渡って停止トさせなけれll
l:ならないという欠点を有する。
In order to completely solve this problem, it would be considered to remove the equipment, water channels, weirs, 7 q equipment, etc. in accordance with the increase in flow -b:. However, the number of steps and 'i'+'') TJ il becomes enormous, and each time f+'1' is changed to 1&,
The operation of equipment must be stopped for an extended period of time.
l: It has the disadvantage that it does not.

し発明の目的〕 木つC;明の目的tま前−’=zfly迎従来技術の欠
点をなくし、小流:、4時から大流l一時にわたって経
済的に、しかも精度良<1II11定できる11す式流
量測箱゛4−旧11゛全提供するにある。
Objective of the Invention: To eliminate the shortcomings of the prior art, it is possible to economically and accurately determine <1II11 from a small stream to a large stream at one o'clock. All 11 type flow measuring boxes (4-former 11) are provided.

〔発明の111°も要〕 本発明の11”41’徴とするところは堰の上側に複数
個の切欠き部を設けると共に、これら切欠き部にそれぞ
れ水の通流を阻止するカバーを取外し自在に取付け、流
量増加に従いカバーを取外し水の通流する切欠き部の数
を増加させるようにしたことにある。
[111° of the invention is also required] Feature 11''41' of the present invention is that a plurality of notches are provided on the upper side of the weir, and a cover for blocking the flow of water is removed from each of these notches. It can be attached freely, and as the flow rate increases, the cover can be removed to increase the number of notches through which water flows.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の一実施例を示す。 FIG. 2 shows an embodiment of the present invention.

第2図において第1図と異なるところは堰2に複数個の
切欠き部2aを設け、各切欠き部2aにそれぞれ水の越
流を阻止するカバー6を設けたことである。第2図は3
個の切欠き部2aを設け、2個の切欠き部2aにカバー
6を取付けだ状態を示している。なお、切欠き部2aの
面積は第1図に比べ小さくなっている。
The difference between FIG. 2 and FIG. 1 is that the weir 2 is provided with a plurality of notches 2a, and each of the notches 2a is provided with a cover 6 for preventing water from overflowing. Figure 2 is 3
The figure shows a state in which two notches 2a are provided and the cover 6 is attached to the two notches 2a. Note that the area of the notch 2a is smaller than that in FIG.

この措成において水位計3で測定された水位■]が演算
器4に入力される。演算器4 &二l:次式に従い流量
Q(mR/祿)を求める。
In this process, the water level [■] measured by the water level meter 3 is input to the calculator 4. Calculator 4 & 2: Calculate the flow rate Q (mR/Y) according to the following formula.

Q −K b b ’/”          ・・・
・・・・・・(1)b:切欠き部2aの幅(In) h:越流水頭(m) I(:流1を係数 なお、越流水頭11−水路lの底面から切欠き部2aの
下端までの距h1#をtとするとTI−tで求められる
Q −K b b '/”...
・・・・・・(1)b: Width of notch 2a (In) h: Overflow head (m) I Letting t be the distance h1# to the lower end of 2a, it is determined by TI-t.

とのようにし、で演遭器4で求められたfJtC漬Qが
流量指示用5に指示される。
Then, the fJtC-Q obtained by the detector 4 is instructed to the flow rate indicator 5.

さて、測定流:i;が増加したならば1個の切欠き部2
のカバー6を取外して2個の切欠き部2aから越流する
ようにする。越流する切欠き部2aを2個にしても濱(
9器4け越流水頭11から流;4Qを求めているので1
 frAIの一〕欠き部2aからJIQ iy’c L
でいるときと同じ演算測定流嘔を求めている。したがっ
て、この場合には指示計5の指示値を2倍にすれは実際
の流M、を測定できる。ただし、越流する切欠き部2a
が1個のときにおける指示用5の目盛を21八にすれば
指示H1の指示値が実際の(、H(、@となる。
Now, if the measured flow: i; increases, one notch 2
The cover 6 is removed to allow the flow to overflow from the two notches 2a. Even if the number of notches 2a for overflowing water is two, the beach (
Flow from 9 vessels 4 overflow head 11; Since we are looking for 4Q, 1
frAI] JIQ iy'c L from the notch 2a
I am looking for the same calculation and measurement as when I was in the hospital. Therefore, in this case, the actual flow M can be measured by doubling the indicated value of the indicator 5. However, the notch 2a where the flow overflows
If the scale of the indicator 5 is set to 218 when is one, the indicated value of the indicator H1 becomes the actual (, H(, @).

μ上のようにして流−μ測定するのであるが、測定流量
が増えるに従って1個ずつ、あるいは複数個ずつカバー
6を取外して行くと、切欠き部2aが]、 1+11の
場合に比べ切欠き数をnとするとn培まで測定できる。
The flow rate - μ is measured as shown above, but as the measured flow rate increases, the covers 6 are removed one by one or several at a time. If the number is n, it is possible to measure up to n cultures.

また、切欠き部2aの1個当りの測定範囲は小さいので
小水61時にも精度よく測定することができる。
Furthermore, since the measurement range of each notch 2a is small, it is possible to accurately measure even when the water is small.

第3図は本発明の他の実施例を示し、切欠き部を三角に
したものである。
FIG. 3 shows another embodiment of the present invention, in which the notch is triangular.

第3図において第2図と異なるのは堰2に三角の切欠き
部2b’に設けたことである。なお、この場合、流量Q
は次式で求められる。
What differs from FIG. 2 in FIG. 3 is that the weir 2 is provided with a triangular notch 2b'. In this case, the flow rate Q
is calculated using the following formula.

Q=Kh’汐          ・・・・・・・・・
(2)第3図の実施例においても第2図と同様にして流
袖測定できるのは明らかであろう。
Q=Kh'shio ・・・・・・・・・
(2) It is obvious that the flow sleeve measurement can be performed in the embodiment shown in FIG. 3 in the same manner as in FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は小流量時にも18度良く測
定することができ、また、測定範囲を変更するためのカ
バーは単に流れをせきとめるものであればよく、安価に
できる。また、測定範囲の変更はカバーを取外すだけで
よく、極めて簡昨に短時間で行える。
As explained above, the present invention can measure accurately 18 degrees even when the flow rate is small, and the cover for changing the measurement range can be used as long as it simply blocks the flow, making it possible to reduce the cost. Additionally, changing the measurement range can be done simply by removing the cover, making it extremely easy and quick.

なお、上述の実施例は四角あるいは三角の切欠き部を3
個設けているが、種々の条件によって、、I+′1与な
った形状、個数にすることもできるのは勿論である。
Note that the above embodiment has three square or triangular notches.
However, depending on various conditions, it is of course possible to have a shape and number of I+'1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のノ旧式流量測定装置の一例を示す構成図
、第2図は本発明の一実施例を示す構成図、第3図d本
発明の他の実施例を示す要部構成図である。 1・・・水路、2・・・堰、2a、2b・・・切欠き部
、3・・・水位側、4・・・演算器、5・・・流−ta
−指示計、6・・・カバー) ツ\ 1 / 図 作2 図 (a)                   (b)
Q〜5 ¥ 3 図
Fig. 1 is a block diagram showing an example of a conventional old-style flow rate measuring device, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 d is a block diagram showing main parts of another embodiment of the present invention. It is. DESCRIPTION OF SYMBOLS 1... Channel, 2... Weir, 2a, 2b... Notch part, 3... Water level side, 4... Arithmetic unit, 5... Flow-ta
-Indicator, 6...Cover) \ 1 / Diagram 2 Diagram (a) (b)
Q~5 ¥ 3 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、水路に堰を設けて流量を測定する堰式流」−測定装
置1ff1.において、堰の上側に複数個のり欠き部を
設けると共にこれら切欠き部にそれぞれ水の通流を阻止
するカバーを取外し自在に取付け、前記水路の流量増加
に従い前記カバーを取外し水の通流する切欠き部を増加
させるようにしたことを特徴とする堰式流、111−測
定装置べ、。
1. Weir-type flow that measures the flow rate by installing a weir in the waterway - Measuring device 1ff1. In this method, a plurality of notches are provided on the upper side of the weir, and a cover for blocking water flow is removably attached to each of these notches, and as the flow rate of the waterway increases, the cover is removed and a cutout for water to flow is provided. 111-Measuring device for weir type flow characterized by increasing the number of notches.
JP57170833A 1982-10-01 1982-10-01 Weir type flow rate measuring apparatus Granted JPS5961716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57170833A JPS5961716A (en) 1982-10-01 1982-10-01 Weir type flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170833A JPS5961716A (en) 1982-10-01 1982-10-01 Weir type flow rate measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5961716A true JPS5961716A (en) 1984-04-09
JPH0359366B2 JPH0359366B2 (en) 1991-09-10

Family

ID=15912173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170833A Granted JPS5961716A (en) 1982-10-01 1982-10-01 Weir type flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5961716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200727U (en) * 1987-06-15 1988-12-23
IT201900014127A1 (en) * 2019-08-06 2021-02-06 Carlo Marelli EQUIPMENT FOR CONTINUOUS REMOTE MEASUREMENT OF THE FLOW OF WATER ON BODY MOUNTING PORTS FOR IRRIGATION
WO2022210282A1 (en) * 2021-04-01 2022-10-06 ジャパン マリンユナイテッド株式会社 Lubricant flow sensor and ship comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200727U (en) * 1987-06-15 1988-12-23
JPH0619052Y2 (en) * 1987-06-15 1994-05-18 株式会社テイエルブイ Liquid flow meter
IT201900014127A1 (en) * 2019-08-06 2021-02-06 Carlo Marelli EQUIPMENT FOR CONTINUOUS REMOTE MEASUREMENT OF THE FLOW OF WATER ON BODY MOUNTING PORTS FOR IRRIGATION
WO2021024174A1 (en) * 2019-08-06 2021-02-11 Carlo Marelli Apparatus for the continuous remote measuring of the flowrate of water in bulkhead-holder openings for irrigation
WO2022210282A1 (en) * 2021-04-01 2022-10-06 ジャパン マリンユナイテッド株式会社 Lubricant flow sensor and ship comprising same

Also Published As

Publication number Publication date
JPH0359366B2 (en) 1991-09-10

Similar Documents

Publication Publication Date Title
US4074573A (en) Method and apparatus for the measurement of volumetric flowrate in pipes and ducts
Bell Residence time and fluid mixing on commercial scale sieve trays
JPS5961716A (en) Weir type flow rate measuring apparatus
Odgaard Bank erosion contribution to stream sediment load
CN104179155B (en) Arc thin-wall weir
JPS6270732A (en) Apparatus for measuring impurities in pure water
CN109029646A (en) Open-channel meter accuracy detecting device
CN116432439A (en) Urban river sewage receiving capacity planning method and system based on numerical simulation
LU502055B1 (en) Water purifier testing method and system
CN108680237A (en) A kind of multifunction test platform and its test method
JPS6035219A (en) Weir type flowmeter
KR20110138834A (en) Apparatus for measuring non-full flow using multiple sensors and the measuring method thereof
US1735953A (en) Method of measuring weir discharge and rules therefor
JPH0612325B2 (en) Method for measuring the degree of inclusion of suspended matter in water and its measuring device
Muhammad et al. Experimental Study of Flow over Sharp Crested Rectangular-Triangular Weir Models
Murthy et al. Geometrically simple logarithmic weir
JPH11125689A (en) Water quality control system of boiling water reactor power plant
JP2008012407A (en) Water distribution method and water distribution device
JPS5876191A (en) System for observing total amount of sludge in process of purifying sewage with active sludge
Kapoor et al. Analytical Expression for Measurement of Discharge Using Conical Obstruction in Small Rectangular Channels
JPS62130339A (en) Method for measuring colloid index
SU678305A1 (en) Apparatus for measuring water rate-of-flow in hydraulic engineering structures
O'Hern et al. Reynolds number dependence of the drag coefficient for laminar flow through fine-scale photoetched screens
Chandrasekaran et al. Characteristics of proportional weirs
JPH0396675A (en) Operation pump number control device of fixed speed pumps