JPS595964A - Apparatus for measuring two-dimensional doppler flow speed map - Google Patents

Apparatus for measuring two-dimensional doppler flow speed map

Info

Publication number
JPS595964A
JPS595964A JP11605482A JP11605482A JPS595964A JP S595964 A JPS595964 A JP S595964A JP 11605482 A JP11605482 A JP 11605482A JP 11605482 A JP11605482 A JP 11605482A JP S595964 A JPS595964 A JP S595964A
Authority
JP
Japan
Prior art keywords
flow velocity
measurement
circuit
doppler
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11605482A
Other languages
Japanese (ja)
Inventor
Hirohide Miwa
三輪 博秀
Nobushiro Shimura
孚城 志村
Keiichi Murakami
敬一 村上
Tadahiko Yanajima
梁島 忠彦
Osamu Hayashi
治 林
Shoichi Senda
千田 彰一
Hirohide Matsuo
松尾 裕英
Kunihiro Chihara
千原 国宏
Yoshifumi Sakurai
桜井 良文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11605482A priority Critical patent/JPS595964A/en
Publication of JPS595964A publication Critical patent/JPS595964A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To make it possible to easily and visually determine whether a living body is normal or abnormal, by a method wherein the two-dimensional doppler flow speed componential map of blood in a living body is calculated and fabricated in synchronous relation to a living body signal such as an electrocardiac signal from flow speed components at least in two directions at each measuring point to be displayed. CONSTITUTION:The coordinates at the center of the fan shaped scanning of a probe 12 and the angle with the Y-axis in a transmission and reception scanning direction are calculated from the output of a probe mutual position and direction detecting means 20 and the output of a scanning control part 28 by a detection circuit. An address operation circuit 34 receives the output of the detection circuit 26 and a time game time corresponding to a measuring point P from a timing control circuit 50 to calculate the coordinates of the measuring point P. A broken line frame 40 shows a multi-gate doppler measuring circuit and the drive circuit 42 thereof generates an electric pulse for generating ultrasonic waves and this electric pulse is added to probes 10, 12 to generate an ultrasonic pulse. The reflected wave receiving outputs of the probes 10, 12 are amplified by an amplifier 44 to be added to a doppler analytical circuit 46 and flow speed components per one scanning at plural points are calculated at every generation of an ultrasonic pulse. A flow speed operation circuit 52 outputs flow speed components from memories 30, 32 to carry out operation and the result is outputted to a flow speed map 54.

Description

【発明の詳細な説明】 発明の技術分野 本発明は2次元ドプラ流速成分マツプ針測装置に関し、
特に心電信号などの生体信号に同期して生体中の血液の
2次元ドプラ流速成分マツプを、各測定点における少な
くとも2方向の流速成分より算出、作成して表示あるい
は記録しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a two-dimensional Doppler flow velocity component map needle measuring device;
In particular, it attempts to calculate, create, and display or record a two-dimensional Doppler flow velocity component map of blood in a living body from flow velocity components in at least two directions at each measurement point in synchronization with biological signals such as electrocardiogram signals. .

技術の背景 生体中の血流を測定するのに超音波ドプラ流速計がある
。これば中心周波数がfcの鋭い超音波パルスを送信し
、血流中の血球からの反射波を受信し、この反射波の周
波数シフトから流速を求める。即ち血球流速をV、生体
中の超音波の速度をC1流速ヘクトルは超音波送受信子
(探触子)の方を向いているとすると、受信される周波
数はfc+ fdであり、こ\でfd= 2 v fc
/ Cであるから、これらよりVが分る。なお一般には
流速ベクトルは探触子の方を向いてはいないので、第1
図に示ずように測定点Pと探触子10を結ぶ線lに対す
る流速ベクトルVのなす角をθとして上式はfd= 2
v cosθfc/Cとなる。
Background of the technology Ultrasonic Doppler velocimeters are used to measure blood flow in living organisms. In this case, a sharp ultrasonic pulse with a center frequency fc is transmitted, reflected waves from blood cells in the bloodstream are received, and the flow velocity is determined from the frequency shift of the reflected waves. That is, assuming that the blood cell flow velocity is V, and the velocity of ultrasound in the living body is C1, the flow velocity hector is directed toward the ultrasound transmitter/receiver (probe), then the received frequency is fc + fd, and here fd = 2 v fc
/C, so V can be found from these. Note that generally the flow velocity vector does not point toward the probe, so the first
As shown in the figure, the angle formed by the flow velocity vector V with respect to the line l connecting the measurement point P and the probe 10 is θ, and the above equation is fd = 2
v cos θfc/C.

従来技術と問題点 今血流中に第2図(a)に示す超音波パルスを送信する
と、同図(blに示す受信波を得る。ここでToは送信
タイミングを示しLdまでは血流までに達する間の血管
などの組織の反射信号を示している。受信波の各区分S
l、S2・・・・・・Si、Sj・・・・・・は探触子
から距離Ll、、L2・・・・・・Li、Lj・・・・
・・の血球からの反射波を示している。少なくとも数十
回から200回程度の超音波の送・受をくり返し、各区
分の信号をそれぞれ切り出し、それぞれ独立に時系列に
ドプラ解析することにより探触子からの距離L1、L2
・・・・・・の複数の測定点の速度を同時に知ることが
できる。これは□多チャンネル法と呼ばれ、1回のドプ
ラ解析で複数点の速度(但し超音波送受信方向の1次元
法速成分)が求まるので超音波送受信方向を変えて血流
中の一次元流速成分分布を求めることが試みられている
。しかしながら血流中の血球速度などは三次元成分を持
っており、断面で考えても二次元成分を持っている。こ
のようなものを1箇所から測定すると測定点と探触子を
結ぶ線分に投影した速度成分が等しいものは皆同じ結果
を与えるから、当該測定点の流速ペクト難しい。
Prior Art and Problems Now, when we transmit the ultrasonic pulse shown in Fig. 2 (a) into the bloodstream, we obtain the received wave shown in Fig. It shows the reflected signal of tissues such as blood vessels while reaching S.Each section of the received wave S
l, S2...Si, Sj... are the distances from the probe Ll, L2...Li, Lj...
It shows the reflected waves from the blood cells of... By repeating the transmission and reception of ultrasonic waves at least several dozen to 200 times, cutting out the signals of each section, and performing Doppler analysis independently in time series, distances L1 and L2 from the probe are determined.
It is possible to know the speeds of multiple measurement points at the same time. This is called the □multi-channel method, and the velocity at multiple points (however, the one-dimensional normal velocity component in the ultrasound transmission and reception direction) can be determined in one Doppler analysis. Attempts have been made to determine the component distribution. However, the velocity of blood cells in the bloodstream has a three-dimensional component, and even when considered cross-sectionally, it has a two-dimensional component. If such a thing is measured from one location, it is difficult to determine the flow velocity at that measurement point because all the velocity components having the same velocity component projected onto the line segment connecting the measurement point and the probe will give the same result.

そこで各測定点の少なくとも2次元流速酸分を求めそれ
をマツプ化することが有用で、それには人体の血流の如
き周期性のある動きに対して時相を合せるベクトル成分
、被検者に対して限られた時間内の計測のため限られた
測定点からのベクトル計算、更に計測結果をいかに診断
上有効に表示あるいは記録するかなどの解決すべき問題
がある。
Therefore, it is useful to obtain at least two-dimensional flow velocity acid content at each measurement point and create a map. On the other hand, there are problems that need to be solved, such as vector calculation from limited measurement points due to measurement within a limited time, and how to display or record measurement results effectively for diagnosis.

また測定点の選び方も問題で生体の心臓内流速分布を求
める場合などは該心臓内の特定の複数点の流速を知りた
い要求がある。
There is also a problem in how to select measurement points, and when determining the flow velocity distribution within the heart of a living body, there is a demand for knowing the flow velocity at a plurality of specific points within the heart.

発明の目的 本発明はか\る点に鑑みてなされたもので各測定点の流
速を少なくとも2方向から測定して2次元ドプラ流速成
分分布を得ようとするものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above points, and is intended to obtain a two-dimensional Doppler flow velocity component distribution by measuring the flow velocity at each measurement point from at least two directions.

また各測定点の流速を少なくとも2方向から測定するた
めに、超音波パルスの発射方向をそのように調整せねば
ならないが、か−る超音波走査を行なう簡便な手段を提
供しようとするものである。
Furthermore, in order to measure the flow velocity at each measurement point from at least two directions, the emission direction of the ultrasonic pulse must be adjusted in this way, but the present invention is intended to provide a simple means for performing such ultrasonic scanning. be.

発明の構成 本発明は複数箇所から超音波を送受信する超音波深触子
と、該探触子が超音波を送受信する走査角度を制御する
走査制御部と、該複数箇所の探触子の位置・方向検出手
段と、該検出手段出力と送受信走査角度とから該複数箇
所の位置及び送受信走査方向を表示画面の座標上で決定
する検出回路と、前記探触子の受信出力とタイミング信
号を受けて各走査方向上複数点の流速成分を算出するマ
ルチゲートドプラ計測回路と、前記複数箇所の各々に対
応して設けられ、該ドプラ計測回路が算出した各走査方
向上複数点の流速成分を表示画面上の座標に対応させて
記憶する流速成分メモリと、これらの流速成分メモリか
ら各点の流速成分を読出し当該点の2次元流速酸分を算
出する流速演算回路と、生体信号に同期して前記タイミ
ング信号を出力するタイミング制御回路を備えることを
特徴とするが次に図面を参照しながらこれを詳細に説明
する。
Structure of the Invention The present invention provides an ultrasonic deep probe that transmits and receives ultrasonic waves from multiple locations, a scan control unit that controls the scanning angle at which the probe transmits and receives ultrasound waves, and positions of the probe at the multiple locations. - direction detection means, a detection circuit that determines the positions of the plurality of locations and the transmission and reception scanning directions on the coordinates of the display screen from the output of the detection means and the transmission and reception scanning angles, and a detection circuit that receives the reception output and timing signal of the probe. a multi-gate Doppler measurement circuit that calculates flow velocity components at a plurality of points in each scanning direction; and a multi-gate Doppler measurement circuit provided corresponding to each of the plurality of locations to display flow velocity components at a plurality of points in each scanning direction calculated by the Doppler measurement circuit. A flow velocity component memory that stores the flow velocity components in correspondence with the coordinates on the screen, a flow velocity calculation circuit that reads the flow velocity components of each point from these flow velocity component memories and calculates the two-dimensional flow velocity acid content of the point, and The present invention is characterized in that it includes a timing control circuit that outputs the timing signal, which will now be described in detail with reference to the drawings.

発明の実施例 第4図は心臓内の血流の流速を測定する要領を示し、1
4は肋骨、16は心臓である。探触子10により肋骨1
4の間から超音波パルスを心1i11i16に向けて送
受信し、その送受信方向を図示のように変えて扇形走査
する。この各々の走査に対してマルチチャンネル法を通
用すると矢印で示すように各点の流速(但し前述の理由
で走査線方向の成分のみ)が求まる。他の探触子12又
は探触子10を位置12へ移動させて同様な扇形走査を
行なうとやはり該走査線方向の流速成分が求まるが、同
じ位置(測定点)について探触子10.12に第5図で
これを説明すると、A、 Bは探触子10.12により
測定した測定点Pにおける流速成分、Dはこれらのベク
トルA、Bの先端より垂線を下ろしそれらの交点と点P
を結ぶベクトルで、このベクトルDが測定点Pにおける
2次元流速酸分である。これは、逆に点Pの流速ベクト
ルADとし、これをAP、PB力方向走査線で測定する
とベクトル成分A、Bが得られることから明らかであろ
う。ベクトルDの大きさ及び方向は次の如くして求まる
。ベクトルA、B、Dの大きさをa。
Embodiment of the Invention FIG. 4 shows the procedure for measuring the flow velocity of blood flow in the heart.
4 is the rib and 16 is the heart. Rib 1 by probe 10
Ultrasonic pulses are transmitted and received from between 4 and 4 towards the heart 1i11i16, and the direction of the transmission and reception is changed as shown in the figure to perform fan-shaped scanning. If the multi-channel method is applied to each of these scans, the flow velocity at each point (however, only the component in the scanning line direction for the above-mentioned reason) can be found as shown by the arrow. If the other probe 12 or probe 10 is moved to position 12 and a similar fan-shaped scan is performed, the flow velocity component in the scanning line direction can also be determined, but at the same position (measurement point), probe 10. To explain this with reference to Fig. 5, A and B are the flow velocity components at measurement point P measured by probe 10.12, and D is the point of intersection of these vectors A and B by dropping a perpendicular line from the tips of them and point P.
This vector D is the two-dimensional flow rate acid content at the measurement point P. This is clear from the fact that if we take the flow velocity vector AD at point P and measure it using the AP and PB force direction scanning lines, we can obtain vector components A and B. The magnitude and direction of vector D are determined as follows. Let the sizes of vectors A, B, and D be a.

b、  d、これらがなす図示の角をθ1.θ2.θと
すると、a=dcosθ1.b=dcosθ2.θ−θ
1+θ2であるからこれらより となる。第6図に本発明の実施例を示す。
b, d, the illustrated angle formed by these is θ1. θ2. If θ, a=dcosθ1. b=dcosθ2. θ−θ
Since 1+θ2, it follows from these. FIG. 6 shows an embodiment of the present invention.

第6図で10.12は探触子でこれらはアーム22によ
り連結され、該アームの関節24には角度検出用のポテ
ンショメータが設けられ、これらで探触子相互位置・方
向検出手段20を構成する。
In FIG. 6, reference numerals 10 and 12 denote probes, which are connected by an arm 22, and a joint 24 of the arm is provided with a potentiometer for angle detection, and these constitute a means 20 for detecting the relative position and direction of the probes. do.

第7図で探触子総合位置・方向検出手段の出力と探触子
の送受信走査角度とからいかに測定点の座標を表示画面
上に決定するかを説明する。関節24a、24b、24
cと探触子10.12の扇形走0 査の中心との間の図示長さ及び角を1+−12m。
With reference to FIG. 7, it will be explained how the coordinates of the measurement point are determined on the display screen from the output of the probe general position/direction detection means and the transmitting/receiving scanning angle of the probe. Joints 24a, 24b, 24
The illustrated length and angle between c and the center of the sector scan of the probe 10.12 is 1+-12 m.

α1〜α3とし、探触子10の方向及び扇形走査の中心
Aを基準とし、それらが表示画面の中央になるべく図の
如く表示画面」二の座標を決めた場合についてのべる。
Let α1 to α3 be used as a reference, and the direction of the probe 10 and the center A of the fan-shaped scan are used as the reference, and the case where the coordinates of the display screen 2 are determined so that these are preferably in the center of the display screen as shown in the figure will be described.

検出回路26には、探触子相互位置・方向検出手段の出
力としてα1〜α3の情報と、探触子の走査制御部28
の出力として送受信走査角度θ11.とが与えられ、更
にあらかじめ知られている11〜I!、4及び表示画面
上の座標から検出回路26は探触子12の扇形走査の中
心Bの座標(Xb、 Yb  )及び送受信走査方向の
Y軸との角度θbを以下の如く演算する。
The detection circuit 26 includes information α1 to α3 as outputs of the probe mutual position/direction detection means, and a probe scanning control unit 28.
The transmitting/receiving scanning angle θ11. is given, and further known in advance 11~I! , 4 and the coordinates on the display screen, the detection circuit 26 calculates the coordinates (Xb, Yb) of the center B of the fan-shaped scan of the probe 12 and the angle θb with the Y axis in the transmission/reception scanning direction as follows.

Xb=にa+12 sinα+ −It3sin (α
1 +α2)十14 sin (α1+α2+α3)十
14cos’(α1+α2+α3) θb=α1+α2+α3−θb。−360゜但し、Xa
、  にbは第7図に示す如く探触子IOの扇形走査の
中心の表示座標で、同図の如くディスプレイの左−hm
の座標を(0,0)、ディスプレイ1 の右上端の座標を(X+、O)とした時、例えば10の
中心線の方向と、探触子から測定点Pを見た方向との成
す角度である。
Xb=to a+12 sin α+ −It3sin (α
1 + α2) 14 sin (α1 + α2 + α3) 14 cos' (α1 + α2 + α3) θb = α1 + α2 + α3 - θb. -360°However, Xa
, b is the display coordinate of the center of the fan-shaped scan of the probe IO as shown in Figure 7, and the left -hm of the display as shown in the same figure.
For example, when the coordinates of 10 are (0, 0) and the coordinates of the upper right corner of display 1 are (X+, O), the angle formed by the direction of the center line of 10 and the direction of measurement point P viewed from the probe. It is.

以−1−の式において角度はいずれも反時計方向を正と
する。上式においてI! +−7!4 、Xa、 va
は固定値で、検出回路26に予めセットしておかれる。
In the following equations-1-, all angles are positive in the counterclockwise direction. In the above formula, I! +-7!4, Xa, va
is a fixed value and is set in advance in the detection circuit 26.

α1〜α3は探触子相互位置・方向検出手段20の出力
として、又、θI、oは走査制御部28の出力としてそ
れぞれ検出回路26に与えられ検出回路26はこれらの
値を用いて上記(Xb、Yb) 、θbを計算する訳で
ある。
α1 to α3 are given to the detection circuit 26 as the outputs of the probe mutual position/direction detection means 20, and θI, o are given as the outputs of the scan control section 28, respectively, and the detection circuit 26 uses these values to calculate the above ( Xb, Yb) and θb are calculated.

アドレス演算回路34は、(Xb、 Yb) 、  θ
bを検出回路26から、及び、測定点Pに対応するタイ
ムゲート時刻(超音波送信時刻から測った値)tpbを
タイミング制御回路50から、それぞれ受は取り、次式
により測定点Pの座標(Xpb、 Ypb)を2 但しCは音速であり、Ct、4は点Bと点Pとの距離を
表わしている〇 以上の様にして求めた(X pb、 Y pb)により
測定点Pに対応する探触子12によるドプラ解析結果(
46の出力)を記憶すべき流速メモリ32のアドレスが
定まる。
The address calculation circuit 34 calculates (Xb, Yb), θ
b from the detection circuit 26 and the time gate time (value measured from the ultrasonic transmission time) tpb corresponding to the measurement point P from the timing control circuit 50, and the coordinates of the measurement point P ( Xpb, Ypb) is 2. However, C is the speed of sound, and Ct, 4 represents the distance between point B and point P. Corresponds to measurement point P by (X pb, Y pb) obtained as above. Doppler analysis results using the probe 12 (
The address of the flow rate memory 32 where the output of 46) is to be stored is determined.

探触子10によるドプラ解析結果を記憶ずべき流速メモ
リ30のアドレスは、第7図の点Aの座標(Xa、 、
Ya)  (これは固定値である)と、送受信走査かく
どθao−θaから以下の如く容易に求める事ができる
The address of the flow velocity memory 30 where the Doppler analysis results by the probe 10 should be stored is the coordinates of point A (Xa, ,
Ya) (this is a fixed value) and the transmission/reception scanning angle θao−θa, it can be easily determined as follows.

〈0) 但し、 、、ejp9は点AとX)との距離を表わして
いる。
<0) However, , , ejp9 represents the distance between points A and X).

以上の計算においては、/i、c等の数値は、得3 られる結果(Xb、 Yb) 、  (にp、 Yp)
等が流速メモIJ30のアドレスとして適当なものとな
る様に然るべくスケーリングされた値を用いる事は言う
までもない。so、a2は探触子10.12が検出する
流速成分を書込まれるメモリで、34はその書込みアド
レス演算回路である。36は8画像(第4図に示した如
き断層画像)メモリ、38はその書込み制御回路で、検
出回路26が計算した(Xb。
In the above calculation, the values of /i, c, etc. are obtained as the result (Xb, Yb), (p, Yp)
It goes without saying that values scaled appropriately should be used so that . so and a2 are memories in which flow velocity components detected by the probes 10 and 12 are written, and 34 is a write address calculation circuit. 36 is an 8-image (tomographic image as shown in FIG. 4) memory, 38 is its write control circuit, and the detection circuit 26 calculates (Xb).

Yb)及びθbは回路34.38に入力されて書込みア
ドレスの発生に供される。
Yb) and θb are input to circuits 34 and 38 for use in generating a write address.

鎖線枠40はマルチゲートドプラ計測回路で、そのドラ
イブ回路42が超音波発生用電気パルスを発生してこれ
を探触子10.12に加え(計測回路40等は2系統あ
るが、こ−では1系統のみ示す)、超音波パルスを発生
させる。該超音波パルスの送信方向は走査制御部28が
決定するが、既知のようにこれには大別して機械式と電
気式があり、前者は超音波発受信子(圧電素子)を回動
させ、後者は多数に分割された超音波発受信子を用い遅
延を加味したその選択的駆動で行なう。探4 触子の反射波受信出力ば増幅器44で増幅j−たのちド
プラ解析回路46に加え、前述の1走査当り複数点の流
速成分を各走査つまり超音波パルス発生毎に算出させる
。50はタイミング制御回路で、探触子からの超音波パ
ルスの発生、それよりの時間を示す各種タイミング信号
を発生し、それらをドプラ解析回路46、マルチプレク
サ48、走査制御部28、書込み制御回路34.38等
へ加える。マルチプレクサ48はドプラ解析回路46が
算出したl走査線当り複数個の流速成分を次々と出力さ
せ、メモリ30.32の回路34が指定するアドレスへ
書込ませる。
The dashed line frame 40 is a multi-gate Doppler measurement circuit whose drive circuit 42 generates electric pulses for generating ultrasonic waves and applies them to the probes 10 and 12 (there are two systems of measurement circuits 40, etc., but in this case (Only one system is shown) generates ultrasonic pulses. The direction in which the ultrasonic pulse is transmitted is determined by the scanning control unit 28, and as is known, there are two main types: mechanical and electrical. The latter is performed by selectively driving a plurality of divided ultrasonic transmitter/receivers with delay taken into consideration. Exploration 4: The received output of the reflected wave of the tentacle is amplified by an amplifier 44, and then added to the Doppler analysis circuit 46 to calculate the aforementioned flow velocity components at a plurality of points per scan for each scan, that is, for each ultrasonic pulse generation. Reference numeral 50 denotes a timing control circuit which generates various timing signals indicating the generation of ultrasonic pulses from the probe and the times thereof, and transmits them to the Doppler analysis circuit 46, the multiplexer 48, the scan control section 28, and the write control circuit 34. Add to .38 etc. The multiplexer 48 sequentially outputs a plurality of flow velocity components per l scanning line calculated by the Doppler analysis circuit 46, and writes them to the address specified by the circuit 34 in the memory 30.32.

前述のように1測定点に対し2方向から流速成分を検出
すると該測定点の2次元流速ベクトルが求まるが、流速
演算回路52はメモリ30.32から該流速成分を出力
させて該演算を行ない、結果を流速マツプに出力する。
As mentioned above, when flow velocity components are detected from two directions for one measurement point, a two-dimensional flow velocity vector at the measurement point is obtained, but the flow velocity calculation circuit 52 outputs the flow velocity components from the memory 30, 32 and performs the calculation. , output the results to a velocity map.

このマツプ54には2探触子10.12の走査領域の重
なり合う部分の各点の流速ベクトルが格納される。これ
らはデータ群であるからCRTディスプレイ60に表示
5 する際は該データを第10図に示す如き矢印、三角印な
どの方向を示すことができるマークに置換え、また流速
ベクトルの大きさは該マークの大きさ又は輝度、色相な
どで表わす。表示メモリ56はか\るマークを格納する
メモリである。こ\で、マーク表示のみでは流速分布は
分ったとしても、何処における流速なのかは分りにくい
。合成表示回路58はこれに対処するもので、メモリ3
6が出力する8画像を流速マーク群に重ね、これらをC
RTディスプレイ60に入力する。このようにすると8
画像上にマーク群が現われ、測定対象領域中の流速分布
が明瞭に看取される。
This map 54 stores flow velocity vectors at each point in the overlapping portion of the scanning areas of the two probes 10 and 12. Since these are a group of data, when displaying them on the CRT display 60, they are replaced with marks that can indicate the direction, such as arrows and triangles, as shown in FIG. It is expressed by the size, brightness, hue, etc. The display memory 56 is a memory that stores such marks. Here, even if you can understand the flow velocity distribution by just displaying the marks, it is difficult to tell where the flow velocity is. The composite display circuit 58 deals with this, and the memory 3
The 8 images output by 6 are superimposed on the flow velocity mark group, and these are
input to RT display 60. In this way, 8
A group of marks appears on the image, and the flow velocity distribution in the measurement target area can be clearly seen.

流速は一般に時間の関数であり、特に心臓内血流などは
心拍と同期して変動する。このようなものは心拍と同期
させて測定するのがよく、非同期であると測定結果がラ
ンダムなものになってしまう。64は制御回路50が発
生するタイミング信号を生体信号例えば心電信号にはピ
ークがR1その両側の谷がQ、  Sと名付けられた鋭
いパルスが含まれるがこのQRSパルスと同期させる同
期信6 号発生回路である。62はCRTディスプレイ60のキ
イーボードを操作してCRTの画面にマーカなどを表示
するのに使用するメモリである。ドプラ解析回路46に
はフーリエ変換方式、ゼロクロス方式などがあるが、ど
ちらでもよい。ゼロクロス法の場合流速は測定点から探
触子の方を向いた正成分と、それとは180°逆の負成
分がでてくるが、これらを加えた(差をとった)もの即
ち平均流速を、求める流速とする。FFTの場合も多数
のスペクトラムが出るので/ f −F (r) d 
flf F(rldfを計算して平均流速とする。なお
計算の結果、ゼロクロス法においては正、逆成分が出る
場合や、FFT法においては測定点の流速が実際に2成
分を持つ場合がある。か−るケースに対して正逆両方向
成分を持たない場合と同じ表示をするのは不正確である
からマルチゲートドプラ計測回路により得ら、れた流速
成分が正逆両方向成分または分散を持つ場合は、これら
の程度が予め設定した闇値を越えた場合当該流速の表示
にはシンボルの点線化表示、ウィンキングなど特徴付け
を行なうとよ7 い。上記程度はゼロクロス法の場合は正成分プラス賃成
分で、またFFTの場合は分散/(f−丁)2F (f
l df/f Fff) dfで判定する。    ・
探触子は第6図では10,12の2個を用意したが、こ
れは1個としてそれを可動とし・、10゜12の2個所
から縮量、波を送受信するようにしてもよく、結果は同
じである。但し時間差は生じる。
Flow velocity is generally a function of time, and in particular intracardiac blood flow fluctuates in synchronization with heartbeat. It is best to measure such things in synchronization with the heartbeat, otherwise the measurement results will be random. 64 is a synchronization signal 6 which synchronizes the timing signal generated by the control circuit 50 with a biological signal, such as an electrocardiogram signal, which has a peak of R1, and valleys on both sides of which include sharp pulses named Q and S, and this QRS pulse. This is a generation circuit. A memory 62 is used to display markers and the like on the CRT screen by operating the keyboard of the CRT display 60. The Doppler analysis circuit 46 uses a Fourier transform method, a zero cross method, etc., and either method may be used. In the case of the zero-cross method, the flow velocity has a positive component directed from the measurement point toward the probe, and a negative component 180 degrees opposite to it, but the sum of these components (the difference) is the average flow velocity , the desired flow velocity. In the case of FFT, there are many spectra, so / f −F (r) d
flf F(rldf) is calculated to obtain the average flow velocity.As a result of the calculation, in the zero-cross method, positive and reverse components may appear, and in the FFT method, the flow velocity at the measurement point may actually have two components. In such a case, it would be inaccurate to give the same indication as when there is no forward and reverse component, so if the flow velocity component obtained by a multi-gate Doppler measurement circuit has a forward and reverse component or dispersion. If the degree of these exceeds the preset dark value, the flow velocity should be characterized by dotted symbols, winking, etc.7 In the case of the zero-cross method, the above degree is the positive component plus In the rent component, and in the case of FFT, variance/(f-ton)2F (f
l df/f Fff) Determine by df.・
Two probes, 10 and 12, are prepared in Fig. 6, but it may be made movable as a single probe, and transmit and receive waves from two points at 10 degrees and 12 degrees. The result is the same. However, there will be a time difference.

時間差については第6図のように探触子を2個設ける場
合も同様で、探触子10.1’2の送受信タイミングに
は若干の時間差を設けた方が相互干渉がなくてよい。同
一タイミングで送受信するには第8図に示すように周波
数を異ならせるとよい。
Regarding the time difference, the same applies to the case where two probes are provided as shown in FIG. 6, and it is better to provide a slight time difference in the transmission and reception timing of the probes 10.1'2 to avoid mutual interference. In order to transmit and receive at the same timing, it is preferable to use different frequencies as shown in FIG.

第8図で42.44は探触子12に・対する前述のドラ
イバー及び増幅器、42’a、44aは探触子10に対
するドライバおよび増幅器で、前者は中心周波数f1で
後者は中心周波数f2で動作する。
In FIG. 8, 42 and 44 are the aforementioned drivers and amplifiers for the probe 12, and 42'a and 44a are drivers and amplifiers for the probe 10, the former operating at the center frequency f1 and the latter operating at the center frequency f2. do.

このようにずれば受信波R1,R2の周波数帯域を分離
でき、相互干渉をなくすことができる。66.68は雑
音除去用のバンドパスフィルタで゛あ゛る。
By shifting in this way, the frequency bands of the received waves R1 and R2 can be separated, and mutual interference can be eliminated. 66 and 68 are band pass filters for noise removal.

1日 第9図は3個の探触子10.10a、lObを用いて又
は1個の探触子10を複数位置へ移動させて心臓内血流
分布を求める場合の概要を示す。
FIG. 9 shows an outline of the case where intracardiac blood flow distribution is determined using three probes 10, 10a and 10b or by moving one probe 10 to a plurality of positions.

同時に走査する場合は第8図のように周波数を変え(但
し、中心周波数は、第8図の2種類に対し、3種類とす
る。)、バンドパスフィルタを用いるとよい。
When scanning at the same time, it is preferable to change the frequency as shown in FIG. 8 (however, there are three types of center frequencies instead of two in FIG. 8) and to use a bandpass filter.

測定点は前述のように2方向からの各走査線の交点であ
り、第12図で言えば○印を付した点である。これらの
点は走査線βについて言えば超音波パルスを送信してか
ら時間”+  j2.t3゜t4#&の点である。従っ
て第13図に示すように超音波パルスの送信から2t+
〜2 t at&の受信出力をとれば走査線β上の測定
点の流速成分が得られる。第11図はこの部分の回路構
成を示し、70a〜70dはサンプルホールド回路で、
クロック発生器78の出力クロックを遅延回路80で2
t+、2t2・・・・・・時間遅延させマルチプレクサ
82でそれらを逐次取出した遅延クロックで動作して探
触子10の2t+、2t2・・・・・・時間後の出9 力を取込む。ドプラシフトば血流などの場合は第3図に
示すように微小で、例えば送信超音波パルスの中心周波
数が3 M Hzのとき受信超音波パルスのドプラシフ
トΔfは5 K Hz程度である。これでば誤差の範囲
の微小値なので積をとって和と差の成分を作り、ベース
バンドへ落ちる差の成分でドプラシフトを算出するとい
う方法をとるが、90°位相器74.11)算器84a
、84b、ローパスフィルタ72a、72bはそのため
の回路である。なお76は発振器で超音波パルスを発生
させる入力電気信号を出力する。
As described above, the measurement point is the intersection of each scanning line from two directions, and in FIG. 12, it is the point marked with a circle. Regarding the scanning line β, these points are the points at time "+ j2.t3°t4#& after transmitting the ultrasonic pulse. Therefore, as shown in FIG.
By taking the received output of ~2 t at&, the flow velocity component at the measurement point on the scanning line β can be obtained. Figure 11 shows the circuit configuration of this part, 70a to 70d are sample and hold circuits,
The output clock of the clock generator 78 is divided into two by the delay circuit 80.
t+, 2t2 . . . The outputs of the probe 10 after the time 2t+, 2t2 . In the case of blood flow, etc., the Doppler shift is minute, as shown in FIG. 3. For example, when the center frequency of the transmitted ultrasound pulse is 3 MHz, the Doppler shift Δf of the received ultrasound pulse is about 5 KHz. Since this is a minute value within the error range, we take the product to create the sum and difference components, and calculate the Doppler shift using the difference component that falls to the baseband. 84a
, 84b, and low-pass filters 72a and 72b are circuits for this purpose. Note that 76 is an oscillator that outputs an input electric signal for generating ultrasonic pulses.

心臓内血液の流速分布を求める際呼吸は止めておくのが
よい。呼吸を止めても心臓の動作に及ばず影響の少い時
間は一般に8心拍程度であり、この間に測定を完了しな
ければならない。1心拍の間のほぼ同−心時相に超音波
を2回走査することは可能であり、従って8心拍内に1
6回走査することができる。探触子は周波数を例えば2
.2 M zと3.5 M zと変えて2個用い、同時
走査すると、最大16X16個の測定点が得られる。第
14図0 および第15図はこれを示す図で、β1〜I2,5は探
触子10の、e 、/〜β′15は探触子12の各16
本の走査線であり、黒点Pは16X16個の測定点であ
る。測定点群は生体の所望部分にあるのが好ましいから
、CRTディスプレイ上の8画像を見ながら測定点群の
存在範囲を指定し走査はこれに従うようにするとよい。
It is best to stop breathing when determining the intracardiac blood flow velocity distribution. Generally, the period during which stopping breathing has no effect on the heart's action is about 8 heartbeats, and the measurement must be completed during this period. It is possible to scan the ultrasound twice approximately concentrically during one heartbeat, so one within eight heartbeats.
It can be scanned 6 times. The probe has a frequency of, for example, 2
.. If two 2 M z and 3.5 M z are used and scanned simultaneously, a maximum of 16×16 measurement points can be obtained. 140 and 15 are diagrams showing this, β1 to I2,5 are the probe 10, e, / to β'15 are the respective 16 of the probe 12.
This is a scanning line of a book, and black points P are 16×16 measurement points. Since it is preferable that the measurement point group be located in a desired part of the living body, it is preferable to designate the range of the measurement point group while looking at the eight images on the CRT display and scan accordingly.

測定点の指定はジョイスティックなどを用いて行なうこ
とができる。例えば上記第15図のように測定領域に縦
m本、横n本の格子を作り、ジョイスティックを操作し
てその任意の格子点にマーク(キャリパと呼ぶ)CPを
現示し、キャリパCPの存在する格子点(Xi、Yi 
)またはその近傍を含む領域を測定点又は領域とする。
The measurement point can be specified using a joystick or the like. For example, as shown in Fig. 15 above, create a grid with m vertical and n horizontal lines in the measurement area, operate the joystick to display a mark (called a caliper) CP at any grid point, and check the presence of the caliper CP. Lattice point (Xi, Yi
) or its vicinity is defined as the measurement point or area.

第18図にその回路を示す。84はジョイスティック、
86はその2次元位置をディジタルデータとするAD変
換器、88は該データからキャリパを表示すべき位置X
i+ Yiに対応するメモリアドレスを計算する針算部
、90は該アドレスにキャリパパターンを記憶するメモ
リである。このメモリ90は前述の1 メモリ56等と同期して読出し、合成表示回路58で合
成する。
FIG. 18 shows the circuit. 84 is a joystick,
86 is an AD converter that converts the two-dimensional position into digital data; 88 is the position X at which the caliper should be displayed based on the data;
A point counting unit 90 that calculates a memory address corresponding to i+Yi is a memory that stores a caliper pattern at the address. This memory 90 is read out in synchronization with the above-mentioned 1 memory 56 and the like, and is synthesized by the synthesis display circuit 58.

第16図は測定点群を心臓左肩に絞りこの中に測定点P
が等間隔のマトリクス状に配列されるようにする例を示
す。探触子10.12の走査はこれらの測定点を通るよ
うに行なわれ、従って各走査線がなす角は等角度ではな
い。この場合走査制御部28およびタイミング制御回路
50にはプロセッサを組み込み指定された範囲を所定の
又は入力されたピッチで区分してマトリクス状に並ぶ測
定点Pを求め、該測定点群の各測定点を順次通るように
探触子の走査線角度を決定しまた各走査線上のドプラ解
析する部分従ってタイミングを決定し、これらの角およ
びタイミングで走査、解析させる。
Figure 16 narrows down the measurement point group to the left shoulder of the heart and includes measurement point P.
Here is an example of arranging them in a matrix with equal intervals. The scanning of the probe 10.12 is carried out through these measurement points, so that the angles formed by each scanning line are not equiangular. In this case, the scan control unit 28 and the timing control circuit 50 include a processor to divide a specified range at a predetermined or input pitch to obtain measurement points P arranged in a matrix, and each measurement point in the group of measurement points. The scanning line angle of the probe is determined so that the probe passes through the Doppler analysis sequentially, and the timing is determined according to the portion to be analyzed on each scanning line, and the scanning and analysis are performed at these angles and timings.

マトリクス状に並ぶ各測定点を通るように走査線の角度
を定め該測定点周囲の探触子出力を抽出するようにタイ
ミングを決定することは必ずしも容易でない。例えば走
査線が密接して相互角が極めて小になる場合もある。第
17図はか\る点を2 考慮した改良策で、走査線1+、122・・・・・・7
!l’。
It is not always easy to set the angle of the scanning line so that it passes through each measurement point arranged in a matrix and to determine the timing to extract the probe output around the measurement point. For example, the scan lines may be closely spaced and their mutual angle may be extremely small. Figure 17 shows an improvement plan that takes into consideration 2 scan lines, 1+, 122...7
! l'.

A2′・・・・・・は等角度、出力抽出タイミング(×
印で示す)は等ピッチとし、こうして得られた速度成分
ベクトルから最寄りの等間隔マトリクス状配置測定点に
おける流速ベクトルを算出しようとするものである。同
図(blでこれを説明すると、A。
A2'... is equal angle, output extraction timing (×
) are set at equal pitches, and the flow velocity vector at the nearest equidistant matrix arrangement measurement point is calculated from the velocity component vector thus obtained. The same figure (to explain this in bl, A.

Bは測定点Ql、Q2で測定された速度成分ベクトルで
、これらの測定点は等間隔マトリクス状配置測定点Pに
近いので該測定点PにおL)る速度成分と見做す。A′
、B′はA、BをPQ+、PQ2だけ平行移動させたベ
クトルである。か\るベクトルA′、B′より前述のよ
うにして点Pの速度ベクトルDを求める。
B is a velocity component vector measured at the measurement points Ql and Q2, and since these measurement points are close to the measurement point P arranged in an equidistant matrix, it is regarded as the velocity component flowing to the measurement point P. A'
, B' are vectors obtained by translating A and B by PQ+ and PQ2. From the vectors A' and B', the velocity vector D at point P is determined as described above.

この点を更に詳しく説明すると、探触子は第6図の通り
とし第17図の如く格子点を測定点Pi。
To explain this point in more detail, the probe is as shown in FIG. 6, and the grid points are set as measurement points Pi as shown in FIG.

走査線上の測定点を計測点種として、各計測点Qiの座
標Qix、口iyは Qix= Xa+ It i  sin (θa+α1
)Qiy−Ya+ni  cos(#a+αl)で表わ
される。こ\で11はA〜旧間距離、α13 は探触子10の走査中心線と線分AQiのなす角である
。測定点Plの座標Pix、 Piyは予め指定される
から各計測点種と各測定点Piとの距離QiPiはo+
pt=46會マ二−旧x)2+(Piy −Qiy)2
で1算することができる。従って測定点Piの流速成分
として距離(liPiが最小な計測点Ωiの流速成分を
求める回路を構成することができる。第19図にその一
例を示す。92はマルチプレクサでジョイスティック8
4、前述の角αl、α2.α3を取り込み、AD変換器
94でデジタル値に変換し、針算部96で前記式より点
Aの座標Xa、 Yaを求め、更に計測点の座標Qiに
、旧yを求める。また角測定点Pix、 Piyに対す
る距離が最小な計測点種を求めてそれを測定点Piの流
速成分としてメモリ30゜32に書込む。
Taking the measurement points on the scanning line as the measurement point type, the coordinates Qix of each measurement point Qi, and the mouth iy are Qix=Xa+It i sin (θa+α1
)Qiy−Ya+ni cos(#a+αl). Here, 11 is the distance between A and the former, and α13 is the angle formed by the scanning center line of the probe 10 and the line segment AQi. Since the coordinates Pix and Piy of the measurement point Pl are specified in advance, the distance QiPi between each measurement point type and each measurement point Pi is o+
pt=46 Kai Mani - Old x) 2 + (Piy - Qiy) 2
You can calculate by 1. Therefore, it is possible to construct a circuit that calculates the flow velocity component of the measurement point Ωi with the minimum distance (liPi) as the flow velocity component of the measurement point Pi. An example of this is shown in FIG.
4. The aforementioned angles αl, α2. α3 is taken in and converted into a digital value by the AD converter 94, and the coordinates Xa and Ya of point A are determined by the calculation unit 96 from the above formula, and the old y is determined from the coordinate Qi of the measurement point. Further, the type of measurement point with the minimum distance to the angle measurement points Pix and Piy is determined and written in the memory 30.degree. 32 as the flow velocity component of the measurement point Pi.

心臓血流測定の場合は息を止めた8心拍内で測定し、C
RTディスプレイは毎秒30フレームで表示するので、
■心拍1秒として1心拍当り30フレームの情報をとる
必要がある。第20図はこれを説明する図で、(alは
心電信号で、(blは1心拍4 内にT o = 72.なる30フレームを設け、各フ
レーム期間で1方向以上のドプラ解析(1方向のドプラ
解析には数10〜200回の超音波パルス送受信を伴う
)を行なうことを示す。(clはその送受信波形、(d
lは期間T o = T、、9の拡大図である。測定は
流速だけでなく断層像についても行なうので、ドプラ、
Bモード各測定を交互に行なうとよい。
When measuring cardiac blood flow, measure within 8 heartbeats while holding your breath, and
RT displays display at 30 frames per second, so
■It is necessary to collect 30 frames of information per heartbeat, which is considered to be one heartbeat per second. FIG. 20 is a diagram explaining this, where (al is an electrocardiogram signal, (bl is 30 frames with T o = 72. within one heartbeat 4, and Doppler analysis (1 directional Doppler analysis involves several tens to 200 times of ultrasonic pulse transmission and reception). (cl is the transmission and reception waveform, (d
l is an enlarged view of the period T o = T, , 9. Measurements are made not only of flow velocity but also of tomographic images, so Doppler,
It is preferable to perform each B-mode measurement alternately.

本例では奇数回目ではドプラ測定、偶数回目ではBモー
ド測定とし、そしてドプラ測定は各フレーム周期当り2
方向(1方向につき例えば64回)の送受信をして(こ
れは可能である)行なう。同図(al〜(g)はこの説
明図でtelは第1心拍、(flは第2心拍、c幻は第
8心拍における送受信態様を示す。
In this example, Doppler measurement is performed for odd numbered times, B mode measurement is performed for even numbered times, and Doppler measurement is performed at 2 times per frame period.
This is done by transmitting and receiving directions (for example, 64 times per direction) (this is possible). In the figure (al to (g)) are explanatory diagrams, tel indicates the first heartbeat, (fl indicates the second heartbeat, and c phantom indicates the transmission/reception mode at the eighth heartbeat.

is)ではT1期間でDn方向とD1方向の走査を行な
い、T3期間ではD2方向とD3方向の走査を行ない、
T20期間では扇形領域最後のD28方向とD29方向
の走査を行なう。次の第2心拍では各期間で送受信する
方向を2つ分ずつずらす。即ちT1期間ではD2方向と
D3方向で送受信し、T3期間ではD4方向とD6方向
で送受信し、’r2o期5 間ではDo方向とD■方向で送受信する。以下同様で、
従って第8心拍のT1期間ではD28 + D2Q方向
、T3期間ではDo、D+方向、T20期間ではD26
.D2□方向で送受信する。このようにすると各Do、
D+、・・・・・・D2+1方向で、異なる8種のタイ
ミングでドプラ測定が行なわれ、TI、T3゜・・・・
・・1゛2゜各期間ともDo−D2o方向の測定データ
を得ることになる。これらT1〜T29の測定データは
独立にメモリに格納し、各方向の測定データを一斉に、
T1.T3・・・・・・T20等の順で時相的に順次読
出して表示すると、1心拍内に刻々変化する流速分布が
明瞭に看取される。
is), scanning is performed in the Dn direction and D1 direction during the T1 period, and scanning is performed in the D2 direction and D3 direction during the T3 period,
In the T20 period, the final scanning of the fan-shaped area in the D28 direction and the D29 direction is performed. In the next second heartbeat, the direction of transmission and reception is shifted by two points in each period. That is, during the T1 period, transmission and reception are performed in the D2 direction and the D3 direction, during the T3 period, transmission and reception are performed in the D4 direction and the D6 direction, and during the 'r2o period 5, transmission and reception are performed in the Do direction and the D■ direction. Similarly below,
Therefore, in the T1 period of the 8th heartbeat, the direction is D28 + D2Q, in the T3 period it is Do, D+ direction, and in the T20 period it is D26
.. Transmit and receive in the D2□ direction. In this way, each Do,
Doppler measurements were performed at eight different timings in the D+,...D2+1 direction, and TI, T3°...
...1゛2゜Measurement data in the Do-D2o direction will be obtained for each period. These measurement data of T1 to T29 are stored independently in the memory, and the measurement data of each direction is stored all at once.
T1. When read out and displayed sequentially in time phase in the order of T3...T20, etc., the flow velocity distribution that changes moment by moment within one heartbeat can be clearly seen.

なお上記は探触子1個分の説明図であるが、実際には周
波数を変えて第2の探触子も同時に動作させ、前述の如
き2次元流速マツプをリアルタイムの様に表示させる事
ができる。また偶数番目で採取したBモード像は第6図
の合成表示回路で合成してディスプレイ上ではTo、T
1.T2.T3・・・・・・期間の画像を繰り返し表示
する。
Although the above is an explanatory diagram for one probe, in reality it is possible to change the frequency and operate a second probe at the same time to display the two-dimensional flow velocity map as described above in real time. can. In addition, the even-numbered B-mode images are synthesized by the synthesis display circuit shown in Figure 6, and displayed on the display as To and T.
1. T2. T3... Images of the period are repeatedly displayed.

以上の方法においては、Bモード像は、像が得6 られた時刻に直ちに表示され、記録はされなかったが、
Bモード像を磁気テープ等の記憶装置に心電同期信号と
共に書込んでおき、Bモード像を再生する時に、記録さ
れた心電信号に同期してBモード像の時相に対応するド
プラ計測結果も合成して表示する、という方法を用いて
も良い。また第22図に示すように第1心拍ではBモー
ド像を測定し、第2心拍ではその期間T o = 72
4 中ある一方向Doのドプラ測定を行ない、第3.第
4・・・・・・心拍では方向をDI、D2・・・・・・
と変えてその方向のドプラ測定を行ない、これらを合成
表示してもよい。この場合ドプラ測定の間にBモード測
定を入れてもよく、また1心拍中にタイムシェアリング
で2方向のドプラ測定を行なってもよい。
In the above method, the B-mode image was displayed immediately at the time the image was obtained and was not recorded.
A B-mode image is written to a storage device such as a magnetic tape along with an electrocardiogram synchronization signal, and when the B-mode image is reproduced, Doppler measurement is performed in synchronization with the recorded electrocardiogram signal and corresponds to the time phase of the B-mode image. A method may also be used in which the results are also combined and displayed. Further, as shown in FIG. 22, the B-mode image is measured at the first heartbeat, and the period T o = 72 at the second heartbeat.
4 Perform Doppler measurement in one direction Do in the middle. 4th...In the heartbeat, the direction is DI, D2...
Alternatively, Doppler measurements may be performed in that direction, and these may be displayed in a composite manner. In this case, B-mode measurement may be inserted between Doppler measurements, or Doppler measurements in two directions may be performed during one heartbeat by time sharing.

発明の詳細 な説明したように本発明によれば生体所望部分の2次元
流速マツプを求め、当該部分の流速分布がどのようにな
っているか従って当該生体は正常か異常かなどを容易に
目視判定することができる。
As described in detail, according to the present invention, a two-dimensional flow velocity map of a desired part of a living body is obtained, and it is possible to easily visually determine what the flow velocity distribution is in that part and whether the living body is normal or abnormal. can do.

また流速分布は断層像と重ねて表示する、指定7 した範囲内の流速分布を表示する等の操作も可能で、生
体診断に有力な手段を提供する。
In addition, operations such as displaying the flow velocity distribution overlaid on a tomographic image or displaying the flow velocity distribution within a specified range are also possible, providing a powerful means for biological diagnosis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はドプラ流速解析の説明図、第6図は本
発明の実施例を示すブロック図、第7図はその一部の動
作説明図、第8図〜第22図は各種変形例の説明図であ
る。 図面で10.12は超音波探触子、20は操作制御部、
26は検出回路、40はマルチゲートドプラ計測回路、
30.32は流速メモリ成分、52は流速演算回路、5
0はタイミング制御回路である。 出 願 人  富 士 通 株式会社 代理人弁理士  青  柳    稔 8 第1図 T。 第3図 −34; 第21図 第22園 第1頁の続き ・宿発 明 者 松尾裕英 高松市浜の町60番地55号 ・7?・発 明 者 千原国宏 枚方市禁野木町2丁目11番地27 31号 ・ρ)発 明 者 桜井、良文 箕面市箕面2丁目9番地18号
Fig. 1 to Fig. 5 are explanatory diagrams of Doppler flow velocity analysis, Fig. 6 is a block diagram showing an embodiment of the present invention, Fig. 7 is an explanatory diagram of a part of its operation, and Fig. 8 to Fig. 22 are various diagrams. It is an explanatory view of a modification. In the drawing, 10.12 is an ultrasonic probe, 20 is an operation control unit,
26 is a detection circuit, 40 is a multi-gate Doppler measurement circuit,
30. 32 is a flow velocity memory component, 52 is a flow velocity calculation circuit, 5
0 is a timing control circuit. Applicant Fujitsu Co., Ltd. Representative Patent Attorney Minoru Aoyagi 8 Figure 1 T. Figure 3-34; Continuation of Figure 21, Garden 22, page 1 - Inn Inventor Hirohide Matsuo 60-55, Hamano-cho, Takamatsu City, 7?・Inventor: Kunihiro Chihara, 2-11-27-31, Kinnogi-cho, Hirakata City; Inventor: Sakurai, Ryobun, 2-9-18, Minoh, Minoh City

Claims (1)

【特許請求の範囲】 +11複数箇所から超音波を送受信する超音波探触子と
、該探触子が超音波を送受信する走査角度を制御する走
査制御部と、該複数箇所の探触子の位置・方向検出手段
と、該検出手段出力と送受信走査角度とから該複数箇所
の位置及び送受信走査方向を表示画面の座標上で決定す
る検出回路と、前記探触子の受信出力とタイミング信号
を受けて各走査方向上複数点の流速成分を算出するマル
チゲートドプラ計測回路と、前記複数箇所の各々に対応
して設けられ、該ドプラ針側回路が算出した各走査方向
上複数点の流速成分を表示画面上の座標に対応させて記
憶する流速成分メモリと、これらの流速成分メモリから
各点の流速成分を読出し当該点の2次元流速成分を算出
する流速演算回路と、生体信号に同期して前記タイミン
グ信号を出力するタイミング制御回路を備えることを特
徴とする2次元ドプラ流速成分マツプ計測装置。 (2、特許請求の範囲に記載の装置において、nヶの超
音波探触子を用いる代りに移動式であり、該移動した位
置検出手段を備えた装置。 (3)特許請求の範囲に記載の装置において、nヶの超
音波探触子よりそれぞれ異る周波数を送受信し、それら
のクロストークを除去する帯域制限フィルタをそれぞれ
に設けたことを特徴とする装置。 (4)特許請求の範囲および前記(21,+31項記載
の装置において、生体信号より得られた心拍同期信号に
同期して超音波探触子をスキャン動作せしめ8画像を画
像メモリ上に得、ドプラ計測結果と画像合成表示するこ
とを特徴とする装置。 (5)前記(4)項記載の装置において、超音波探触子
をスキャン動作せしめて得た8画像上(リアルタイム像
でもフリーズ像でも良い)に格子状の測定点あるいは測
定範囲を指定しうる手段を備えたことを特徴とする装置
。 (6)前記(5)項記載の装置において、該格子状の測
定点のピッチは測定結果を表示すべく予め定められたピ
ンチ以下であることを特徴とする装置。 (7)特許請求の範囲または前記+21. +31. 
+41. +51項記載の装置において、マルチゲート
ドプラ計測回路の計測位置が予めt旨定された(5)項
記載の測定点あるいはその近傍になるべく、計測位置お
よび探触子の走査線方向を制御することを特徴とする装
置。 (8)特許請求の範囲または前記(21,(3L (4
1,+51.項記載の装置において、マルチゲートドプ
ラ計測回路の計測位置が、予め指定された(5)項記載
の測定範囲内を等分する位置であり、スキャナ走査線方
向も該測定範囲内を等分する方向で走査することを特徴
とする装置。 (9)前記(71、+81項記載の装置において、計測
位置が測定点の近傍(たとえば測定点ピッチをPとし±
して該計測位置で得た値を代用することを特徴とする装
置。 (10)特許請求の範囲および前記各項記載の装置にお
いて、2次元ドプラ流速を演算する流速成分は平均流速
であることを特徴とする装置。 (11)前記第(10)項記載の装置において、マルチ
ゲートドプラ計測回路より得られた流速成分が分散ある
いは正逆方向成分を持つ場合は、該分散の程度あるいは
該正逆方向の程度か成る闇値を越えた場合演算して得た
2次元流速マツプ上の符号に特徴付けを行なうことを特
徴とする装置。 (12、特許請求の範囲または前記各項記載の装置にお
いて、1心拍中に相異なる複数方向の複数計測位置のド
プラ計測を相異なる複数の時相で行ない、数心拍に亘り
それらの計測値を格納し、それらを時相列のドプラマツ
プ情報として編集し出力することを特徴とする装置。 (13)特許請求の範囲または前記(2)〜(11)項
記載の装置において、複数心拍中に相異なる複数方向の
複数計測位置のドプラ計測を行ない、それらの値を格納
し、それらを時相列のドプラマツプ情報として、編集し
出力することを特徴とする装置。
[Scope of claims] a position/direction detecting means; a detection circuit for determining the positions and transmitting/receiving scanning directions of the plurality of locations on the coordinates of a display screen from the output of the detecting means and the transmitting/receiving scanning angle; a multi-gate Doppler measurement circuit that receives the signal and calculates flow velocity components at multiple points in each scanning direction; and a multi-gate Doppler measurement circuit that is provided corresponding to each of the plurality of locations and calculates flow velocity components at multiple points in each scanning direction calculated by the Doppler needle side circuit. A flow velocity component memory that stores the flow velocity components in correspondence with the coordinates on the display screen, a flow velocity calculation circuit that reads the flow velocity components of each point from these flow velocity component memories and calculates the two-dimensional flow velocity component of the point, and a flow velocity calculation circuit that is synchronized with biological signals. A two-dimensional Doppler flow velocity component map measuring device comprising a timing control circuit that outputs the timing signal. (2. The device described in the claims, which is a mobile device instead of using n ultrasonic probes, and is equipped with a means for detecting the moved position. (3) The device described in the claims. (4) Claims And in the apparatus described in (21, +31), the ultrasound probe is scanned in synchronization with the heartbeat synchronization signal obtained from the biological signal, eight images are obtained on the image memory, and the images are combined and displayed with the Doppler measurement results. (5) In the device described in item (4) above, a grid-like measurement is performed on eight images (real-time images or frozen images may be used) obtained by scanning the ultrasonic probe. A device characterized by comprising means for specifying a point or a measurement range. (6) In the device described in (5) above, the pitch of the measurement points in the grid is predetermined for displaying the measurement results. (7) Claims or the above-mentioned +21. +31.
+41. + In the device described in item 51, the measurement position and the scanning line direction of the probe are controlled so that the measurement position of the multi-gate Doppler measurement circuit is at or near the measurement point described in item (5), which is predetermined t. A device featuring: (8) Claims or the above (21, (3L (4)
1, +51. In the apparatus described in paragraph (5), the measurement position of the multi-gate Doppler measurement circuit is a position that equally divides the measurement range described in paragraph (5) specified in advance, and the scanner scanning line direction also divides the measurement range equally. A device characterized in that it scans in a direction. (9) In the device described in (71, +81), the measurement position is near the measurement point (for example, the measurement point pitch is P and ±
An apparatus characterized in that the value obtained at the measurement position is substituted by the measurement position. (10) In the apparatus described in the claims and each of the above items, the flow velocity component for calculating the two-dimensional Doppler flow velocity is an average flow velocity. (11) In the apparatus described in item (10) above, if the flow velocity component obtained from the multi-gate Doppler measurement circuit has dispersion or a forward/reverse direction component, the extent of the dispersion or the forward/reverse direction is determined. A device characterized in that a sign on a two-dimensional flow velocity map obtained by calculation is characterized when the dark value is exceeded. (12. In the apparatus described in the claims or each of the above items, Doppler measurements are performed at multiple measurement positions in multiple different directions during one heartbeat at multiple different time phases, and those measured values are recorded over several heartbeats. (13) In the apparatus described in the claims or (2) to (11) above, the A device that performs Doppler measurements at multiple measurement positions in multiple different directions, stores those values, and edits and outputs them as Doppler map information in a time series.
JP11605482A 1982-07-02 1982-07-02 Apparatus for measuring two-dimensional doppler flow speed map Pending JPS595964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11605482A JPS595964A (en) 1982-07-02 1982-07-02 Apparatus for measuring two-dimensional doppler flow speed map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11605482A JPS595964A (en) 1982-07-02 1982-07-02 Apparatus for measuring two-dimensional doppler flow speed map

Publications (1)

Publication Number Publication Date
JPS595964A true JPS595964A (en) 1984-01-12

Family

ID=14677556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11605482A Pending JPS595964A (en) 1982-07-02 1982-07-02 Apparatus for measuring two-dimensional doppler flow speed map

Country Status (1)

Country Link
JP (1) JPS595964A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163630A (en) * 1980-05-20 1981-12-16 Hitachi Medical Corp Detector for bloodstream velocity distribution
JPS5786009A (en) * 1980-11-17 1982-05-28 Fujitsu Ltd Measuring device for flow passage information using ultrasonic wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163630A (en) * 1980-05-20 1981-12-16 Hitachi Medical Corp Detector for bloodstream velocity distribution
JPS5786009A (en) * 1980-11-17 1982-05-28 Fujitsu Ltd Measuring device for flow passage information using ultrasonic wave

Similar Documents

Publication Publication Date Title
JP4068234B2 (en) Ultrasonic diagnostic equipment
CN103156647B (en) Diagnostic ultrasound equipment, image processing apparatus and image processing method
US7740584B2 (en) Method and system for mapping physiology information onto ultrasound-based anatomic structure
US6884216B2 (en) Ultrasound diagnosis apparatus and ultrasound image display method and apparatus
JP5192697B2 (en) Ultrasonic diagnostic equipment
JP2812670B2 (en) 3D ultrasonic diagnostic image processing device
JP2003515423A (en) Ultrasound image processing method and system for displaying a composite image sequence of artery segments
WO2007138751A1 (en) Ultrasonograph, medical image processing device, and medical image processing program
JPS6048734A (en) Ultrasonic fluid observing apparatus
JP4468432B2 (en) Ultrasonic diagnostic equipment
JP3539924B2 (en) A system that measures and displays strain velocity in real time in ultrasonic imaging
JPH07178086A (en) Method for ultrasonic diagnosis and system therefor
JPS61181449A (en) Blood flow speed measuring apparatus
JP2001061840A (en) Ultrasonograph
JPS6247537B2 (en)
JP3936450B2 (en) Projection image generation apparatus and medical image apparatus
JPH10165400A (en) Ultrasonic diagnostic device
JPS6253182B2 (en)
JP2004329609A (en) Ultrasonic diagnostic apparatus
JPS595964A (en) Apparatus for measuring two-dimensional doppler flow speed map
JP2005143733A (en) Ultrasonic diagnosis apparatus, three-dimensional image data displaying apparatus and three-dimensional image data displaying method
JP3691855B2 (en) Ultrasonic diagnostic equipment
JP3312282B2 (en) Ultrasound diagnostic equipment
JPS6129735B2 (en)
JP2007275457A (en) Ultrasonic diagnostic system and blood vessel marker display method